Skip to main content
Top
Published in: Cancer Cell International 1/2018

Open Access 01-12-2018 | Primary Research

Transcription factor E2F3a regulates CASP8AP2 transcription and enhances sensitivity to chemotherapeutic drugs in acute lymphoblastic leukemia

Authors: Fei-Fei Liu, Kai-Ling Wang, Li-Ping Deng, Xiao Liu, Min-yuan Wu, Tian-You Wang, Lei Cui, Zhi-Gang Li

Published in: Cancer Cell International | Issue 1/2018

Login to get access

Abstract

Background

Low expression of E2F3a and caspase 8 associated protein 2 (CASP8AP2) are associated with poor prognosis of childhood acute lymphoblastic leukemia (ALL).

Methods

Dual-luciferase reporter assay and wild type as well as four mutated types of reporter plasmids were used to demonstrate the activation of E2F3a on CASP8AP2 transcription. The direct binding of E2F3a with the promoter of CASP8AP2 was shown by Chromatin Immunoprecipitation (ChIP). Cell proliferation activity and cell cycle were determined by MTS and flow cytometry in leukemic cells after treating with common chemotherapeutic drugs vincristine and daunorubicin.

Results

In this study, we found that up-regulation of E2F3a in leukemic cells led to increased fraction of cells in S and G2/M phase, accelerated proliferation, and enhanced sensitivity to vincristine and daunorubicin. ChIP and luciferase assay indicated that E2F3a could directly bind to two fragments in the wild type of CASP8AP2 promotor (− 206 to − 69 and − 677 to − 507), and activate its transcription activity which was reduced in mutated promotors. The effect of E2F3a on chemotherapeutic sensitivity of leukemic cells could be reversed by down-regulating CASP8AP2.

Conclusions

E2F3a could promote transcription and expression of CASP8AP2. The effect of E2F3a on chemotherapeutic sensitivity of ALL cells was implemented by regulating CASP8AP2 expression to a great extent.

Literature
  1. Kaatsch P. Epidemiology of childhood cancer. Cancer Treat Rev. 2010;36(4):277–85.View ArticlePubMed
  2. Gao C, Zhao XX, Li WJ, Cui L, Zhao W, Liu SG, Yue ZX, Jiao Y, Wu MY, Li ZG. Clinical features, early treatment responses, and outcomes of pediatric acute lymphoblastic leukemia in China with or without specific fusion transcripts: a single institutional study of 1,004 patients. Am J Hematol. 2012;87(11):1022–7.View ArticlePubMed
  3. Hunger SP, Mullighan CG. Acute lymphoblastic leukemia in children. New Engl J Med. 2015;373(16):1541–52.View ArticlePubMed
  4. Milovic-Holm K, Krieghoff E, Jensen K, Will H, Hofmann TG. FLASH links the CD95 signaling pathway to the cell nucleus and nuclear bodies. EMBO J. 2007;26(2):391–401.View ArticlePubMedPubMed Central
  5. Barcaroli D, Bongiorno-Borbone L, Terrinoni A, Hofmann TG, Rossi M, Knight RA, Matera AG, Melino G, De Laurenzi V. FLASH is required for histone transcription and S-phase progression. Proc Natl Acad Sci USA. 2006;103(40):14808–12.View ArticlePubMedPubMed Central
  6. Alm-Kristiansen AH, Saether T, Matre V, Gilfillan S, Dahle Ø, Gabrielsen OS. FLASH acts as a co-activator of the transcription factor c-Myb and localizes to active RNA polymerase II foci. Oncogene. 2008;27(34):4644–56.View ArticlePubMed
  7. Yang XC, Burch BD, Yan Y, Marzluff WF, Dominski Z. FLASH, a proapoptotic protein involved in activation of caspase-8, is essential for 3′ end processing of histone pre-mRNAs. Mol Cell. 2009;36(2):267–78.View ArticlePubMedPubMed Central
  8. Flotho C, Coustan-Smith E, Pei D, Iwamoto S, Song G, Cheng C, Pui CH, Downing JR, Campana D. Genes contributing to minimal residual disease in childhood acute lymphoblastic leukemia: prognostic significance of CASP8AP2. Blood. 2006;108(3):1050–7.View ArticlePubMedPubMed Central
  9. Flotho C, Coustan-Smith E, Pei D, Cheng C, Song G, Pui CH, Downing JR, Campana D. A set of genes that regulate cell proliferation predicts treatment outcome in childhood acute lymphoblastic leukemia. Blood. 2007;110(4):1271–7.View ArticlePubMedPubMed Central
  10. Remke M, Pfister S, Kox C, Toedt G, Becker N, Benner A, Werft W, Breit S, Liu S, Engel F, et al. High-resolution genomic profiling of childhood T-ALL reveals frequent copy-number alterations affecting the TGF-β and PI3 K-AKT pathways and deletions at 6q15-16.1 as a genomic marker for unfavorable early treatment response. Blood. 2009;114(5):1053–62.View ArticlePubMed
  11. Jiao Y, Cui L, Gao C, Li WJ, Zhao XX, Liu SG, Wu MY, Deng GR, Li ZG. CASP8AP2 is a promising prognostic indicator in pediatric acute lymphoblastic leukemia. Leuk Res. 2012;36(1):67–71.View ArticlePubMed
  12. Gokhman D, Livyatan I, Sailaja BS, Melcer S, Meshorer E. Multilayered chromatin analysis reveals E2f, Smad and Zfx as transcriptional regulators of histones. Nat Struct Mol Biol. 2013;20(1):119–26.View ArticlePubMed
  13. Vimala K, Sundarraj S, Sujitha MV, Kannan S. Curtailing overexpression of E2F3 in breast cancer using siRNA (E2F3)-based gene silencing. Arch Med Res. 2012;43(6):415–22.View ArticlePubMed
  14. Li W, Ni GX, Zhang P, Zhang ZX, Li W, Wu Q. Characterization of E2F3a function in HepG2 liver cancer cells. J Cell Biochem. 2010;111(5):1244–51.View ArticlePubMed
  15. Ross ME, Zhou X, Song G, Shurtleff SA, Girtman K, Williams WK, Liu HC, Mahfouz R, Raimondi SC, Lenny N, et al. Classification of pediatric acute lymphoblastic leukemia by gene expression profiling. Blood. 2003;102(8):2951–9.View ArticlePubMed
  16. Li ZG, Zhang W, Wu MY, Zhu SS, Gao C, Sun L, Zhang RD, Qiao N, Xue HL, Hu YM, et al. Gene expression-based classification and regulatory networks of pediatric acute lymphoblastic leukemia. Blood. 2009;114(20):4486–93.View ArticlePubMed
  17. Leone G, Nuckolls F, Ishida S, Adams M, Sears R, Jakoi L, Miron A, Nevins JR. Identification of a novel E2F3 product suggests a mechanism for determining specificity of repression by Rb proteins. Mol Cell Biol. 2000;20(10):3626–32.View ArticlePubMedPubMed Central
  18. He Y, Armanious MK, Thomas MJ, Cress WD. Identification of E2F-3B, an alternative form of E2F-3 lacking a conserved N-terminal region. Oncogene. 2000;19(30):3422–33.View ArticlePubMed
  19. Chen HZ, Tsai SY, Leone G. Emerging roles of E2Fs in cancer: an exit from cell cycle control. Nat Rev Cancer. 2009;9(11):785–97.View ArticlePubMedPubMed Central
  20. Wang K, Mei Y, Cui L, Zhao X, Li W, Gao C, Liu S, Jiao Y, Liu F, Wu M, et al. E2F3a gene expression has prognostic significance in childhood acute lymphoblastic leukemia. Eur J Haematol. 2014;93(4):281–9.View ArticlePubMed
  21. Li Z, Jiao Y, Li W, Deng G, Cui L, Gao C, Zhao X, Wu M, Jia H. Hypermethylation of two CpG sites upstream of CASP8AP2 promoter influences gene expression and treatment outcome in childhood acute lymphoblastic leukemia. Leuk Res. 2013;37(10):1287–93.View ArticlePubMed
  22. Lee KD, Pai MY, Hsu CC, Chen CC, Chen YL, Chu PY, Lee CH, Chen LT, Chang JY, Huang TH, et al. Targeted Casp8AP2 methylation increases drug resistance in mesenchymal stem cells and cancer cells. Biochem Biophy Res Commun. 2012;422(4):578–85.View Article
  23. Chen CC, Lee KD, Pai MY, Chu PY, Hsu CC, Chiu CC, Chen LT, Chang JY, Hsiao SH, Leu YW. Changes in DNA methylation are associated with the development of drug resistance in cervical cancer cells. Cancer Cell Int. 2015;15:98.View ArticlePubMedPubMed Central
  24. Xanthoulis A, Tiniakos DG. E2F transcription factors and digestive system malignancies: how much do we know? World J Gastroenterol. 2013;19(21):3189–98.View ArticlePubMedPubMed Central
  25. Molenaar JJ, Koster J, Ebus ME, van Sluis P, Westerhout EM, de Preter K, Gisselsson D, Øra I, Speleman F, Caron HN, et al. Copy number defects of G1-cell cycle genes in neuroblastoma are frequent and correlate with high expression of E2F target genes and a poor prognosis. Genes Chromosomes Cancer. 2012;51(1):10–9.View ArticlePubMed
  26. Frei E III, Sallan SE. Acute lymphoblastic leukemia: treatment. Cancer. 1978;42(2 Suppl):828–38.PubMed
  27. Holohan C, van Schaeybroeck S, Longley DB, Johnston PG. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer. 2013;13(10):714–26.View ArticlePubMed
Metadata
Title
Transcription factor E2F3a regulates CASP8AP2 transcription and enhances sensitivity to chemotherapeutic drugs in acute lymphoblastic leukemia
Authors
Fei-Fei Liu
Kai-Ling Wang
Li-Ping Deng
Xiao Liu
Min-yuan Wu
Tian-You Wang
Lei Cui
Zhi-Gang Li
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2018
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-018-0531-1

Other articles of this Issue 1/2018

Cancer Cell International 1/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine