Skip to main content
Top
Published in: Cancer Cell International 1/2017

Open Access 01-12-2017 | Primary research

CBFA2T2 is associated with a cancer stem cell state in renal cell carcinoma

Authors: Du-Chu Chen, You-De Liang, Liang Peng, Yi-Ze Wang, Chun-Zhi Ai, Xin-Xing Zhu, Ya-Wei Yan, Yasmeen Saeed, Bin Yu, Jingying Huang, Yuxin Gao, Jiaqi Liu, Yi-Zhou Jiang, Min Liu, Demeng Chen

Published in: Cancer Cell International | Issue 1/2017

Login to get access

Abstract

Background

Renal cell carcinoma (RCC) is the most common kidney cancer, accounting for approximately 80–90% of all primary kidney cancer. Treatment for patients with advanced RCC remains unsatisfactory. Rare cancer stem cells (CSCs) are proposed to be responsible for failure of current treatment.

Methods

OncoLnc was used as a tool for interactively exploring survival correlations. Gene manipulation and expression analysis were carried out using siRNA, RT-PCR and Western blotting. Wound healing and invasion assays were used for phenotypical characterization. Aldefluor assay and FACS sorting Sphere culture were used to determine the “stemness” of CSCs. Co-Immunoprecipitation (Co-IP) was used to examine the interaction between OCT4 and CBFA2T2. Student’s t-test and Chi square test was used to analyze statistical significance.

Results

CBFA2T2 expression can significantly predict the survival of RCC patients. Knocking-down of CBFA2T2 can inhibit cell migration and invasion in RCC cells in vitro, and reduce ALDHhigh CSCs populations. CBFA2T2 expression is necessary for sphere-forming ability and cancer stem cells marker expression in RCC cell lines.

Conclusions

Our data suggest that CBFA2T2 expression correlates with aggressive characteristics of RCC and CBFA2T2 is required for maintenance of “stemness” through regulation of stem cells factors, thereby highlighting CBFA2T2 as a potential therapeutic target for RCC treatment.
Appendix
Available only for authorised users
Literature
2.
3.
go back to reference Garcia JA, Rini BI. Recent progress in the management of advanced renal cell carcinoma. CA Cancer J Clin. 2007;57:112–25.CrossRefPubMed Garcia JA, Rini BI. Recent progress in the management of advanced renal cell carcinoma. CA Cancer J Clin. 2007;57:112–25.CrossRefPubMed
4.
go back to reference Richey SL, Culp SH, Jonasch E, et al. Outcome of patients with metastatic renal cell carcinoma treated with targeted therapy without cytoreductive nephrectomy. Ann Oncol. 2011;22:1048–53.CrossRefPubMed Richey SL, Culp SH, Jonasch E, et al. Outcome of patients with metastatic renal cell carcinoma treated with targeted therapy without cytoreductive nephrectomy. Ann Oncol. 2011;22:1048–53.CrossRefPubMed
5.
go back to reference Fiori ME, Villanova L, De Maria R. Cancer stem cells: at the forefront of personalized medicine and immunotherapy. Curr Opin Pharmacol. 2017;35:1–11.CrossRefPubMed Fiori ME, Villanova L, De Maria R. Cancer stem cells: at the forefront of personalized medicine and immunotherapy. Curr Opin Pharmacol. 2017;35:1–11.CrossRefPubMed
6.
go back to reference Yuan ZX, Mo J, Zhao G, Shu G, Fu HL, Zhao W. Targeting strategies for renal cell carcinoma: from renal cancer cells to renal cancer stem cells. Front Pharmacol. 2016;7:423.CrossRefPubMedPubMedCentral Yuan ZX, Mo J, Zhao G, Shu G, Fu HL, Zhao W. Targeting strategies for renal cell carcinoma: from renal cancer cells to renal cancer stem cells. Front Pharmacol. 2016;7:423.CrossRefPubMedPubMedCentral
7.
go back to reference Chen D, Wu M, Li Y, et al. Targeting BMI1+ cancer stem cells overcomes chemoresistance and inhibits metastases in squamous cell carcinoma. Cell stem cell. 2017;20:621–34.CrossRefPubMedPubMedCentral Chen D, Wu M, Li Y, et al. Targeting BMI1+ cancer stem cells overcomes chemoresistance and inhibits metastases in squamous cell carcinoma. Cell stem cell. 2017;20:621–34.CrossRefPubMedPubMedCentral
8.
go back to reference Li J, Yu B, Deng P, et al. KDM3 epigenetically controls tumorigenic potentials of human colorectal cancer stem cells through Wnt/β-catenin signalling. Nat Commun. 2017;8:15146.CrossRefPubMedPubMedCentral Li J, Yu B, Deng P, et al. KDM3 epigenetically controls tumorigenic potentials of human colorectal cancer stem cells through Wnt/β-catenin signalling. Nat Commun. 2017;8:15146.CrossRefPubMedPubMedCentral
9.
10.
go back to reference Gassenmaier M, Chen D, Buchner A, et al. CXC chemokine receptor 4 is essential for maintenance of renal cell carcinoma-initiating cells and predicts metastasis. Stem Cells. 2013;31:1467–76.CrossRefPubMed Gassenmaier M, Chen D, Buchner A, et al. CXC chemokine receptor 4 is essential for maintenance of renal cell carcinoma-initiating cells and predicts metastasis. Stem Cells. 2013;31:1467–76.CrossRefPubMed
11.
go back to reference Debeb BG, Zhang X, Krishnamurthy S, et al. Characterizing cancer cells with cancer stem cell-like features in 293T human embryonic kidney cells. Mol Cancer. 2010;9:180.CrossRefPubMedPubMedCentral Debeb BG, Zhang X, Krishnamurthy S, et al. Characterizing cancer cells with cancer stem cell-like features in 293T human embryonic kidney cells. Mol Cancer. 2010;9:180.CrossRefPubMedPubMedCentral
12.
go back to reference Bussolati B, Bruno S, Grange C, Ferrando U, Camussi G. Identification of a tumor-initiating stem cell population in human renal carcinomas. FASEB J. 2008;22:3696–705.CrossRefPubMed Bussolati B, Bruno S, Grange C, Ferrando U, Camussi G. Identification of a tumor-initiating stem cell population in human renal carcinomas. FASEB J. 2008;22:3696–705.CrossRefPubMed
13.
go back to reference Nicole L, Sanavia T, Veronese N, et al. Oncofetal gene SALL4 and prognosis in cancer: a systematic review with meta-analysis. Oncotarget. 2017;8:22968–79.CrossRefPubMedPubMedCentral Nicole L, Sanavia T, Veronese N, et al. Oncofetal gene SALL4 and prognosis in cancer: a systematic review with meta-analysis. Oncotarget. 2017;8:22968–79.CrossRefPubMedPubMedCentral
14.
go back to reference Ji Q, Luo YQ, Wang WH, Liu X, Li Q, Su SB. Research advances in traditional Chinese medicine syndromes in cancer patients. J Integr Med. 2016;14:12–21.CrossRefPubMed Ji Q, Luo YQ, Wang WH, Liu X, Li Q, Su SB. Research advances in traditional Chinese medicine syndromes in cancer patients. J Integr Med. 2016;14:12–21.CrossRefPubMed
15.
go back to reference Zhong Y, Guan K, Guo S, et al. Spheres derived from the human SK-RC-42 renal cell carcinoma cell line are enriched in cancer stem cells. Cancer Lett. 2010;299:150–60.CrossRefPubMed Zhong Y, Guan K, Guo S, et al. Spheres derived from the human SK-RC-42 renal cell carcinoma cell line are enriched in cancer stem cells. Cancer Lett. 2010;299:150–60.CrossRefPubMed
16.
go back to reference Addla SK, Brown MD, Hart CA, Ramani VA, Clarke NW. Characterization of the Hoechst 33342 side population from normal and malignant human renal epithelial cells. Am J Physiol Renal Physiol. 2008;295:F680–7.CrossRefPubMedPubMedCentral Addla SK, Brown MD, Hart CA, Ramani VA, Clarke NW. Characterization of the Hoechst 33342 side population from normal and malignant human renal epithelial cells. Am J Physiol Renal Physiol. 2008;295:F680–7.CrossRefPubMedPubMedCentral
17.
go back to reference Wang LPP, Zhang H, La Marca F, Lin CY. Characterization of renal tumor-initiating cells in human renal carcinoma cell lines. Can Res. 2011;71(supplement 8):293.CrossRef Wang LPP, Zhang H, La Marca F, Lin CY. Characterization of renal tumor-initiating cells in human renal carcinoma cell lines. Can Res. 2011;71(supplement 8):293.CrossRef
18.
go back to reference Ueda K, Ogasawara S, Akiba J, et al. Aldehyde dehydrogenase 1 identifies cells with cancer stem cell-like properties in a human renal cell carcinoma cell line. PLoS ONE. 2013;8:e75463.CrossRefPubMedPubMedCentral Ueda K, Ogasawara S, Akiba J, et al. Aldehyde dehydrogenase 1 identifies cells with cancer stem cell-like properties in a human renal cell carcinoma cell line. PLoS ONE. 2013;8:e75463.CrossRefPubMedPubMedCentral
19.
go back to reference Cheng B, Yang G, Jiang R, et al. Cancer stem cell markers predict a poor prognosis in renal cell carcinoma: a meta-analysis. Oncotarget. 2016;7:65862–75.PubMedPubMedCentral Cheng B, Yang G, Jiang R, et al. Cancer stem cell markers predict a poor prognosis in renal cell carcinoma: a meta-analysis. Oncotarget. 2016;7:65862–75.PubMedPubMedCentral
21.
go back to reference Guastadisegni MC, Lonoce A, Impera L, et al. CBFA2T2 and C20orf112: two novel fusion partners of RUNX1 in acute myeloid leukemia. Leukemia. 2010;24:1516–9.CrossRefPubMed Guastadisegni MC, Lonoce A, Impera L, et al. CBFA2T2 and C20orf112: two novel fusion partners of RUNX1 in acute myeloid leukemia. Leukemia. 2010;24:1516–9.CrossRefPubMed
22.
go back to reference Barrett CW, Fingleton B, Williams A, et al. MTGR1 is required for tumorigenesis in the murine AOM/DSS colitis-associated carcinoma model. Cancer Res. 2011;71:1302–12.CrossRefPubMedPubMedCentral Barrett CW, Fingleton B, Williams A, et al. MTGR1 is required for tumorigenesis in the murine AOM/DSS colitis-associated carcinoma model. Cancer Res. 2011;71:1302–12.CrossRefPubMedPubMedCentral
23.
go back to reference Anaya J. OncoLnc: linking TCGA survival data to mRNAs, miRNAs, and lncRNAs. PeerJ Comp Sci. 2016;2:e67.CrossRef Anaya J. OncoLnc: linking TCGA survival data to mRNAs, miRNAs, and lncRNAs. PeerJ Comp Sci. 2016;2:e67.CrossRef
24.
go back to reference Khan MI, Czarnecka AM, Lewicki S, et al. Comparative gene expression profiling of primary and metastatic renal cell carcinoma stem cell-like cancer cells. PLoS ONE. 2016;11:e0165718.CrossRefPubMedPubMedCentral Khan MI, Czarnecka AM, Lewicki S, et al. Comparative gene expression profiling of primary and metastatic renal cell carcinoma stem cell-like cancer cells. PLoS ONE. 2016;11:e0165718.CrossRefPubMedPubMedCentral
25.
go back to reference Rodda DJ, Chew JL, Lim LH, et al. Transcriptional regulation of nanog by OCT4 and SOX2. J Biol Chem. 2005;280:24731–7.CrossRefPubMed Rodda DJ, Chew JL, Lim LH, et al. Transcriptional regulation of nanog by OCT4 and SOX2. J Biol Chem. 2005;280:24731–7.CrossRefPubMed
26.
go back to reference Li J, Guo Y, Feng X, et al. Receptor for activated C kinase 1 (RACK1): a regulator for migration and invasion in oral squamous cell carcinoma cells. J Cancer Res Clin Oncol. 2012;138:563–71.CrossRefPubMed Li J, Guo Y, Feng X, et al. Receptor for activated C kinase 1 (RACK1): a regulator for migration and invasion in oral squamous cell carcinoma cells. J Cancer Res Clin Oncol. 2012;138:563–71.CrossRefPubMed
27.
go back to reference Zhang YH, Wang Y, Yusufali AH, et al. Cytotoxic genes from traditional Chinese medicine inhibit tumor growth both in vitro and in vivo. J Integr Med. 2014;12:483–94.CrossRefPubMed Zhang YH, Wang Y, Yusufali AH, et al. Cytotoxic genes from traditional Chinese medicine inhibit tumor growth both in vitro and in vivo. J Integr Med. 2014;12:483–94.CrossRefPubMed
28.
go back to reference Li Y, Deng H, Lv L, et al. The miR-193a-3p-regulated ING5 gene activates the DNA damage response pathway and inhibits multi-chemoresistance in bladder cancer. Oncotarget. 2015;6:10195–206.PubMedPubMedCentral Li Y, Deng H, Lv L, et al. The miR-193a-3p-regulated ING5 gene activates the DNA damage response pathway and inhibits multi-chemoresistance in bladder cancer. Oncotarget. 2015;6:10195–206.PubMedPubMedCentral
29.
go back to reference Liu W, Zhou L, Zhou C, et al. GDF11 decreases bone mass by stimulating osteoclastogenesis and inhibiting osteoblast differentiation. Nat Commun. 2016;7:12794.CrossRefPubMedPubMedCentral Liu W, Zhou L, Zhou C, et al. GDF11 decreases bone mass by stimulating osteoclastogenesis and inhibiting osteoblast differentiation. Nat Commun. 2016;7:12794.CrossRefPubMedPubMedCentral
Metadata
Title
CBFA2T2 is associated with a cancer stem cell state in renal cell carcinoma
Authors
Du-Chu Chen
You-De Liang
Liang Peng
Yi-Ze Wang
Chun-Zhi Ai
Xin-Xing Zhu
Ya-Wei Yan
Yasmeen Saeed
Bin Yu
Jingying Huang
Yuxin Gao
Jiaqi Liu
Yi-Zhou Jiang
Min Liu
Demeng Chen
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2017
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-017-0473-z

Other articles of this Issue 1/2017

Cancer Cell International 1/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine