Skip to main content
Top
Published in: Cancer Cell International 1/2017

Open Access 01-12-2017 | Review

An overview of the role of platelets in angiogenesis, apoptosis and autophagy in chronic myeloid leukaemia

Authors: Lisa Repsold, Roger Pool, Mohammed Karodia, Gregory Tintinger, Annie Margaretha Joubert

Published in: Cancer Cell International | Issue 1/2017

Login to get access

Abstract

Amongst males, leukaemia is the most common cause of cancer-related death in individuals younger than 40 years of age whereas in female children and adolescents, leukaemia is the most common cause of cancer-related death. Chronic myeloid leukaemia (CML) is a chronic leukaemia of the haematopoietic stem cells affecting mostly adults. The disease results from a translocation of the Philadelphia chromosome in stem cells of the bone marrow. CML patients usually present with mild to moderate anaemia and with decreased, normal, or increased platelet counts. CML represents 0.5% of all new cancer cases in the United States (2016). In 2016, an estimated 1070 people would die of this disease in the United States. Platelets serve as a means for tumours to increase growth and to provide physical- and mechanical support to elude the immune system and to metastasize. Currently there is no literature available on the role that platelets play in CML progression, despite literature reporting the fact that platelet count and size are affected. Resistance to CML treatment with tyrosine kinase inhibitors can be as a result of acquired resistance ensuing from mutations in the tyrosine kinase domains, loss of response or poor tolerance. In CML this resistance has recently become linked to bone marrow (BM) angiogenesis which aids in the growth and survival of leukaemia cells. The discovery of the lungs as a site of haematopoietic progenitors, suggests that CML resistance is not localized to the bone marrow and that the mutations leading to the disease and resistance to treatment may also occur in the haematopoietic progenitors in the lungs. In conclusion, platelets are significantly affected during CML progression and treatment. Investigation into the role that platelets play in CML progression is vital including how treatment affects the cell death mechanisms of platelets.
Literature
1.
go back to reference Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.CrossRefPubMed Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.CrossRefPubMed
2.
go back to reference Kamangar F, Dores GM, Anderson WF. Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J Clin Oncol. 2006;24(14):2137–50.CrossRefPubMed Kamangar F, Dores GM, Anderson WF. Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J Clin Oncol. 2006;24(14):2137–50.CrossRefPubMed
3.
go back to reference Siegel R, DeSantis C, Virgo K, Stein K, Mariotto A, Smith T, Cooper D, Gansler T, Lerro C, Fedewa S, Lin C, Leach C, Cannady RS, Cho H, Scoppa S, Hachey M, Kirch R, Jemal A, Ward E. Cancer treatment and survivorship statistics, 2012. CA Cancer J Clin. 2012;62(4):220–41.CrossRefPubMed Siegel R, DeSantis C, Virgo K, Stein K, Mariotto A, Smith T, Cooper D, Gansler T, Lerro C, Fedewa S, Lin C, Leach C, Cannady RS, Cho H, Scoppa S, Hachey M, Kirch R, Jemal A, Ward E. Cancer treatment and survivorship statistics, 2012. CA Cancer J Clin. 2012;62(4):220–41.CrossRefPubMed
4.
go back to reference National Cancer Institute. What you need to know about leukemia (pamphlet). U.S. Department of Health and Human Service; 2013. NIH Publication No. 13-3775. National Cancer Institute. What you need to know about leukemia (pamphlet). U.S. Department of Health and Human Service; 2013. NIH Publication No. 13-3775.
5.
go back to reference Hoffbrand AV, Catovsky D, Tuddenham EGD, Green AR, editors. Postgraduate haematology. 6th ed. Hoboken: Wiley; 2011. Hoffbrand AV, Catovsky D, Tuddenham EGD, Green AR, editors. Postgraduate haematology. 6th ed. Hoboken: Wiley; 2011.
6.
go back to reference American Cancer Society. Cancer facts & figures 2014. Atlanta: American Cancer Society; 2014. American Cancer Society. Cancer facts & figures 2014. Atlanta: American Cancer Society; 2014.
7.
go back to reference Patel AK, Zhang M, Huang X. Leukemia therapy: mechanisms of drug resistance and investigational strategies. Br J Med Med Res. 2014;4(24):4134–53.CrossRef Patel AK, Zhang M, Huang X. Leukemia therapy: mechanisms of drug resistance and investigational strategies. Br J Med Med Res. 2014;4(24):4134–53.CrossRef
10.
go back to reference Faderl S, Talpaz M, Estrov Z, O’Brien S, Kurzrock R, Kantarjian HM. The biology of chronic myeloid leukemia. N Engl J Med. 1999;341(3):164–72.CrossRefPubMed Faderl S, Talpaz M, Estrov Z, O’Brien S, Kurzrock R, Kantarjian HM. The biology of chronic myeloid leukemia. N Engl J Med. 1999;341(3):164–72.CrossRefPubMed
11.
go back to reference Goldman JM, Melo JV. Chronic myeloid leukemia—advances in biology and new approaches to treatment. N Engl J Med. 2003;349(15):1451–64.CrossRefPubMed Goldman JM, Melo JV. Chronic myeloid leukemia—advances in biology and new approaches to treatment. N Engl J Med. 2003;349(15):1451–64.CrossRefPubMed
12.
13.
go back to reference Howlader N, Noone AM, Krapcho M, Miller D, Bishop K, Altekruse SF, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA. SEER cancer statistics review, 1975–2013, National Cancer Institute. Bethesda, MD, http://seer.cancer.gov/csr/1975_2013/, based on November 2015 SEER data submission, posted to the SEER web site, April 2016. Howlader N, Noone AM, Krapcho M, Miller D, Bishop K, Altekruse SF, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA. SEER cancer statistics review, 1975–2013, National Cancer Institute. Bethesda, MD, http://​seer.​cancer.​gov/​csr/​1975_​2013/​, based on November 2015 SEER data submission, posted to the SEER web site, April 2016.
14.
go back to reference Bessman JD, Williams LJ, Gilmer PR. Platelet size in health and hematologic disease. Am J Clin Pathol. 1982;78(2):150–3.CrossRefPubMed Bessman JD, Williams LJ, Gilmer PR. Platelet size in health and hematologic disease. Am J Clin Pathol. 1982;78(2):150–3.CrossRefPubMed
15.
go back to reference Quintás-Cardama A, Han X, Kantarjian H, Cortes J. Tyrosine kinase inhibitor-induced platelet dysfunction in patients with chronic myeloid leukemia. Blood. 2009;114(2):261–3.CrossRefPubMedPubMedCentral Quintás-Cardama A, Han X, Kantarjian H, Cortes J. Tyrosine kinase inhibitor-induced platelet dysfunction in patients with chronic myeloid leukemia. Blood. 2009;114(2):261–3.CrossRefPubMedPubMedCentral
17.
go back to reference Trikha M, Zhou Z, Timar J, Raso E, Kennel M, Emmell E, et al. Multiple roles for platelet GPIIb/IIIa and alphavbeta3 integrins in tumor growth, angiogenesis, and metastasis. Cancer Res. 2002;62(10):2824–33.PubMed Trikha M, Zhou Z, Timar J, Raso E, Kennel M, Emmell E, et al. Multiple roles for platelet GPIIb/IIIa and alphavbeta3 integrins in tumor growth, angiogenesis, and metastasis. Cancer Res. 2002;62(10):2824–33.PubMed
18.
go back to reference Jackson SP, Schoenwaelder SM. Procoagulant platelets: are they necrotic? Blood. 2010;116(12):2011–8.CrossRefPubMed Jackson SP, Schoenwaelder SM. Procoagulant platelets: are they necrotic? Blood. 2010;116(12):2011–8.CrossRefPubMed
19.
20.
go back to reference Riedl J, Pabinger I, Ay C. Platelets in cancer and thrombosis. Hamostaseologie. 2014;34(1):54–62.CrossRefPubMed Riedl J, Pabinger I, Ay C. Platelets in cancer and thrombosis. Hamostaseologie. 2014;34(1):54–62.CrossRefPubMed
21.
go back to reference Gay LJ, Felding-Habermann B. Platelets alter tumor cell attributes to propel metastasis: programming in transit. Cancer Cell. 2011;20(5):553–4.CrossRefPubMed Gay LJ, Felding-Habermann B. Platelets alter tumor cell attributes to propel metastasis: programming in transit. Cancer Cell. 2011;20(5):553–4.CrossRefPubMed
22.
go back to reference Sharma D, Brummel-Ziedins KE, Bouchard BA, Holmes CE. Platelets in tumor progression: a host factor that offers multiple potential targets in the treatment of cancer. J Cell Physiol. 2014;229(8):1005–15.CrossRefPubMed Sharma D, Brummel-Ziedins KE, Bouchard BA, Holmes CE. Platelets in tumor progression: a host factor that offers multiple potential targets in the treatment of cancer. J Cell Physiol. 2014;229(8):1005–15.CrossRefPubMed
23.
go back to reference Troxler M, Dickinson K, Homer-Vanniasinkam S. Platelet function and antiplatelet therapy. Br J Surg. 2007;94(6):674–82.CrossRefPubMed Troxler M, Dickinson K, Homer-Vanniasinkam S. Platelet function and antiplatelet therapy. Br J Surg. 2007;94(6):674–82.CrossRefPubMed
24.
25.
go back to reference Bambace NM, Holmes CE. The platelet contribution to cancer progression. J Thromb Haemost. 2011;9(2):237–49.CrossRefPubMed Bambace NM, Holmes CE. The platelet contribution to cancer progression. J Thromb Haemost. 2011;9(2):237–49.CrossRefPubMed
28.
go back to reference King SM, Reed GL. Development of platelet secretory granules. In: Seminars in cell & developmental biology. Cambridge: Academic Press; 2002. King SM, Reed GL. Development of platelet secretory granules. In: Seminars in cell & developmental biology. Cambridge: Academic Press; 2002.
29.
go back to reference McNicol A, Israels SJ. Platelet dense granules: structure, function and implications for haemostasis. Thromb Res. 1999;95(1):1–18.CrossRefPubMed McNicol A, Israels SJ. Platelet dense granules: structure, function and implications for haemostasis. Thromb Res. 1999;95(1):1–18.CrossRefPubMed
30.
go back to reference Sabrkhany S, Griffioen AW, Oude Egbrink MG. The role of blood platelets in tumor angiogenesis. Biochim Biophys Acta. 2011;1815(2):189–96.PubMed Sabrkhany S, Griffioen AW, Oude Egbrink MG. The role of blood platelets in tumor angiogenesis. Biochim Biophys Acta. 2011;1815(2):189–96.PubMed
31.
go back to reference Goubran HA, Burnouf T, Radosevic M, El-Ekiaby M. The platelet–cancer loop. Eur J Intern Med. 2013;24(5):393–400.CrossRefPubMed Goubran HA, Burnouf T, Radosevic M, El-Ekiaby M. The platelet–cancer loop. Eur J Intern Med. 2013;24(5):393–400.CrossRefPubMed
32.
go back to reference Lefrançais E, Ortiz-Muñoz G, Caudrillier A, Mallavia B, Liu F, Sayah DM, Thornton EE, Headley MB, David T, Coughlin SR, Krummel MF. The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature. 2017;544(7648):105–9.CrossRefPubMed Lefrançais E, Ortiz-Muñoz G, Caudrillier A, Mallavia B, Liu F, Sayah DM, Thornton EE, Headley MB, David T, Coughlin SR, Krummel MF. The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature. 2017;544(7648):105–9.CrossRefPubMed
33.
go back to reference Schmidt T, Carmeliet P. Angiogenesis: a target in solid tumors, also in leukemia? ASH Educ Progr B. 2011;1:1–8. Schmidt T, Carmeliet P. Angiogenesis: a target in solid tumors, also in leukemia? ASH Educ Progr B. 2011;1:1–8.
34.
go back to reference Folkman J, Shing Y. Angiogenesis. J Biol Chem. 1992;267(16):10931–4.PubMed Folkman J, Shing Y. Angiogenesis. J Biol Chem. 1992;267(16):10931–4.PubMed
35.
go back to reference Yue TL, Wang X, Louden CS, Gupta S, Pillarisetti K, Gu JL, et al. 2-Methoxyestradiol, an endogenous estrogen metabolite, induces apoptosis in endothelial cells and inhibits angiogenesis: possible role for stress-activated protein kinase signaling pathway and Fas expression. Mol Pharmacol. 1997;51(6):951–62.PubMed Yue TL, Wang X, Louden CS, Gupta S, Pillarisetti K, Gu JL, et al. 2-Methoxyestradiol, an endogenous estrogen metabolite, induces apoptosis in endothelial cells and inhibits angiogenesis: possible role for stress-activated protein kinase signaling pathway and Fas expression. Mol Pharmacol. 1997;51(6):951–62.PubMed
36.
go back to reference Ciardiello F, Caputo R, Bianco R, Damiano V, Fontanini G, Cuccato S, et al. Inhibition of growth factor production and angiogenesis in human cancer cells by ZD1839 (Iressa), a selective epidermal growth factor receptor tyrosine kinase inhibitor. Clin Cancer Res. 2001;7(5):1459–65.PubMed Ciardiello F, Caputo R, Bianco R, Damiano V, Fontanini G, Cuccato S, et al. Inhibition of growth factor production and angiogenesis in human cancer cells by ZD1839 (Iressa), a selective epidermal growth factor receptor tyrosine kinase inhibitor. Clin Cancer Res. 2001;7(5):1459–65.PubMed
37.
go back to reference Italiano JE, Richardson JL, Patel-Hett S, Battinelli E, Zaslavsky A, Short S, et al. Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet alpha granules and differentially released. Blood. 2008;111(3):1227–33.CrossRefPubMedPubMedCentral Italiano JE, Richardson JL, Patel-Hett S, Battinelli E, Zaslavsky A, Short S, et al. Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet alpha granules and differentially released. Blood. 2008;111(3):1227–33.CrossRefPubMedPubMedCentral
38.
go back to reference Sierko E, Wojtukiewicz MZ. Platelets and angiogenesis in malignancy. Semin Thromb Hemost. 2004;30(1):95–108.CrossRefPubMed Sierko E, Wojtukiewicz MZ. Platelets and angiogenesis in malignancy. Semin Thromb Hemost. 2004;30(1):95–108.CrossRefPubMed
39.
go back to reference Baj-Krzyworzeka M, Majka M, Pratico D, Ratajczak J, Vilaire G, Kijowski J, et al. Platelet-derived microparticles stimulate proliferation, survival, adhesion, and chemotaxis of hematopoietic cells. Exp Hematol. 2002;30(5):450–9.CrossRefPubMed Baj-Krzyworzeka M, Majka M, Pratico D, Ratajczak J, Vilaire G, Kijowski J, et al. Platelet-derived microparticles stimulate proliferation, survival, adhesion, and chemotaxis of hematopoietic cells. Exp Hematol. 2002;30(5):450–9.CrossRefPubMed
40.
go back to reference Wartiovaara U, Salven P, Mikkola H, Lassila R, Kaukonen J, Joukov V, et al. Peripheral blood platelets express VEGF-C and VEGF which are released during platelet activation. Thromb Haemost. 1998;80(1):171–5.PubMed Wartiovaara U, Salven P, Mikkola H, Lassila R, Kaukonen J, Joukov V, et al. Peripheral blood platelets express VEGF-C and VEGF which are released during platelet activation. Thromb Haemost. 1998;80(1):171–5.PubMed
41.
go back to reference Dunn IF, Heese O, Black PM. Growth factors in glioma angiogenesis: FGFs, PDGF, EGF, and TGFs. J Neurooncol. 2000;50(1–2):121–37.CrossRefPubMed Dunn IF, Heese O, Black PM. Growth factors in glioma angiogenesis: FGFs, PDGF, EGF, and TGFs. J Neurooncol. 2000;50(1–2):121–37.CrossRefPubMed
42.
go back to reference Hall M, Gourley C, McNeish I, Ledermann J, Gore M, Jayson G, et al. Targeted anti-vascular therapies for ovarian cancer: current evidence. Br J Cancer. 2013;108(2):250–8.CrossRefPubMedPubMedCentral Hall M, Gourley C, McNeish I, Ledermann J, Gore M, Jayson G, et al. Targeted anti-vascular therapies for ovarian cancer: current evidence. Br J Cancer. 2013;108(2):250–8.CrossRefPubMedPubMedCentral
43.
go back to reference Lee CC, Liu KJ, Huang TS. Tumor-associated macrophage: its role in tumor angiogenesis. J Cancer Mol. 2006;2(4):135–40. Lee CC, Liu KJ, Huang TS. Tumor-associated macrophage: its role in tumor angiogenesis. J Cancer Mol. 2006;2(4):135–40.
44.
go back to reference Plake KH, Warnke PC. Vascular endothelial growth factor. J Neurooncol. 1997;35:365–72. Plake KH, Warnke PC. Vascular endothelial growth factor. J Neurooncol. 1997;35:365–72.
45.
go back to reference Papetti M, Herman IM. Mechanisms of normal and tumor-derived angiogenesis. Am J Physiol Cell Physiol. 2002;282(5):C947–70.CrossRefPubMed Papetti M, Herman IM. Mechanisms of normal and tumor-derived angiogenesis. Am J Physiol Cell Physiol. 2002;282(5):C947–70.CrossRefPubMed
46.
go back to reference Peterson J, Zurakowski D, Italiano J, Michel L, Connors S, Oenick M, et al. VEGF, PF4 and PDGF are elevated in platelets of colorectal cancer patients. Angiogenesis. 2012;15(2):265–73.CrossRefPubMed Peterson J, Zurakowski D, Italiano J, Michel L, Connors S, Oenick M, et al. VEGF, PF4 and PDGF are elevated in platelets of colorectal cancer patients. Angiogenesis. 2012;15(2):265–73.CrossRefPubMed
47.
go back to reference Duque JL, Loughlin KR, Adam RM, Kantoff PW, Zurakowski D, Freeman MR. Plasma levels of vascular endothelial growth factor are increased in patients with metastatic prostate cancer. Urology. 1999;54(3):523–7.CrossRefPubMed Duque JL, Loughlin KR, Adam RM, Kantoff PW, Zurakowski D, Freeman MR. Plasma levels of vascular endothelial growth factor are increased in patients with metastatic prostate cancer. Urology. 1999;54(3):523–7.CrossRefPubMed
48.
go back to reference Bierie B, Moses HL. Transforming growth factor beta (TGF-ß) and inflammation in cancer. Cytokine Growth Factor Rev. 2010;21:49–59.CrossRefPubMed Bierie B, Moses HL. Transforming growth factor beta (TGF-ß) and inflammation in cancer. Cytokine Growth Factor Rev. 2010;21:49–59.CrossRefPubMed
50.
go back to reference Yoon SO, Park SJ, Yun CH, Chung AS. Roles of matrix metalloproteinases in tumor metastasis and angiogenesis. J Biochem Mol Biol. 2003;36(1):128–37.PubMed Yoon SO, Park SJ, Yun CH, Chung AS. Roles of matrix metalloproteinases in tumor metastasis and angiogenesis. J Biochem Mol Biol. 2003;36(1):128–37.PubMed
51.
go back to reference Tiwari M. Apoptosis, angiogenesis and cancer therapies. J Cancer Res Ther. 2012;1(1):3.CrossRef Tiwari M. Apoptosis, angiogenesis and cancer therapies. J Cancer Res Ther. 2012;1(1):3.CrossRef
52.
go back to reference Mukhopadhyay T, Roth JA. Induction of apoptosis in human lung cancer cells after wild-type p53 activation by methoxyestradiol. Oncogene. 1997;14:379–84.CrossRefPubMed Mukhopadhyay T, Roth JA. Induction of apoptosis in human lung cancer cells after wild-type p53 activation by methoxyestradiol. Oncogene. 1997;14:379–84.CrossRefPubMed
53.
go back to reference Pasquier E, Kavallaris M. Microtubules: a dynamic target in cancer therapy. IUBMB Life. 2008;60(3):165–70.CrossRefPubMed Pasquier E, Kavallaris M. Microtubules: a dynamic target in cancer therapy. IUBMB Life. 2008;60(3):165–70.CrossRefPubMed
54.
go back to reference Dobos J, Timar J, Bocsi J, Burian Z, Nagy K, Barna G, et al. In vitro and In vivo antitumor effect of 2-methoxyestradiol on human melanoma. Int J Cancer. 2004;112:771–6.CrossRefPubMed Dobos J, Timar J, Bocsi J, Burian Z, Nagy K, Barna G, et al. In vitro and In vivo antitumor effect of 2-methoxyestradiol on human melanoma. Int J Cancer. 2004;112:771–6.CrossRefPubMed
55.
go back to reference Vorster C, Joubert A. In vitro effects of 2-methoxyestradiol-bis-sulphamate on cell growth, morphology and cell cycle dynamics in the MCF-7 breast adenocarcinoma cell line. Biocell. 2010;34(2):71–9.PubMed Vorster C, Joubert A. In vitro effects of 2-methoxyestradiol-bis-sulphamate on cell growth, morphology and cell cycle dynamics in the MCF-7 breast adenocarcinoma cell line. Biocell. 2010;34(2):71–9.PubMed
56.
go back to reference Choi HJ, Zhu BT. Critical role of cyclin B1/Cdc2 up-regulation in the induction of mitotic prometaphase arrest in human breast cancer cells treated with 2-methoxyestradiol. Biochim Biophys Acta. 2012;1823:1306–15.CrossRefPubMedPubMedCentral Choi HJ, Zhu BT. Critical role of cyclin B1/Cdc2 up-regulation in the induction of mitotic prometaphase arrest in human breast cancer cells treated with 2-methoxyestradiol. Biochim Biophys Acta. 2012;1823:1306–15.CrossRefPubMedPubMedCentral
57.
go back to reference Stander XX, Stander BA, Joubert AM. In vitro effects of an in silico modelled 17β-estradiol derivative in combination with dichloroacetic acid on MCF-7 and MCF-12A cells. Cell Prolif. 2011;44:567–81.CrossRefPubMed Stander XX, Stander BA, Joubert AM. In vitro effects of an in silico modelled 17β-estradiol derivative in combination with dichloroacetic acid on MCF-7 and MCF-12A cells. Cell Prolif. 2011;44:567–81.CrossRefPubMed
58.
go back to reference Du B, Zhao Z, Sun H, Ma S, Jin J, Zhang Z. Effects of 2-methoxyestradiol on proliferation, apoptosis and gene expression of cyclin B1 and c-Myc in esophageal carcinoma EC9706 cells. Cell Biochem Funct. 2012;30:158–65.CrossRefPubMed Du B, Zhao Z, Sun H, Ma S, Jin J, Zhang Z. Effects of 2-methoxyestradiol on proliferation, apoptosis and gene expression of cyclin B1 and c-Myc in esophageal carcinoma EC9706 cells. Cell Biochem Funct. 2012;30:158–65.CrossRefPubMed
59.
go back to reference Stander BA, Joubert F, Joubert A. Docking, synthesis, and in vitro evaluation of antimitotic estrone analogs. Chem Biol Drug Des. 2011;77(3):173–81.CrossRefPubMed Stander BA, Joubert F, Joubert A. Docking, synthesis, and in vitro evaluation of antimitotic estrone analogs. Chem Biol Drug Des. 2011;77(3):173–81.CrossRefPubMed
60.
go back to reference Rendu F, Brohard-Bohn B. The platelet release reaction: granules’ constituents, secretion and functions. Platelets. 2001;12(5):261–73.CrossRefPubMed Rendu F, Brohard-Bohn B. The platelet release reaction: granules’ constituents, secretion and functions. Platelets. 2001;12(5):261–73.CrossRefPubMed
61.
go back to reference Li J, Xia Y, Bertino AM, Coburn JP, Kuter DJ. The mechanism of apoptosis in human platelets during storage. Transfusion. 2000;40(11):1320–9.CrossRefPubMed Li J, Xia Y, Bertino AM, Coburn JP, Kuter DJ. The mechanism of apoptosis in human platelets during storage. Transfusion. 2000;40(11):1320–9.CrossRefPubMed
62.
go back to reference Reed GL. Platelet secretory mechanisms. In: Seminars in thrombosis and hemostasis. New York: Thieme Medical Publishers, Inc.; 2004. Reed GL. Platelet secretory mechanisms. In: Seminars in thrombosis and hemostasis. New York: Thieme Medical Publishers, Inc.; 2004.
63.
go back to reference Zharikov S, Shiva S. Platelet mitochondrial function: from regulation of thrombosis to biomarker of disease. Biochem Soc Trans. 2013;41(1):118–23.CrossRefPubMed Zharikov S, Shiva S. Platelet mitochondrial function: from regulation of thrombosis to biomarker of disease. Biochem Soc Trans. 2013;41(1):118–23.CrossRefPubMed
64.
go back to reference Leytin V, Freedman J. Platelet apoptosis in stored platelet concentrates and other models. Transfus Sci. 2003;28(3):285–95. Leytin V, Freedman J. Platelet apoptosis in stored platelet concentrates and other models. Transfus Sci. 2003;28(3):285–95.
65.
go back to reference Bertino AM, Qi XQ, Li J, Xia Y, Kuter DJ. Apoptotic markers are increased in platelets stored at 37 C. Transfusion. 2003;43(7):857–66.CrossRefPubMed Bertino AM, Qi XQ, Li J, Xia Y, Kuter DJ. Apoptotic markers are increased in platelets stored at 37 C. Transfusion. 2003;43(7):857–66.CrossRefPubMed
66.
go back to reference Zhao L, Zhang W, Chen M, Zhang J, Zhang M, Dai K. Aspirin Induces platelet apoptosis. Platelets. 2013;24(8):637–42.CrossRefPubMed Zhao L, Zhang W, Chen M, Zhang J, Zhang M, Dai K. Aspirin Induces platelet apoptosis. Platelets. 2013;24(8):637–42.CrossRefPubMed
67.
go back to reference Kile BT. The role of the intrinsic apoptosis pathway in platelet life and death. J Thromb Haemost. 2009;7(s1):214–7.CrossRefPubMed Kile BT. The role of the intrinsic apoptosis pathway in platelet life and death. J Thromb Haemost. 2009;7(s1):214–7.CrossRefPubMed
69.
go back to reference Schrijvers DM, De Meyer GR, Herman AG, Martinet W. Phagocytosis in atherosclerosis: molecular mechanisms and implications for plaque progression and stability. Cardiovasc Res. 2007;73(3):470–80.CrossRefPubMed Schrijvers DM, De Meyer GR, Herman AG, Martinet W. Phagocytosis in atherosclerosis: molecular mechanisms and implications for plaque progression and stability. Cardiovasc Res. 2007;73(3):470–80.CrossRefPubMed
70.
go back to reference Hait WN, Jin S, Yang JM. A matter of life or death (or both): understanding autophagy in cancer. Clin Cancer Res. 2006;12(7):1961–5.CrossRefPubMed Hait WN, Jin S, Yang JM. A matter of life or death (or both): understanding autophagy in cancer. Clin Cancer Res. 2006;12(7):1961–5.CrossRefPubMed
71.
go back to reference Feng W, Chang C, Luo D, Su H, Yu S, Hua W, Chen Z, Hu H, Liu W. Dissection of autophagy in human platelets. Autophagy. 2014;10(4):76–85.CrossRef Feng W, Chang C, Luo D, Su H, Yu S, Hua W, Chen Z, Hu H, Liu W. Dissection of autophagy in human platelets. Autophagy. 2014;10(4):76–85.CrossRef
72.
go back to reference Gottlieb RA. Autophagy in health and disease. Cambridge: Academic Press; 2012. Gottlieb RA. Autophagy in health and disease. Cambridge: Academic Press; 2012.
73.
go back to reference Hochhaus A, Larson RA, Guilhot F, Radich JP, Branford S, Hughes TP, Baccarani M, Deininger MW, Cervantes F, Fujihara S, Ortmann CE. Long-term outcomes of imatinib treatment for chronic myeloid leukemia. N Engl J Med. 2017;376(10):917–27.CrossRefPubMed Hochhaus A, Larson RA, Guilhot F, Radich JP, Branford S, Hughes TP, Baccarani M, Deininger MW, Cervantes F, Fujihara S, Ortmann CE. Long-term outcomes of imatinib treatment for chronic myeloid leukemia. N Engl J Med. 2017;376(10):917–27.CrossRefPubMed
74.
go back to reference Hoffmann VS, Hasford J, Deininger M, Cortes J, Baccarani M, Hehlmann R. Systematic review and meta-analysis of standard-dose imatinib vs. high-dose imatinib and second generation tyrosine kinase inhibitors for chronic myeloid leukemia. J Cancer Res Clin Oncol. 2017:1-8. Hoffmann VS, Hasford J, Deininger M, Cortes J, Baccarani M, Hehlmann R. Systematic review and meta-analysis of standard-dose imatinib vs. high-dose imatinib and second generation tyrosine kinase inhibitors for chronic myeloid leukemia. J Cancer Res Clin Oncol. 2017:1-8.
75.
go back to reference Chereda B, Melo JV. The Biology and Pathogenesis of Chronic Myeloid Leukemia. In: Chronic Myeloid Leukemia. Springer International Publishing. 2016:17–39. Chereda B, Melo JV. The Biology and Pathogenesis of Chronic Myeloid Leukemia. In: Chronic Myeloid Leukemia. Springer International Publishing. 2016:17–39.
76.
go back to reference Steegmann JL, Baccarani M, Breccia M, Casado LF, García-Gutiérrez V, Hochhaus A, Kim DW, Kim TD, Khoury HJ, Le Coutre P, Mayer J. European LeukemiaNet recommendations for the management and avoidance of adverse events of treatment in chronic myeloid leukaemia. Leukemia. 2016;30:1648–71.CrossRefPubMedPubMedCentral Steegmann JL, Baccarani M, Breccia M, Casado LF, García-Gutiérrez V, Hochhaus A, Kim DW, Kim TD, Khoury HJ, Le Coutre P, Mayer J. European LeukemiaNet recommendations for the management and avoidance of adverse events of treatment in chronic myeloid leukaemia. Leukemia. 2016;30:1648–71.CrossRefPubMedPubMedCentral
Metadata
Title
An overview of the role of platelets in angiogenesis, apoptosis and autophagy in chronic myeloid leukaemia
Authors
Lisa Repsold
Roger Pool
Mohammed Karodia
Gregory Tintinger
Annie Margaretha Joubert
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2017
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-017-0460-4

Other articles of this Issue 1/2017

Cancer Cell International 1/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine