Skip to main content
Top
Published in: Cancer Cell International 1/2017

Open Access 01-12-2017 | Primary research

Global expression profile of tumor stem-like cells isolated from MMQ rat prolactinoma cell

Authors: Zhipeng Su, Lin Cai, Jianglong Lu, Chuzhong Li, Songbai Gui, Chunhui Liu, Chengde Wang, Qun Li, Qichuan Zhuge, Yazhuo Zhang

Published in: Cancer Cell International | Issue 1/2017

Login to get access

Abstract

Background

Cancer stem cells (CSCs), which have been isolated from various malignancies, were closely correlated with the occurrence, progression, metastasis and recurrence of the malignant cancer. Little is known about the tumor stem-like cells (TSLCs) isolated from benign tumors. Here we want to explore the global expression profile of RNA of tumor stem-like cells isolated from MMQ rat prolactinoma cells.

Methods

In this study, total RNA was extracted from MMQ cells and MMQ tumor stem-like cells. RNA expression profiles were determined by Agilent Rat 8 × 60 K Microarray. Then we used the qRT-PCR to test the result of Microarray, and found VEGFA had a distinct pattern of expression in MMQ tumor stem-like cells. Then WB and ELISA were used to confirm the VEGFA protein level of tumor sphere cultured from both MMQ cell and human prolactinoma cell. Finally, CCK-8 was used to evaluate the reaction of MMQ tumor stem-like cells to small interfering RNAs intervention and bevacizumab treatment.

Result

The results of Microarray showed that 566 known RNA were over-expressed and 532 known RNA were low-expressed in the MMQ tumor stem-like cells. These genes were mainly involved in 15 different signaling pathways. In pathway in cancer and cell cycle, Bcl2, VEGFA, PTEN, Jun, Fos, APC2 were up-regulated and Ccna2, Cdc25a, Mcm3, Mcm6, Ccnb2, Mcm5, Cdk1, Gadd45a, Myc were down-regulated in the MMQ tumor stem-like cells. The expression of VEGFA were high in tumor spheres cultured from both MMQ cell and human prolactinomas. Down-regulation of VEGFA by small interfering RNAs partially decreased cell viability of MMQ tumor stem-like cells in vitro. Bevacizumab partially suppressed the proliferation of MMQ tumor stem-like cells.

Conclusions

Our findings characterize the pattern of RNA expression of tumor stem-like cells isolated from MMQ cells. VEGFA may act as a potential therapeutic target for tumor stem-like cells of prolactinomas.
Appendix
Available only for authorised users
Literature
1.
go back to reference Casanueva FF, Molitch ME, Schlechte JA, Abs R, Bonert V, Bronstein MD, et al. Guidelines of the pituitary society for the diagnosis and management of prolactinomas. Clin Endocrinol. 2006;65(2):265–73.CrossRef Casanueva FF, Molitch ME, Schlechte JA, Abs R, Bonert V, Bronstein MD, et al. Guidelines of the pituitary society for the diagnosis and management of prolactinomas. Clin Endocrinol. 2006;65(2):265–73.CrossRef
2.
go back to reference Wu ZB, Yu CJ, Su ZP, Zhuge QC, Wu JS, Zheng WM. Bromocriptine treatment of invasive giant prolactinomas involving the cavernous sinus: results of a long-term follow up. J Neurosurg. 2006;104(1):54–61.CrossRefPubMed Wu ZB, Yu CJ, Su ZP, Zhuge QC, Wu JS, Zheng WM. Bromocriptine treatment of invasive giant prolactinomas involving the cavernous sinus: results of a long-term follow up. J Neurosurg. 2006;104(1):54–61.CrossRefPubMed
3.
go back to reference Vroone L, Daly AF, Beckers A. Challenges and controversies in the treatment of prolactinomas. Expert Rev Endocrinol Metab. 2014;9(6):593–604.CrossRef Vroone L, Daly AF, Beckers A. Challenges and controversies in the treatment of prolactinomas. Expert Rev Endocrinol Metab. 2014;9(6):593–604.CrossRef
4.
go back to reference Gillam MP, Molitch ME, Lombardi G, Colao A. Advances in the treatment of prolactinomas. Endocr Rev. 2006;27(5):485–534.CrossRefPubMed Gillam MP, Molitch ME, Lombardi G, Colao A. Advances in the treatment of prolactinomas. Endocr Rev. 2006;27(5):485–534.CrossRefPubMed
5.
go back to reference Melmed S, Casanueva FF, Hoffman AR, Kleinberg DL, Montori VM, Schlechte JA, et al. Diagnosis and treatment of hyperprolactinemia: an Endocrine Society clinical practice guideline. J Clini Endocrinol Metab. 2011;96(2):273–88.CrossRef Melmed S, Casanueva FF, Hoffman AR, Kleinberg DL, Montori VM, Schlechte JA, et al. Diagnosis and treatment of hyperprolactinemia: an Endocrine Society clinical practice guideline. J Clini Endocrinol Metab. 2011;96(2):273–88.CrossRef
6.
go back to reference Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, et al. Cancer stem cells–perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res. 2006;66(19):9339–44.CrossRefPubMed Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, et al. Cancer stem cells–perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res. 2006;66(19):9339–44.CrossRefPubMed
7.
go back to reference Frank NY, Schatton T, Frank MH. The therapeutic promise of the cancer stem cell concept. J Clini Investig. 2010;120(1):41–50.CrossRef Frank NY, Schatton T, Frank MH. The therapeutic promise of the cancer stem cell concept. J Clini Investig. 2010;120(1):41–50.CrossRef
8.
go back to reference Guan Y, Gerhard B, Hogge DE. Detection, isolation, and stimulation of quiescent primitive leukemic progenitor cells from patients with acute myeloid leukemia (AML). Blood. 2003;101(8):3142–9.CrossRefPubMed Guan Y, Gerhard B, Hogge DE. Detection, isolation, and stimulation of quiescent primitive leukemic progenitor cells from patients with acute myeloid leukemia (AML). Blood. 2003;101(8):3142–9.CrossRefPubMed
9.
go back to reference Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al. Identification of human brain tumour initiating cells. Nature. 2004;432(7015):396–401.CrossRefPubMed Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al. Identification of human brain tumour initiating cells. Nature. 2004;432(7015):396–401.CrossRefPubMed
10.
go back to reference Pece S, Tosoni D, Confalonieri S, Mazzarol G, Vecchi M, Ronzoni S, et al. Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell. 2010;140(1):62–73.CrossRefPubMed Pece S, Tosoni D, Confalonieri S, Mazzarol G, Vecchi M, Ronzoni S, et al. Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell. 2010;140(1):62–73.CrossRefPubMed
11.
12.
go back to reference Chen L, Ye H, Wang X, Tang X, Mao Y, Zhao Y, et al. Evidence of brain tumor stem progenitor-like cells with low proliferative capacity in human benign pituitary adenoma. Cancer Lett. 2014;349(1):61–6.CrossRefPubMed Chen L, Ye H, Wang X, Tang X, Mao Y, Zhao Y, et al. Evidence of brain tumor stem progenitor-like cells with low proliferative capacity in human benign pituitary adenoma. Cancer Lett. 2014;349(1):61–6.CrossRefPubMed
13.
go back to reference Mertens F, Gremeaux L, Chen J, Fu Q, Willems C, Roose H, et al. Pituitary tumors contain a side population with tumor stem cell-associated characteristics. Endocr Relat Cancer. 2015;22(4):481–504.CrossRefPubMed Mertens F, Gremeaux L, Chen J, Fu Q, Willems C, Roose H, et al. Pituitary tumors contain a side population with tumor stem cell-associated characteristics. Endocr Relat Cancer. 2015;22(4):481–504.CrossRefPubMed
14.
go back to reference Lin SJ, Leng ZG, Guo YH, Cai L, Cai Y, Li N, et al. Suppression of mTOR pathway and induction of autophagy-dependent cell death by cabergoline. Oncotarget. 2015;6(36):39329–41.PubMedPubMedCentral Lin SJ, Leng ZG, Guo YH, Cai L, Cai Y, Li N, et al. Suppression of mTOR pathway and induction of autophagy-dependent cell death by cabergoline. Oncotarget. 2015;6(36):39329–41.PubMedPubMedCentral
15.
go back to reference Chen J, Cai I, Song X, Chen X, Huang K, Lu J, et al. Culture and identification of the tumor stem-like cells isolated from rat prolactinoma MMQ cell lines. Chin J Neurosurg. 2015;31(12):1268–73. Chen J, Cai I, Song X, Chen X, Huang K, Lu J, et al. Culture and identification of the tumor stem-like cells isolated from rat prolactinoma MMQ cell lines. Chin J Neurosurg. 2015;31(12):1268–73.
16.
go back to reference Delellis RA, Lloyd RV, Heitz PU, Eng C. World Health Organization classification of tumours: pathology and genetics of tumours of endocrine organs. Lyon: IARC; 2004. Delellis RA, Lloyd RV, Heitz PU, Eng C. World Health Organization classification of tumours: pathology and genetics of tumours of endocrine organs. Lyon: IARC; 2004.
17.
go back to reference da Huang W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57.CrossRef da Huang W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57.CrossRef
18.
go back to reference Feng XL, Liu QT, Cao RB, Zhou B, de Li Y, Zhang YP, et al. Gene expression profiling of hybridoma cells after bursal-derived bioactive factor BP5 treatment. Amino Acids. 2012;43(6):2443–56.CrossRefPubMed Feng XL, Liu QT, Cao RB, Zhou B, de Li Y, Zhang YP, et al. Gene expression profiling of hybridoma cells after bursal-derived bioactive factor BP5 treatment. Amino Acids. 2012;43(6):2443–56.CrossRefPubMed
19.
go back to reference Pan KH, Lih CJ, Cohen SN. Analysis of DNA microarrays using algorithms that employ rule-based expert knowledge. Proc Natl Acad Sci USA. 2002;99(4):2118–23.CrossRefPubMedPubMedCentral Pan KH, Lih CJ, Cohen SN. Analysis of DNA microarrays using algorithms that employ rule-based expert knowledge. Proc Natl Acad Sci USA. 2002;99(4):2118–23.CrossRefPubMedPubMedCentral
20.
go back to reference Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63(18):5821–8.PubMed Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63(18):5821–8.PubMed
21.
go back to reference Barker N, Ridgway RA, van Es JH, van de Wetering M, Begthel H, van den Born M, et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature. 2009;457(7229):608–11.CrossRefPubMed Barker N, Ridgway RA, van Es JH, van de Wetering M, Begthel H, van den Born M, et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature. 2009;457(7229):608–11.CrossRefPubMed
23.
go back to reference Sf S, Szczesna K, Iliou MS, Al-Qahtani M, Mobasheri A, Kobolak J, et al. In vitro models of cancer stem cells and clinical applications. BMC Cancer. 2016;16(Suppl 2):738. Sf S, Szczesna K, Iliou MS, Al-Qahtani M, Mobasheri A, Kobolak J, et al. In vitro models of cancer stem cells and clinical applications. BMC Cancer. 2016;16(Suppl 2):738.
24.
go back to reference Yoshida GJ, Saya H. Therapeutic strategies targeting cancer stem cells. Cancer Sci. 2016;107(1):5–11.CrossRefPubMed Yoshida GJ, Saya H. Therapeutic strategies targeting cancer stem cells. Cancer Sci. 2016;107(1):5–11.CrossRefPubMed
25.
go back to reference Essers MA, Trumpp A. Targeting leukemic stem cells by breaking their dormancy. Mol Oncol. 2010;4(5):443–50.CrossRefPubMed Essers MA, Trumpp A. Targeting leukemic stem cells by breaking their dormancy. Mol Oncol. 2010;4(5):443–50.CrossRefPubMed
26.
go back to reference Knoepfler P. Journal club. A cell biologist looks at the risk and promise of a new insight into stem cells and cancer. Nature. 2009;457(7228):361.CrossRefPubMed Knoepfler P. Journal club. A cell biologist looks at the risk and promise of a new insight into stem cells and cancer. Nature. 2009;457(7228):361.CrossRefPubMed
27.
go back to reference Chambers I, Smith A. Self-renewal of teratocarcinoma and embryonic stem cells. Oncogene. 2004;23(43):7150–60.CrossRefPubMed Chambers I, Smith A. Self-renewal of teratocarcinoma and embryonic stem cells. Oncogene. 2004;23(43):7150–60.CrossRefPubMed
28.
29.
go back to reference Rahimi H, Ahmadzadeh A, Yousef-amoli S, Kokabee L, Shokrgozar MA, Mahdian R, et al. The expression pattern of APC2 and APC7 in various cancer cell lines and AML patients. Adv Med Sci. 2015;60(2):259–63.CrossRefPubMed Rahimi H, Ahmadzadeh A, Yousef-amoli S, Kokabee L, Shokrgozar MA, Mahdian R, et al. The expression pattern of APC2 and APC7 in various cancer cell lines and AML patients. Adv Med Sci. 2015;60(2):259–63.CrossRefPubMed
30.
go back to reference Aref S, Salama O, Al-Tonbary Y, Mansour A. Assessment of bcl-2 expression as modulator of fas mediated apoptosis in acute leukemia. Hematology. 2004;9(2):113–21.CrossRefPubMed Aref S, Salama O, Al-Tonbary Y, Mansour A. Assessment of bcl-2 expression as modulator of fas mediated apoptosis in acute leukemia. Hematology. 2004;9(2):113–21.CrossRefPubMed
31.
go back to reference Lee JE, Lim MS, Park JH, Park CH, Koh HC. PTEN promotes dopaminergic neuronal differentiation through regulation of ERK-dependent inhibition of S6 K signaling in human neural stem cells. Stem Cells Transl Med. 2016;5(10):1319–29.CrossRefPubMed Lee JE, Lim MS, Park JH, Park CH, Koh HC. PTEN promotes dopaminergic neuronal differentiation through regulation of ERK-dependent inhibition of S6 K signaling in human neural stem cells. Stem Cells Transl Med. 2016;5(10):1319–29.CrossRefPubMed
32.
go back to reference Brown PH, Chen TK, Birrer MJ. Mechanism of action of a dominant-negative mutant of c-Jun. Oncogene. 1994;9(3):791–9.PubMed Brown PH, Chen TK, Birrer MJ. Mechanism of action of a dominant-negative mutant of c-Jun. Oncogene. 1994;9(3):791–9.PubMed
33.
35.
go back to reference Takayama MA, Taira T, Tamai K, Iguchi-Ariga SM, Ariga H. ORC1 interacts with c-Myc to inhibit E-box-dependent transcription by abrogating c-Myc-SNF5/INI1 interaction. Genes Cells. 2000;5(6):481–90.CrossRefPubMed Takayama MA, Taira T, Tamai K, Iguchi-Ariga SM, Ariga H. ORC1 interacts with c-Myc to inhibit E-box-dependent transcription by abrogating c-Myc-SNF5/INI1 interaction. Genes Cells. 2000;5(6):481–90.CrossRefPubMed
36.
go back to reference Pagano M, Pepperkok R, Verde F, Ansorge W, Draetta G. Cyclin A is required at two points in the human cell cycle. EMBO J. 1992;11(3):961–71.PubMedPubMedCentral Pagano M, Pepperkok R, Verde F, Ansorge W, Draetta G. Cyclin A is required at two points in the human cell cycle. EMBO J. 1992;11(3):961–71.PubMedPubMedCentral
37.
go back to reference Ming P, Cai T, Li J, Ning Y, Xie S, Tao T, et al. A novel arylbenzofuran induces cervical cancer cell apoptosis and G1/S arrest through ERK-mediated Cdk2/cyclin-A signaling pathway. Oncotarget. 2016;7(27):41843.PubMedPubMedCentral Ming P, Cai T, Li J, Ning Y, Xie S, Tao T, et al. A novel arylbenzofuran induces cervical cancer cell apoptosis and G1/S arrest through ERK-mediated Cdk2/cyclin-A signaling pathway. Oncotarget. 2016;7(27):41843.PubMedPubMedCentral
38.
go back to reference Jurikova M, Danihel L, Polak S, Varga I. Ki67, PCNA, and MCM proteins: Markers of proliferation in the diagnosis of breast cancer. Acta Histochem. 2016;118(5):544–52.CrossRefPubMed Jurikova M, Danihel L, Polak S, Varga I. Ki67, PCNA, and MCM proteins: Markers of proliferation in the diagnosis of breast cancer. Acta Histochem. 2016;118(5):544–52.CrossRefPubMed
39.
go back to reference Wang P, Zou F, Zhang X, Li H, Dulak A, Tomko RJ Jr, et al. microRNA-21 negatively regulates Cdc25A and cell cycle progression in colon cancer cells. Cancer Res. 2009;69(20):8157–65.CrossRefPubMedPubMedCentral Wang P, Zou F, Zhang X, Li H, Dulak A, Tomko RJ Jr, et al. microRNA-21 negatively regulates Cdc25A and cell cycle progression in colon cancer cells. Cancer Res. 2009;69(20):8157–65.CrossRefPubMedPubMedCentral
40.
go back to reference Wingert S, Rieger MA. Terminal differentiation induction as DNA damage response in hematopoietic stem cells by GADD45A. Exp Hematol. 2016;44(7):561–6.CrossRefPubMed Wingert S, Rieger MA. Terminal differentiation induction as DNA damage response in hematopoietic stem cells by GADD45A. Exp Hematol. 2016;44(7):561–6.CrossRefPubMed
41.
go back to reference Ferrara N, Keyt B. Vascular endothelial growth factor: basic biology and clinical implications. Exs. 1997;79:209–32.PubMed Ferrara N, Keyt B. Vascular endothelial growth factor: basic biology and clinical implications. Exs. 1997;79:209–32.PubMed
42.
go back to reference Kinnaird T, Stabile E, Burnett MS, Shou M, Lee CW, Barr S, et al. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation. 2004;109(12):1543–9.CrossRefPubMed Kinnaird T, Stabile E, Burnett MS, Shou M, Lee CW, Barr S, et al. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation. 2004;109(12):1543–9.CrossRefPubMed
43.
go back to reference Beck B, Driessens G, Goossens S, Youssef KK, Kuchnio A, Caauwe A, et al. A vascular niche and a VEGF-Nrp1 loop regulate the initiation and stemness of skin tumours. Nature. 2011;478(7369):399–403.CrossRefPubMed Beck B, Driessens G, Goossens S, Youssef KK, Kuchnio A, Caauwe A, et al. A vascular niche and a VEGF-Nrp1 loop regulate the initiation and stemness of skin tumours. Nature. 2011;478(7369):399–403.CrossRefPubMed
44.
go back to reference Ochoa AL, Mitchner NA, Paynter CD, Morris RE, Ben-Jonathan N. Vascular endothelial growth factor in the rat pituitary: differential distribution and regulation by estrogen. J Endocrinol. 2000;165(2):483–92.CrossRefPubMed Ochoa AL, Mitchner NA, Paynter CD, Morris RE, Ben-Jonathan N. Vascular endothelial growth factor in the rat pituitary: differential distribution and regulation by estrogen. J Endocrinol. 2000;165(2):483–92.CrossRefPubMed
45.
go back to reference Banerjee SK, Zoubine MN, Tran TM, Weston AP, Campbell DR. Overexpression of vascular endothelial growth factor164 and its co-receptor neuropilin-1 in estrogen-induced rat pituitary tumors and GH3 rat pituitary tumor cells. Int J Oncol. 2000;16(2):253–60.PubMed Banerjee SK, Zoubine MN, Tran TM, Weston AP, Campbell DR. Overexpression of vascular endothelial growth factor164 and its co-receptor neuropilin-1 in estrogen-induced rat pituitary tumors and GH3 rat pituitary tumor cells. Int J Oncol. 2000;16(2):253–60.PubMed
46.
go back to reference Kim K, Yoshida D, Teramoto A. Expression of hypoxia-inducible factor 1alpha and vascular endothelial growth factor in pituitary adenomas. Endocr Pathol. 2005;16(2):115–21.CrossRefPubMed Kim K, Yoshida D, Teramoto A. Expression of hypoxia-inducible factor 1alpha and vascular endothelial growth factor in pituitary adenomas. Endocr Pathol. 2005;16(2):115–21.CrossRefPubMed
47.
go back to reference Banerjee SK, Sarkar DK, Weston AP, De A, Campbell DR. Over expression of vascular endothelial growth factor and its receptor during the development of estrogen-induced rat pituitary tumors may mediate estrogen-initiated tumor angiogenesis. Carcinogenesis. 1997;18(6):1155–61.CrossRefPubMed Banerjee SK, Sarkar DK, Weston AP, De A, Campbell DR. Over expression of vascular endothelial growth factor and its receptor during the development of estrogen-induced rat pituitary tumors may mediate estrogen-initiated tumor angiogenesis. Carcinogenesis. 1997;18(6):1155–61.CrossRefPubMed
48.
go back to reference Lloyd RV, Scheithauer BW, Kuroki T, Vidal S, Kovacs K, Stefaneanu L. Vascular endothelial growth factor (VEGF) expression in human pituitary adenomas and carcinomas. Endocr Pathol. 1999;10(3):229–35.CrossRefPubMed Lloyd RV, Scheithauer BW, Kuroki T, Vidal S, Kovacs K, Stefaneanu L. Vascular endothelial growth factor (VEGF) expression in human pituitary adenomas and carcinomas. Endocr Pathol. 1999;10(3):229–35.CrossRefPubMed
49.
go back to reference Sanchez-Ortiga R, Sanchez-Tejada L, Moreno-Perez O, Riesgo P, Niveiro M, Pico Alfonso AM. Over-expression of vascular endothelial growth factor in pituitary adenomas is associated with extrasellar growth and recurrence. Pituitary. 2013;16(3):370–7.CrossRefPubMed Sanchez-Ortiga R, Sanchez-Tejada L, Moreno-Perez O, Riesgo P, Niveiro M, Pico Alfonso AM. Over-expression of vascular endothelial growth factor in pituitary adenomas is associated with extrasellar growth and recurrence. Pituitary. 2013;16(3):370–7.CrossRefPubMed
50.
go back to reference Cristina C, Perez-Millan MI, Luque G, Dulce RA, Sevlever G, Berner SI, et al. VEGF and CD31 association in pituitary adenomas. Endocr Pathol. 2010;21(3):154–60.CrossRefPubMed Cristina C, Perez-Millan MI, Luque G, Dulce RA, Sevlever G, Berner SI, et al. VEGF and CD31 association in pituitary adenomas. Endocr Pathol. 2010;21(3):154–60.CrossRefPubMed
51.
go back to reference Luque GM, Perez-Millan MI, Ornstein AM, Cristina C, Becu-Villalobos D. Inhibitory effects of antivascular endothelial growth factor strategies in experimental dopamine-resistant prolactinomas. J Pharmacol Exp Ther. 2011;337(3):766–74.CrossRefPubMed Luque GM, Perez-Millan MI, Ornstein AM, Cristina C, Becu-Villalobos D. Inhibitory effects of antivascular endothelial growth factor strategies in experimental dopamine-resistant prolactinomas. J Pharmacol Exp Ther. 2011;337(3):766–74.CrossRefPubMed
52.
go back to reference Cristina C, Luque GM, Demarchi G, Lopez Vicchi F, Zubeldia-Brenner L, Perez Millan MI, et al. Angiogenesis in pituitary adenomas: human studies and new mutant mouse models. Int J Endocrinol. 2014;2014:608497.CrossRefPubMedPubMedCentral Cristina C, Luque GM, Demarchi G, Lopez Vicchi F, Zubeldia-Brenner L, Perez Millan MI, et al. Angiogenesis in pituitary adenomas: human studies and new mutant mouse models. Int J Endocrinol. 2014;2014:608497.CrossRefPubMedPubMedCentral
Metadata
Title
Global expression profile of tumor stem-like cells isolated from MMQ rat prolactinoma cell
Authors
Zhipeng Su
Lin Cai
Jianglong Lu
Chuzhong Li
Songbai Gui
Chunhui Liu
Chengde Wang
Qun Li
Qichuan Zhuge
Yazhuo Zhang
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2017
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-017-0390-1

Other articles of this Issue 1/2017

Cancer Cell International 1/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine