Skip to main content
Top
Published in: Cancer Cell International 1/2017

Open Access 01-12-2017 | Primary research

MiR-7 inhibits progression of hepatocarcinoma by targeting KLF-4 and promises a novel diagnostic biomarker

Authors: Weizhong Wu, Sanguang Liu, Yunfei Liang, Zegao Zhou, Xueqing Liu

Published in: Cancer Cell International | Issue 1/2017

Login to get access

Abstract

Background

MicroRNAs are 22–24 nt non-coding RNAs that bind to the 3′ UTR of target mRNAs, thereby inducing mRNA degradation or inhibiting mRNA translation. Due to their implication in the regulation of post-transcriptional processes, the role of miRNAs in hepatocellular carcinoma (HCC) has been extensively studied. However, the function of miR-7 in HCC remains to be demonstrated.

Methods

50 paired HCC tissues and matched peritumor tissues from patients were collected. The mRNA level of miR-7 was detected by qRT-PCR. The protein level of Kruppel-like factor 4 (KLF-4) was determined by western blot. Cell proliferation and invasive ability were measured using MTT and transwell invasion assay, respectively.

Results

We demonstrated that miR-7 was downregulated in 50 HCC tissues and the low expression of miR-7 was significantly correlate with tumour size. Moreover, overexpression of miR-7 significantly inhibited the proliferation and invasion of HCC cells. Over 100 target genes of miR-7 were predicted by Targetscan, and KLF-4 was indicated as the most promising candidate. Luciferase report assay showed that KLF-4 could be silenced by miR-7, so as to restore the impairment of cell proliferation and invasion in HCC cells.

Conclusions

In summary, we revealed a role of miR-7-KLF-4 axis in HCC cells, and the combination of both biomarkers might improve HCC diagnosis.
Literature
2.
go back to reference Cristea CG, Gheonea IA, Sandulescu LD, et al. Considerations regarding current diagnosis and prognosis of hepatocellular carcinoma. J Med Life. 2015;8:120–8.PubMedPubMedCentral Cristea CG, Gheonea IA, Sandulescu LD, et al. Considerations regarding current diagnosis and prognosis of hepatocellular carcinoma. J Med Life. 2015;8:120–8.PubMedPubMedCentral
3.
go back to reference van Kouwenhove M, Kedde M, Agami R. MicroRNA regulation by RNA-binding proteins and its implications for cancer. Nat Rev Cancer. 2011;11:644–56.CrossRefPubMed van Kouwenhove M, Kedde M, Agami R. MicroRNA regulation by RNA-binding proteins and its implications for cancer. Nat Rev Cancer. 2011;11:644–56.CrossRefPubMed
4.
5.
go back to reference Shen Q, Bae HJ, Eun JW, et al. MiR-101 functions as a tumor suppressor by directly targeting nemo-like kinase in liver cancer. Cancer Lett. 2014;344:204–11.CrossRefPubMed Shen Q, Bae HJ, Eun JW, et al. MiR-101 functions as a tumor suppressor by directly targeting nemo-like kinase in liver cancer. Cancer Lett. 2014;344:204–11.CrossRefPubMed
6.
go back to reference Moshiri F, Callegari E, D’Abundo L, et al. Inhibiting the oncogenic mir-221 by microRNA sponge: toward microRNA-based therapeutics for hepatocellular carcinoma. Gastroenterol Hepatol Bed Bench. 2014;7:43–54.PubMedPubMedCentral Moshiri F, Callegari E, D’Abundo L, et al. Inhibiting the oncogenic mir-221 by microRNA sponge: toward microRNA-based therapeutics for hepatocellular carcinoma. Gastroenterol Hepatol Bed Bench. 2014;7:43–54.PubMedPubMedCentral
7.
go back to reference Kim TH, Kim YK, Kwon Y, et al. Deregulation of miR-519a, 153, and 485-5p and its clinicopathological relevance in ovarian epithelial tumours. Histopathology. 2010;57:734–43.CrossRefPubMed Kim TH, Kim YK, Kwon Y, et al. Deregulation of miR-519a, 153, and 485-5p and its clinicopathological relevance in ovarian epithelial tumours. Histopathology. 2010;57:734–43.CrossRefPubMed
8.
go back to reference Kefas B, Godlewski J, Comeau L, et al. microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res. 2008;68:3566–72.CrossRefPubMed Kefas B, Godlewski J, Comeau L, et al. microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res. 2008;68:3566–72.CrossRefPubMed
9.
go back to reference Chen H, Shalom-Feuerstein R, Riley J, et al. miR-7 and miR-214 are specifically expressed during neuroblastoma differentiation, cortical development and embryonic stem cells differentiation, and control neurite outgrowth in vitro. Biochem Biophys Res Commun. 2010;394:921–7.CrossRefPubMed Chen H, Shalom-Feuerstein R, Riley J, et al. miR-7 and miR-214 are specifically expressed during neuroblastoma differentiation, cortical development and embryonic stem cells differentiation, and control neurite outgrowth in vitro. Biochem Biophys Res Commun. 2010;394:921–7.CrossRefPubMed
10.
go back to reference Erkan EP, Breakefield XO, Saydam O. miRNA signature of schwannomas: possible role(s) of “tumor suppressor” miRNAs in benign tumors. Oncotarget. 2011;2(3):265–70.CrossRefPubMedPubMedCentral Erkan EP, Breakefield XO, Saydam O. miRNA signature of schwannomas: possible role(s) of “tumor suppressor” miRNAs in benign tumors. Oncotarget. 2011;2(3):265–70.CrossRefPubMedPubMedCentral
11.
go back to reference Saydam O, Senol O, Würdinger T, et al. miRNA-7 attenuation in Schwannoma tumors stimulates growth by upregulating three oncogenic signaling pathways. Cancer Res. 2011;71(3):852–61.CrossRefPubMed Saydam O, Senol O, Würdinger T, et al. miRNA-7 attenuation in Schwannoma tumors stimulates growth by upregulating three oncogenic signaling pathways. Cancer Res. 2011;71(3):852–61.CrossRefPubMed
12.
go back to reference He X, Li C, Wu X, et al. Docetaxel inhibits the proliferation of non-small-cell lung cancer cells via upregulation of microRNA-7 expression. Int J Clin Exp Pathol. 2015;8(8):9072–80.PubMedPubMedCentral He X, Li C, Wu X, et al. Docetaxel inhibits the proliferation of non-small-cell lung cancer cells via upregulation of microRNA-7 expression. Int J Clin Exp Pathol. 2015;8(8):9072–80.PubMedPubMedCentral
13.
go back to reference Meza-Sosa KF, Pérez-García EI, Camacho-Concha N, et al. MiR-7 promotes epithelial cell transformation by targeting the tumor suppressor KLF4. PLoS ONE. 2014;9(9):e103987.CrossRefPubMedPubMedCentral Meza-Sosa KF, Pérez-García EI, Camacho-Concha N, et al. MiR-7 promotes epithelial cell transformation by targeting the tumor suppressor KLF4. PLoS ONE. 2014;9(9):e103987.CrossRefPubMedPubMedCentral
14.
go back to reference Fang Y, Xue JL, Shen Q, et al. MicroRNA-7 inhibits tumor growth and metastasis by targeting the phosphoinositide 3-kinase/Akt pathway in hepatocellular carcinoma. Hepatology. 2012;55(6):1852–62.CrossRefPubMed Fang Y, Xue JL, Shen Q, et al. MicroRNA-7 inhibits tumor growth and metastasis by targeting the phosphoinositide 3-kinase/Akt pathway in hepatocellular carcinoma. Hepatology. 2012;55(6):1852–62.CrossRefPubMed
15.
go back to reference Zhou K, Zhang T, Fan Y, et al. MicroRNA-106b promotes pituitary tumor cell proliferation and invasion through PI3K/AKT signaling pathway by targeting PTEN. Tumour Biol. 2016;37:13469–77.CrossRefPubMed Zhou K, Zhang T, Fan Y, et al. MicroRNA-106b promotes pituitary tumor cell proliferation and invasion through PI3K/AKT signaling pathway by targeting PTEN. Tumour Biol. 2016;37:13469–77.CrossRefPubMed
16.
go back to reference Sujobert P, Bardet V, Cornillet-Lefebvre P, et al. Essential role for the p110delta isoform in phosphoinositide 3-kinase activation and cell proliferation in acute myeloid leukemia. Blood. 2005;106:1063–6.CrossRefPubMed Sujobert P, Bardet V, Cornillet-Lefebvre P, et al. Essential role for the p110delta isoform in phosphoinositide 3-kinase activation and cell proliferation in acute myeloid leukemia. Blood. 2005;106:1063–6.CrossRefPubMed
17.
go back to reference Wang H, Yang L, Jamaluddin MS, et al. The Kruppel-like KLF4 transcription factor, a novel regulator of urokinase receptor expression, drives synthesis of this binding site in colonic crypt luminal surface epithelial cells. J Biol Chem. 2004;279:22674–83.CrossRefPubMed Wang H, Yang L, Jamaluddin MS, et al. The Kruppel-like KLF4 transcription factor, a novel regulator of urokinase receptor expression, drives synthesis of this binding site in colonic crypt luminal surface epithelial cells. J Biol Chem. 2004;279:22674–83.CrossRefPubMed
18.
go back to reference Nakatake Y, Fukui N, Iwamatsu Y, et al. Klf4 cooperates with Oct3/4 and Sox2 to activate the Lefty1 core promoter in embryonic stem cells. Mol Cell Biol. 2006;26:7772–82.CrossRefPubMedPubMedCentral Nakatake Y, Fukui N, Iwamatsu Y, et al. Klf4 cooperates with Oct3/4 and Sox2 to activate the Lefty1 core promoter in embryonic stem cells. Mol Cell Biol. 2006;26:7772–82.CrossRefPubMedPubMedCentral
19.
go back to reference Giles KM, Barker A, Zhang PM, et al. MicroRNA regulation of growth factor receptor signaling in human cancer cells. Methods Mol Biol. 2011;676:147-63.CrossRefPubMed Giles KM, Barker A, Zhang PM, et al. MicroRNA regulation of growth factor receptor signaling in human cancer cells. Methods Mol Biol. 2011;676:147-63.CrossRefPubMed
20.
go back to reference Chang YL, Zhou PJ, Wei L, et al. MicroRNA-7 inhibits the stemness of prostate cancer stem-like cells and tumorigenesis by repressing KLF4/PI3K/Akt/p21 pathway. Oncotarget. 2015;6(27):24017–31.CrossRefPubMedPubMedCentral Chang YL, Zhou PJ, Wei L, et al. MicroRNA-7 inhibits the stemness of prostate cancer stem-like cells and tumorigenesis by repressing KLF4/PI3K/Akt/p21 pathway. Oncotarget. 2015;6(27):24017–31.CrossRefPubMedPubMedCentral
Metadata
Title
MiR-7 inhibits progression of hepatocarcinoma by targeting KLF-4 and promises a novel diagnostic biomarker
Authors
Weizhong Wu
Sanguang Liu
Yunfei Liang
Zegao Zhou
Xueqing Liu
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2017
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-017-0386-x

Other articles of this Issue 1/2017

Cancer Cell International 1/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine