Skip to main content
Top
Published in: Cancer Cell International 1/2015

Open Access 01-12-2015 | Primary research

GSK3β mediates pancreatic cancer cell invasion in vitro via the CXCR4/MMP-2 Pathway

Authors: Xu Ying, Li Jing, Shijie Ma, Qianjun Li, Xiaoling Luo, Zhenguo Pan, Yanling Feng, Pan Feng

Published in: Cancer Cell International | Issue 1/2015

Login to get access

Abstract

Background

Glycogen synthase kinase-3β (GSK3β) expression and activity are upregulated in pancreatic cancer tissues. In our previous study, we found that stromal cell-derived factor-1/ chemokine receptor C-X-C motif chemokine receptor 4 (SDF-1α/CXCR4) upregulated matrix metalloproteinase 2 (MMP-2) and promoted invasion in PANC1 and SW-1990 pancreatic cancer cells by activating p38 mitogen-activated protein kinase (p38 MAPK). Additionally, inhibition of GSK3β reduced MMP-2 secretion.

Methods

To investigate the molecular mechanism of GSK3β in pancreatic cancer tissues, we created stable PANC1 cells up-regulation of GSK3β by transfecting GSK3β overexpression plasmid, and down-regulation of GSK3β using two different types of RNA interference.

Results

Western blotting showed that overexpression of GSK3β up-regulated CXCR4 and MMP-2 expression; suppression of GSK3β down-regulated CXCR4 and MMP-2 protein expression. Up-regulation of MMP2 induced by overexpression of GSK3β was blocked by inhibition of CXCR4. Overexpression of GSK3β promoted PANC1 cell invasion, and down-regulation of GSK3β suppressed PANC1 cell invasion in the transwell invasion assays. However, inhibition of CXCR4 using shRNA attenuated the ability of GSK3β to promote PANC1 cell invasion.

Conclusions

This study demonstrated that GSK3β promotes PANC1 cell invasion via the CXCR4/MMP-2 pathway.
Appendix
Available only for authorised users
Literature
1.
go back to reference Tamburrino A, Piro G, Carbone C, Tortora G, Melisi D. Mechanisms of resistance to chemotherapeutic and anti-angiogenic drugs as novel targets for pancreatic cancer therapy. Front Pharmacol. 2013;doi: 10.3389/fphar.2013.00056. Tamburrino A, Piro G, Carbone C, Tortora G, Melisi D. Mechanisms of resistance to chemotherapeutic and anti-angiogenic drugs as novel targets for pancreatic cancer therapy. Front Pharmacol. 2013;doi: 10.3389/fphar.2013.00056.
2.
go back to reference Klamer G, Song E, Ko KH, O’Brien TA, Dolnikov A. Using small molecule GSK3β inhibitors to treat inflammation. Curr Med Chem. 2010;17(26):2873–81.PubMedCrossRef Klamer G, Song E, Ko KH, O’Brien TA, Dolnikov A. Using small molecule GSK3β inhibitors to treat inflammation. Curr Med Chem. 2010;17(26):2873–81.PubMedCrossRef
4.
go back to reference Bilim V, Ougolkov A, Yuuki K, Naito S, Kawazoe H, Muto A, et al. Glycogen synthase kinase-3: a new therapeutic target in renal cell carcinoma. Br J Cancer. 2009;101(12):2005–14.PubMedCentralPubMedCrossRef Bilim V, Ougolkov A, Yuuki K, Naito S, Kawazoe H, Muto A, et al. Glycogen synthase kinase-3: a new therapeutic target in renal cell carcinoma. Br J Cancer. 2009;101(12):2005–14.PubMedCentralPubMedCrossRef
5.
go back to reference Mai W, Kawakami K, Shakoori A, Kyo S, Miyashita K, Yokoi K, et al. Deregulated GSK3{beta} sustains gastrointestinal cancer cells survival by modulating human telomerase reverse transcriptase and telomerase. Clin Cancer Res. 2009;15(22):6810–9.PubMedCrossRef Mai W, Kawakami K, Shakoori A, Kyo S, Miyashita K, Yokoi K, et al. Deregulated GSK3{beta} sustains gastrointestinal cancer cells survival by modulating human telomerase reverse transcriptase and telomerase. Clin Cancer Res. 2009;15(22):6810–9.PubMedCrossRef
6.
go back to reference Naito S, Bilim V, Yuuki K, Ugolkov A, Motoyama T, Nagaoka A, et al. Glycogen synthase kinase-3beta: a prognostic marker and a potential therapeutic target in human bladder cancer. Clin Cancer Res. 2010;16(21):5124–32.PubMedCrossRef Naito S, Bilim V, Yuuki K, Ugolkov A, Motoyama T, Nagaoka A, et al. Glycogen synthase kinase-3beta: a prognostic marker and a potential therapeutic target in human bladder cancer. Clin Cancer Res. 2010;16(21):5124–32.PubMedCrossRef
7.
go back to reference Wang L, Zuo B, Xu D, Ren Z, Zhang H, Li X, et al. Alternative splicing of the porcine glycogen synthase kinase 3β (GSK-3β) gene with differential expression patterns and regulatory functions. PLoS One. 2012;7(7), e40250.PubMedCentralPubMedCrossRef Wang L, Zuo B, Xu D, Ren Z, Zhang H, Li X, et al. Alternative splicing of the porcine glycogen synthase kinase 3β (GSK-3β) gene with differential expression patterns and regulatory functions. PLoS One. 2012;7(7), e40250.PubMedCentralPubMedCrossRef
8.
go back to reference Miyashita K, Nakada M, Shakoori A, Ishigaki Y, Shimasaki T, Motoo Y, et al. An emerging strategy for cancer treatment targeting aberrant glycogen synthase kinase 3 beta. Anticancer Agents Med Chem. 2009;9(10):1114–22.PubMedCrossRef Miyashita K, Nakada M, Shakoori A, Ishigaki Y, Shimasaki T, Motoo Y, et al. An emerging strategy for cancer treatment targeting aberrant glycogen synthase kinase 3 beta. Anticancer Agents Med Chem. 2009;9(10):1114–22.PubMedCrossRef
9.
go back to reference Ougolkov AV, Fernandez-Zapico ME, Bilim VN, Smyrk TC, Chari ST, Billadeau DD. Aberrant nuclear accumulation of glycogen synthase kinase-3beta in human pancreatic cancer: association with kinase activity and tumor dedifferentiation. Clin Cancer Res. 2006;12(17):5074–81.PubMedCentralPubMedCrossRef Ougolkov AV, Fernandez-Zapico ME, Bilim VN, Smyrk TC, Chari ST, Billadeau DD. Aberrant nuclear accumulation of glycogen synthase kinase-3beta in human pancreatic cancer: association with kinase activity and tumor dedifferentiation. Clin Cancer Res. 2006;12(17):5074–81.PubMedCentralPubMedCrossRef
10.
go back to reference Phukan S, Babu VS, Kannoji A, Hariharan R, Balaji VN. GSK3beta: role in therapeutic landscape and development of modulators. Br J Pharmacol. 2010;160(1):1–19.PubMedCentralPubMedCrossRef Phukan S, Babu VS, Kannoji A, Hariharan R, Balaji VN. GSK3beta: role in therapeutic landscape and development of modulators. Br J Pharmacol. 2010;160(1):1–19.PubMedCentralPubMedCrossRef
11.
go back to reference Marchand B, Tremblay I, Cagnol S, Boucher MJ. Inhibition of glycogen synthase kinase-3 activity triggers an apoptotic response in pancreatic cancer cells through JNK-dependent mechanisms. Carcinogenesis. 2012;33(3):529–37.PubMedCrossRef Marchand B, Tremblay I, Cagnol S, Boucher MJ. Inhibition of glycogen synthase kinase-3 activity triggers an apoptotic response in pancreatic cancer cells through JNK-dependent mechanisms. Carcinogenesis. 2012;33(3):529–37.PubMedCrossRef
12.
go back to reference Hattermann K, Mentlein R. An Infernal Trio: The chemokine CXCL12 and its receptors CXCR4 and CXCR7 in tumor biology. Ann Anat. 2013;195(2):103–10.PubMedCrossRef Hattermann K, Mentlein R. An Infernal Trio: The chemokine CXCL12 and its receptors CXCR4 and CXCR7 in tumor biology. Ann Anat. 2013;195(2):103–10.PubMedCrossRef
13.
go back to reference Lekstan A, Olakowski M, Jabłońska B, Labuzek K, Olakowska E, Filip I, et al. Concentration of gelatinases and their tissue inhibitors in pancreatic inflammatory and neoplastic tumors and their influence on the early postoperative course. Pol Przegl Chir. 2013;85(2):65–72.PubMed Lekstan A, Olakowski M, Jabłońska B, Labuzek K, Olakowska E, Filip I, et al. Concentration of gelatinases and their tissue inhibitors in pancreatic inflammatory and neoplastic tumors and their influence on the early postoperative course. Pol Przegl Chir. 2013;85(2):65–72.PubMed
14.
go back to reference Durlik M, Gardian K. Metalloproteinase 2 and 9 activity in the development of pancreatic cancer. Pol Przegl Chir. 2012;84(8):377–82.PubMed Durlik M, Gardian K. Metalloproteinase 2 and 9 activity in the development of pancreatic cancer. Pol Przegl Chir. 2012;84(8):377–82.PubMed
15.
go back to reference Luo G, Long J, Cui X, Xiao Z, Liu Z, Shi S, et al. Highly lymphatic metastatic pancreatic cancer cells possess stem cell-like properties. Int J Oncol. 2013;42(3):979–84.PubMed Luo G, Long J, Cui X, Xiao Z, Liu Z, Shi S, et al. Highly lymphatic metastatic pancreatic cancer cells possess stem cell-like properties. Int J Oncol. 2013;42(3):979–84.PubMed
16.
go back to reference Wang H, Rana S, Giese N, Büchler MW, Zöller M. Tspan8, CD44v6 and alpha6beta4 are biomarkers of migrating pancreatic cancer-initiating cells. Int J Cancer 2013;doi: 10.1002/ijc.28044. Wang H, Rana S, Giese N, Büchler MW, Zöller M. Tspan8, CD44v6 and alpha6beta4 are biomarkers of migrating pancreatic cancer-initiating cells. Int J Cancer 2013;doi: 10.1002/ijc.28044.
17.
go back to reference Zhou W, Wang L, Gou SM, Wang TL, Zhang M, Liu T, et al. ShRNA silencing glycogen synthase kinase-3 beta inhibits tumor growth and angiogenesis in pancreatic cancer. Cancer Lett. 2012;316(2):178–86.PubMedCrossRef Zhou W, Wang L, Gou SM, Wang TL, Zhang M, Liu T, et al. ShRNA silencing glycogen synthase kinase-3 beta inhibits tumor growth and angiogenesis in pancreatic cancer. Cancer Lett. 2012;316(2):178–86.PubMedCrossRef
18.
go back to reference Kim YS, Noh MY, Kim JY, Yu HJ, Kim KS, Kim SH, et al. Direct GSK-3β inhibition enhances mesenchymal stromal cell migration by increasing expression of β-PIX and CXCR4. Mol Neurobiol. 2013;47(2):811–20.PubMedCrossRef Kim YS, Noh MY, Kim JY, Yu HJ, Kim KS, Kim SH, et al. Direct GSK-3β inhibition enhances mesenchymal stromal cell migration by increasing expression of β-PIX and CXCR4. Mol Neurobiol. 2013;47(2):811–20.PubMedCrossRef
19.
go back to reference Dimova N, Wysoczynski M, Rokosh G. Stromal cell derived factor-1α promotes C-Kit + cardiac stem/progenitor cell quiescence through casein kinase 1α and GSK3β. Stem Cells. 2014;32(2):487–99.PubMedCentralPubMedCrossRef Dimova N, Wysoczynski M, Rokosh G. Stromal cell derived factor-1α promotes C-Kit + cardiac stem/progenitor cell quiescence through casein kinase 1α and GSK3β. Stem Cells. 2014;32(2):487–99.PubMedCentralPubMedCrossRef
20.
go back to reference Tamura M, Sato MM, Nashimoto M. Regulation of CXCL12 expression by canonical Wnt signaling in bone marrow stromal cells. Int J Biochem Cell Biol. 2011;43(5):760–7.PubMedCrossRef Tamura M, Sato MM, Nashimoto M. Regulation of CXCL12 expression by canonical Wnt signaling in bone marrow stromal cells. Int J Biochem Cell Biol. 2011;43(5):760–7.PubMedCrossRef
21.
go back to reference Pan F, Ma SJ, Cao W, Liu H, Chen F, Chen X, et al. SDF-1α upregulation of MMP-2 is mediated by p38 MAPK signaling in pancreatic cancer cell lines. Mol Biol Rep. 2013;40(7):4139–46.PubMedCrossRef Pan F, Ma SJ, Cao W, Liu H, Chen F, Chen X, et al. SDF-1α upregulation of MMP-2 is mediated by p38 MAPK signaling in pancreatic cancer cell lines. Mol Biol Rep. 2013;40(7):4139–46.PubMedCrossRef
22.
go back to reference Kitagishi Y, Kobayashi M, Kikuta K, Matsuda S. Roles of PI3K/AKT/GSK3/mTOR Pathway in Cell Signaling of Mental Illnesses. Depress Res Treat. 2012;2012(752563). Kitagishi Y, Kobayashi M, Kikuta K, Matsuda S. Roles of PI3K/AKT/GSK3/mTOR Pathway in Cell Signaling of Mental Illnesses. Depress Res Treat. 2012;2012(752563).
23.
go back to reference Watson RL, Spalding AC, Zielske SP, Morgan M, Kim AC, Bommer GT, et al. GSK3beta and beta-catenin modulate radiation cytotoxicity in pancreatic cancer. Neop;asia. 2010;12(5):357–65. Watson RL, Spalding AC, Zielske SP, Morgan M, Kim AC, Bommer GT, et al. GSK3beta and beta-catenin modulate radiation cytotoxicity in pancreatic cancer. Neop;asia. 2010;12(5):357–65.
24.
go back to reference Gaisina IN, Gallier F, Ougolkov AV, Kim KH, Kurome T, Guo S, et al. From a natural product lead to the identification of potent and selective benzofuran-3-yl-(indol-3-yl)maleimides as glycogen synthase kinase 3beta inhibitors that suppress proliferation and survival of pancreatic cancer cells. J Med Chem. 2009;52(7):1853–63.PubMedCentralPubMedCrossRef Gaisina IN, Gallier F, Ougolkov AV, Kim KH, Kurome T, Guo S, et al. From a natural product lead to the identification of potent and selective benzofuran-3-yl-(indol-3-yl)maleimides as glycogen synthase kinase 3beta inhibitors that suppress proliferation and survival of pancreatic cancer cells. J Med Chem. 2009;52(7):1853–63.PubMedCentralPubMedCrossRef
25.
go back to reference Jiang PH, Motoo Y, Sawabu N, Minamoto T. Effect of gemcitabine on the expression of apoptosis-related genes in human pancreatic cancer cells. Worl J Gastroenterol. 2006;12(10):1597–602. Jiang PH, Motoo Y, Sawabu N, Minamoto T. Effect of gemcitabine on the expression of apoptosis-related genes in human pancreatic cancer cells. Worl J Gastroenterol. 2006;12(10):1597–602.
26.
go back to reference Kitano A, Shimasaki T, Chikano Y, Nakada M, Hirose M, Higashi T, et al. Aberrant glycogen synthase kinase 3β is involved in pancreatic cancer cell invasion and resistance to therapy. PLoS One. 2013;8(2), e55289.PubMedCentralPubMedCrossRef Kitano A, Shimasaki T, Chikano Y, Nakada M, Hirose M, Higashi T, et al. Aberrant glycogen synthase kinase 3β is involved in pancreatic cancer cell invasion and resistance to therapy. PLoS One. 2013;8(2), e55289.PubMedCentralPubMedCrossRef
27.
go back to reference Ou YQ, Zhu W, Li Y, Qiu PX, Huang YJ, Xie J, et al. Aspirin inhibits proliferation of gemcitabine-resistant human pancreatic cancer cells and augments gemcitabine-induced cytotoxicity. Acta Pharmacol Sin. 2010;31(1):73–80.PubMedCentralPubMedCrossRef Ou YQ, Zhu W, Li Y, Qiu PX, Huang YJ, Xie J, et al. Aspirin inhibits proliferation of gemcitabine-resistant human pancreatic cancer cells and augments gemcitabine-induced cytotoxicity. Acta Pharmacol Sin. 2010;31(1):73–80.PubMedCentralPubMedCrossRef
28.
go back to reference Ristorcelli E, Beraud E, Mathieu S, Lombardo D, Verine A. Essential role of Notch signaling in apoptosis of human pancreatic tumoral cells mediated by exosomal nanoparticles. Int J Cancer. 2009;125(5):1016–26.PubMedCrossRef Ristorcelli E, Beraud E, Mathieu S, Lombardo D, Verine A. Essential role of Notch signaling in apoptosis of human pancreatic tumoral cells mediated by exosomal nanoparticles. Int J Cancer. 2009;125(5):1016–26.PubMedCrossRef
29.
go back to reference Shimasaki T, Ishigaki Y, Nakamura Y, Takata T, Nakaya N, Nakajima H, et al. Glycogen synthase kinase 3β inhibition sensitizes pancreatic cancer cells to gemcitabine. J Gastroenterol. 2012;47(3):321–33.PubMedCrossRef Shimasaki T, Ishigaki Y, Nakamura Y, Takata T, Nakaya N, Nakajima H, et al. Glycogen synthase kinase 3β inhibition sensitizes pancreatic cancer cells to gemcitabine. J Gastroenterol. 2012;47(3):321–33.PubMedCrossRef
30.
go back to reference Shimasaki T, Kitano A, Motoo Y, Minamoto T. Aberrant glycogen synthase kinase 3β in the development of pancreatic cancer. J Carcinog. 2012;doi: 10.4103/1477-3163.100866. Shimasaki T, Kitano A, Motoo Y, Minamoto T. Aberrant glycogen synthase kinase 3β in the development of pancreatic cancer. J Carcinog. 2012;doi: 10.4103/1477-3163.100866.
31.
go back to reference Johnson JL, Rupasinghe S, Stefani F, Schuler MA, Gonzalez de Mejia E. Citrus flavonoids luteolin, apigenin, and quercetin inhibit glycogen synthase kinase-3β enzymatic activity by lowering the interaction energy within the binding cavity. J Med Food. 2011;14(4):325–33.PubMedCentralPubMedCrossRef Johnson JL, Rupasinghe S, Stefani F, Schuler MA, Gonzalez de Mejia E. Citrus flavonoids luteolin, apigenin, and quercetin inhibit glycogen synthase kinase-3β enzymatic activity by lowering the interaction energy within the binding cavity. J Med Food. 2011;14(4):325–33.PubMedCentralPubMedCrossRef
33.
go back to reference Garcea G, Manson MM, Neal CP, Pattenden CJ, Sutton CD, Dennison AR, et al. Glycogen synthase kinase-3 beta; a new target in pancreatic cancer? Curr Cancer Drug Targets. 2007;7(3):209–15.PubMedCrossRef Garcea G, Manson MM, Neal CP, Pattenden CJ, Sutton CD, Dennison AR, et al. Glycogen synthase kinase-3 beta; a new target in pancreatic cancer? Curr Cancer Drug Targets. 2007;7(3):209–15.PubMedCrossRef
34.
go back to reference Wilson 3rd W, Baldwin AS. Maintenance of constitutive IkappaB kinase activity by glycogen synthase kinase-3alpha/beta in pancreatic cancer. Cancer Res. 2008;68(19):8156–63.PubMedCentralPubMedCrossRef Wilson 3rd W, Baldwin AS. Maintenance of constitutive IkappaB kinase activity by glycogen synthase kinase-3alpha/beta in pancreatic cancer. Cancer Res. 2008;68(19):8156–63.PubMedCentralPubMedCrossRef
35.
go back to reference Al-Aynati MM, Radulovich N, Riddell RH, Tsao MS. Epithelial-cadherin and beta-catenin expression changes in pancreatic intraepithelial neoplasia. Clin Cancer Res. 2004;10(4):1235–40.PubMedCrossRef Al-Aynati MM, Radulovich N, Riddell RH, Tsao MS. Epithelial-cadherin and beta-catenin expression changes in pancreatic intraepithelial neoplasia. Clin Cancer Res. 2004;10(4):1235–40.PubMedCrossRef
36.
go back to reference Lapid K, Itkin T, D’Uva G, Ovadya Y, Ludin A, Caglio G, et al. GSK3β regulates physiological migration of stem/progenitor cells via cytoskeletal rearrangement. J Clin Invest. 2013;123(4):1705–17.PubMedCentralPubMedCrossRef Lapid K, Itkin T, D’Uva G, Ovadya Y, Ludin A, Caglio G, et al. GSK3β regulates physiological migration of stem/progenitor cells via cytoskeletal rearrangement. J Clin Invest. 2013;123(4):1705–17.PubMedCentralPubMedCrossRef
37.
go back to reference Liu Z, Habener JF. Stromal cell-derived factor-1 promotes survival of pancreatic beta cells by the stabilisation of beta-catenin and activation of transcription factor 7-like 2 (TCF7L2). Diabetologia. 2009;52(8):1589–98.PubMedCentralPubMedCrossRef Liu Z, Habener JF. Stromal cell-derived factor-1 promotes survival of pancreatic beta cells by the stabilisation of beta-catenin and activation of transcription factor 7-like 2 (TCF7L2). Diabetologia. 2009;52(8):1589–98.PubMedCentralPubMedCrossRef
38.
go back to reference Rihua Zhang XP, Huang Z, Weber GF, Zhang G. Osteopontin Enhances the Expression and Activity of MMP-2 via the SDF-1/CXCR4 Axis in Hepatocellular Carcinoma Cell Lines. PLoS One. 2011;6(8), e23831.PubMedCentralPubMedCrossRef Rihua Zhang XP, Huang Z, Weber GF, Zhang G. Osteopontin Enhances the Expression and Activity of MMP-2 via the SDF-1/CXCR4 Axis in Hepatocellular Carcinoma Cell Lines. PLoS One. 2011;6(8), e23831.PubMedCentralPubMedCrossRef
Metadata
Title
GSK3β mediates pancreatic cancer cell invasion in vitro via the CXCR4/MMP-2 Pathway
Authors
Xu Ying
Li Jing
Shijie Ma
Qianjun Li
Xiaoling Luo
Zhenguo Pan
Yanling Feng
Pan Feng
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2015
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-015-0216-y

Other articles of this Issue 1/2015

Cancer Cell International 1/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine