Skip to main content
Top
Published in: Cancer Cell International 1/2015

Open Access 01-12-2015 | Primary research

B-cell receptor-guided delivery of peptide-siRNA complex for B-cell lymphoma therapy

Authors: Nunzia Migliaccio, Camillo Palmieri, Immacolata Ruggiero, Giuseppe Fiume, Nicola M Martucci, Iris Scala, Ileana Quinto, Giuseppe Scala, Annalisa Lamberti, Paolo Arcari

Published in: Cancer Cell International | Issue 1/2015

Login to get access

Abstract

Background

Despite the clinical response of conventional anticancer therapy, including chemotherapeutic treatments, radiation therapy and corticosteroids, tumorigenic B-cell lymphomas show an incomplete response to clinical practices that result in a minimal residual disease (MRD) where few residual neoplastic cells undetected in vivo, replenish the cancer cell reservoir. This scenario, which is also shared with other cancer diseases, requires the development of strategies to advance in novel, selective targeting toward the tumorigenic cells that survive to the anticancer agents.

Methods

Here, we have taken advantage of the therapeutic properties of an idiotype specific peptide (pA20-36) that bind specifically to murine B-lymphoma cells in the setting of an anti cancer strategy, based on the selected delivery of electrostatic-based complex, peptide-siRNA. To this end, two engineered, arginine rich, peptides that included the pA20-36 targeting sequence were designed to bind fluorescent-labelled siRNA. One peptide presented 9 Arg at the C-terminal of pA20-36 whereas the other included 5 Arg at the N- and C-terminus, respectively.

Results

Compared to the control and random peptide-siRNA complexes, both pA20-36-siRNA complexes were endowed with the selective delivering of fluorescent-labelled siRNA toward the A20 murine B-cell lymphoma, as evaluated by cytofluorimetry and confocal microscopy, whereas fluorescent-labelled siRNA alone was not internalized in the selected cells. Compared to peptide controls, the use of the modified pA20-36 peptides complexed with siRNA anti-GAPDH and anti-Bcl2 showed a down-regulation in the expression levels of the corresponding genes.

Conclusions

Peptide-siRNA complex can be suitable tool for both selective peptide-driven cell targeting and gene silencing. In this setting, the improvement of this strategy is expected to provide a safe and non-invasive approach for the delivery of therapeutic molecules.
Literature
2.
go back to reference Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nature Nanotech. 2007;2:751–60.CrossRef Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nature Nanotech. 2007;2:751–60.CrossRef
3.
go back to reference Di Martino MT, Campani V, Misso G, Gallo Cantafio ME, Gullà A, Foresta U, et al. In vivo activity of MiR-34a mimics delivered by stable nucleic acid lipid particles (SNALPs) against multiple myeloma. PLoS One. 2014;9, e90005.CrossRefPubMedCentralPubMed Di Martino MT, Campani V, Misso G, Gallo Cantafio ME, Gullà A, Foresta U, et al. In vivo activity of MiR-34a mimics delivered by stable nucleic acid lipid particles (SNALPs) against multiple myeloma. PLoS One. 2014;9, e90005.CrossRefPubMedCentralPubMed
4.
go back to reference Min K, Song KM, Cho M, Chun YS, Shim YB, Kua JK, et al. Simultaneous electrochemical detection of both PSMA (+) and PSMA (−) prostate cancer cells using an RNA/peptide dual-aptamer probe. Chem Commun. 2010;46(30):5566–8.CrossRef Min K, Song KM, Cho M, Chun YS, Shim YB, Kua JK, et al. Simultaneous electrochemical detection of both PSMA (+) and PSMA (−) prostate cancer cells using an RNA/peptide dual-aptamer probe. Chem Commun. 2010;46(30):5566–8.CrossRef
7.
go back to reference Dorsett Y, Tuschl T. siRNAs: applications in functional genomics and potential as therapeutics. Nat Rev Drug Discov. 2004;3:318–29.CrossRefPubMed Dorsett Y, Tuschl T. siRNAs: applications in functional genomics and potential as therapeutics. Nat Rev Drug Discov. 2004;3:318–29.CrossRefPubMed
8.
go back to reference Dykxhoorn DM, Palliser D, Lieberman J. The silent treatment: siRNAs as small molecule drugs. Gene Ther. 2006;13:541–52.CrossRefPubMed Dykxhoorn DM, Palliser D, Lieberman J. The silent treatment: siRNAs as small molecule drugs. Gene Ther. 2006;13:541–52.CrossRefPubMed
9.
go back to reference Järver P, Coursinde T, EL Andaloussi S, Godfrey C, Wood MJA, Gait MJ. Peptide-mediated cell and in vivo delivery of antisense oligonucleotides and siRNA. Mol Ther Nucleic Acids. 2012;1, e27.CrossRefPubMedCentralPubMed Järver P, Coursinde T, EL Andaloussi S, Godfrey C, Wood MJA, Gait MJ. Peptide-mediated cell and in vivo delivery of antisense oligonucleotides and siRNA. Mol Ther Nucleic Acids. 2012;1, e27.CrossRefPubMedCentralPubMed
10.
go back to reference De Angelis F, Pujia A, Falcone C, Iaccino E, Palmieri C, Liberale C, et al. Water soluble nanoporous nanoparticle for in vivo targeted drug delivery and controlled release in B cells tumor context. Nanoscale. 2010;2:2230–6.CrossRefPubMed De Angelis F, Pujia A, Falcone C, Iaccino E, Palmieri C, Liberale C, et al. Water soluble nanoporous nanoparticle for in vivo targeted drug delivery and controlled release in B cells tumor context. Nanoscale. 2010;2:2230–6.CrossRefPubMed
11.
go back to reference Palmieri C, Falcone C, Iaccino E, Tuccillo FM, Gaspari M, Trimboli F, et al. In vivo targeting and growth inhibition of the A20 murine B-cell lymphoma by an idiotype-specific peptide binder. Blood. 2010;2:226–38.CrossRef Palmieri C, Falcone C, Iaccino E, Tuccillo FM, Gaspari M, Trimboli F, et al. In vivo targeting and growth inhibition of the A20 murine B-cell lymphoma by an idiotype-specific peptide binder. Blood. 2010;2:226–38.CrossRef
12.
go back to reference Kim KJ, Kanellopoulos-Langevin C, Merwin RM, Sachs DH, Asofsky R. Establishment and characterization of BALB/c lymphoma lines with B cell properties. J Immunol. 1979;122:549–54.PubMed Kim KJ, Kanellopoulos-Langevin C, Merwin RM, Sachs DH, Asofsky R. Establishment and characterization of BALB/c lymphoma lines with B cell properties. J Immunol. 1979;122:549–54.PubMed
13.
go back to reference Glimcher LH, Kim KJ, Green I, Paul WE. Ia antigen bearing B cell tumor lines can present protein antigen and alloantigen in a major histocompatibility complex-restricted fashion to antigen-reactive T cells. J Exp Med. 1982;155:445–59.CrossRefPubMed Glimcher LH, Kim KJ, Green I, Paul WE. Ia antigen bearing B cell tumor lines can present protein antigen and alloantigen in a major histocompatibility complex-restricted fashion to antigen-reactive T cells. J Exp Med. 1982;155:445–59.CrossRefPubMed
14.
go back to reference Graner M, Raymond A, Romney D, He L, Whitesell L, Katsanis E. Immunoprotective activities of multiple chaperone proteins isolated from murine B-cell leukemia/lymphoma. Clin Cancer Res. 2000;6:909–15.PubMed Graner M, Raymond A, Romney D, He L, Whitesell L, Katsanis E. Immunoprotective activities of multiple chaperone proteins isolated from murine B-cell leukemia/lymphoma. Clin Cancer Res. 2000;6:909–15.PubMed
15.
go back to reference Kim SW, Kim NY, Choi YB, Park SH, Yang JM, Shin S. RNA interference in vitro and in vivo using an arginine peptide/siRNA complex system. J Control Release. 2010;143:335–43.CrossRefPubMed Kim SW, Kim NY, Choi YB, Park SH, Yang JM, Shin S. RNA interference in vitro and in vivo using an arginine peptide/siRNA complex system. J Control Release. 2010;143:335–43.CrossRefPubMed
16.
go back to reference Hong SY, Oh JE, Lee KH. Effect of D-amino acid substitution on the stability, the secondary structure, and the activity of membrane-active peptide. Biochem Pharm. 1999;58:1775–80.CrossRefPubMed Hong SY, Oh JE, Lee KH. Effect of D-amino acid substitution on the stability, the secondary structure, and the activity of membrane-active peptide. Biochem Pharm. 1999;58:1775–80.CrossRefPubMed
17.
go back to reference Scarfò L, Ghia P. Reprogramming cell death: BCL2 family inhibition in hematological malignancies. Immunol Lett. 2013;155:36–9.CrossRefPubMed Scarfò L, Ghia P. Reprogramming cell death: BCL2 family inhibition in hematological malignancies. Immunol Lett. 2013;155:36–9.CrossRefPubMed
18.
go back to reference Garcia-Garcia C, Draper DE. Electrostatic interactions in a peptide–RNA complex. J Mol Biol. 2003;331:75–88.CrossRefPubMed Garcia-Garcia C, Draper DE. Electrostatic interactions in a peptide–RNA complex. J Mol Biol. 2003;331:75–88.CrossRefPubMed
19.
go back to reference Crombez L, Charnet A, Morris MC, Aldrian-Herrada G, Heitz F, Divita G. A non-covalent peptide-based strategy for siRNA delivery. Biochem Soc Trans. 2007;35:44–6.CrossRefPubMed Crombez L, Charnet A, Morris MC, Aldrian-Herrada G, Heitz F, Divita G. A non-covalent peptide-based strategy for siRNA delivery. Biochem Soc Trans. 2007;35:44–6.CrossRefPubMed
20.
go back to reference Morrissey DV, Lockridge JA, Shaw L, Blanchard K, Jensen K, Breen W, et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nature Biotechnol. 2005;23:1002–7.CrossRef Morrissey DV, Lockridge JA, Shaw L, Blanchard K, Jensen K, Breen W, et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nature Biotechnol. 2005;23:1002–7.CrossRef
21.
go back to reference Rea I, Martucci NM, De Stefano L, Ruggiero I, Terracciano M, Dardano P, et al. Diatomite biosilica nanocarriers for siRNA transport inside cancer cells. Biochim Biophys Acta. 1840;2014:3393–403. Rea I, Martucci NM, De Stefano L, Ruggiero I, Terracciano M, Dardano P, et al. Diatomite biosilica nanocarriers for siRNA transport inside cancer cells. Biochim Biophys Acta. 1840;2014:3393–403.
22.
go back to reference Noble CO, Kirpotin DB, Hayes ME, Mamot C, Hong K, Park JW, et al. Development of ligand-targeted liposomes for cancer therapy. Expert Opin Ther Targets. 2004;8:335–53.CrossRefPubMed Noble CO, Kirpotin DB, Hayes ME, Mamot C, Hong K, Park JW, et al. Development of ligand-targeted liposomes for cancer therapy. Expert Opin Ther Targets. 2004;8:335–53.CrossRefPubMed
23.
go back to reference Hu-Lieskovan S, Heidel JD, Bartlett DW, Davis ME, Triche TJ. Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing’s sarcoma. Cancer Res. 2005;65:8984–92.CrossRefPubMed Hu-Lieskovan S, Heidel JD, Bartlett DW, Davis ME, Triche TJ. Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing’s sarcoma. Cancer Res. 2005;65:8984–92.CrossRefPubMed
24.
go back to reference Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J Biol Chem. 1951;193:265–75.PubMed Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J Biol Chem. 1951;193:265–75.PubMed
25.
go back to reference Fiume G, Rossi A, de Laurentiis A, Falcone C, Pisano A, Vecchio E, et al. Eukaryotic initiation factor 4H is under transcriptional control of p65/NF-κB. PLoS One. 2013;8, e66087.CrossRefPubMedCentralPubMed Fiume G, Rossi A, de Laurentiis A, Falcone C, Pisano A, Vecchio E, et al. Eukaryotic initiation factor 4H is under transcriptional control of p65/NF-κB. PLoS One. 2013;8, e66087.CrossRefPubMedCentralPubMed
Metadata
Title
B-cell receptor-guided delivery of peptide-siRNA complex for B-cell lymphoma therapy
Authors
Nunzia Migliaccio
Camillo Palmieri
Immacolata Ruggiero
Giuseppe Fiume
Nicola M Martucci
Iris Scala
Ileana Quinto
Giuseppe Scala
Annalisa Lamberti
Paolo Arcari
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2015
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-015-0202-4

Other articles of this Issue 1/2015

Cancer Cell International 1/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine