Skip to main content
Top
Published in: BMC Medicine 1/2022

Open Access 01-12-2022 | Research article

Sustained correction of hippocampal neurogenic and cognitive deficits after a brief treatment by Nutlin-3 in a mouse model of fragile X syndrome

Authors: Sahar Javadi, Yue Li, Jie Sheng, Lucy Zhao, Yao Fu, Daifeng Wang, Xinyu Zhao

Published in: BMC Medicine | Issue 1/2022

Login to get access

Abstract

Background

Fragile X syndrome (FXS), the most prevalent inherited intellectual disability and one of the most common monogenic forms of autism, is caused by a loss of fragile X messenger ribonucleoprotein 1 (FMR1). We have previously shown that FMR1 represses the levels and activities of ubiquitin ligase MDM2 in young adult FMR1-deficient mice, and treatment by a MDM2 inhibitor Nutlin-3 rescues both hippocampal neurogenic and cognitive deficits in FMR1-deficient mice when analyzed shortly after the administration. However, it is unknown whether Nutlin-3 treatment can have long-lasting therapeutic effects.

Methods

We treated 2-month-old young adult FMR1-deficient mice with Nutlin-3 for 10 days and then assessed the persistent effect of Nutlin-3 on both cognitive functions and adult neurogenesis when mice were 6-month-old mature adults. To investigate the mechanisms underlying the persistent effects of Nutlin-3, we analyzed the proliferation and differentiation of neural stem/progenitor cells isolated from these mice and assessed the transcriptome of the hippocampal tissues of treated mice.

Results

We found that transient treatment with Nutlin-3 of 2-month-old young adult FMR1-deficient mice prevents the emergence of neurogenic and cognitive deficits in mature adult FXS mice at 6 months of age. We further found that the long-lasting restoration of neurogenesis and cognitive function might not be mediated by changing intrinsic properties of adult neural stem cells. Transcriptomic analysis of the hippocampal tissue demonstrated that transient Nultin-3 treatment leads to significant expression changes in genes related to the extracellular matrix, secreted factors, and cell membrane proteins in the FMR1-deficient hippocampus.

Conclusions

Our data indicates that transient Nutlin-3 treatment in young adults leads to long-lasting neurogenic and behavioral changes likely through modulating adult neurogenic niche that impact adult neural stem cells. Our results demonstrate that cognitive impairments in FXS may be prevented by an early intervention through Nutlin-3 treatment.
Appendix
Available only for authorised users
Literature
1.
go back to reference Tassone F, Iong KP, Tong T-H, Lo J, Gane LW, Berry-Kravis E, et al. FMR1 CGG allele size and prevalence ascertained through newborn screening in the United States. Genome Med. 2013;4(12):1–13. Tassone F, Iong KP, Tong T-H, Lo J, Gane LW, Berry-Kravis E, et al. FMR1 CGG allele size and prevalence ascertained through newborn screening in the United States. Genome Med. 2013;4(12):1–13.
3.
go back to reference Kaufmann WE, Kidd SA, Andrews HF, Budimirovic DB, Esler A, Haas-Givler B, et al. Autism spectrum disorder in fragile X syndrome: cooccurring conditions and current treatment. Pediatrics. 2017;139(Supplement 3):S194–206.CrossRefPubMed Kaufmann WE, Kidd SA, Andrews HF, Budimirovic DB, Esler A, Haas-Givler B, et al. Autism spectrum disorder in fragile X syndrome: cooccurring conditions and current treatment. Pediatrics. 2017;139(Supplement 3):S194–206.CrossRefPubMed
4.
go back to reference Pieretti M, Zhang F, Fu Y-H, Warren ST, Oostra BA, Caskey CT, et al. Absence of expression of the FMR-1 gene in fragile X syndrome. Cell. 1991;66(4):817–22.CrossRefPubMed Pieretti M, Zhang F, Fu Y-H, Warren ST, Oostra BA, Caskey CT, et al. Absence of expression of the FMR-1 gene in fragile X syndrome. Cell. 1991;66(4):817–22.CrossRefPubMed
5.
go back to reference Verkerk AJ, Pieretti M, Sutcliffe JS, Fu Y-H, Kuhl DP, Pizzuti A, et al. Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell. 1991;65(5):905–14.CrossRefPubMed Verkerk AJ, Pieretti M, Sutcliffe JS, Fu Y-H, Kuhl DP, Pizzuti A, et al. Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell. 1991;65(5):905–14.CrossRefPubMed
6.
go back to reference De Rubeis S, Bagni C. Fragile X mental retardation protein control of neuronal mRNA metabolism: insights into mRNA stability. Mol Cell Neurosci. 2010;43(1):43–50.CrossRefPubMed De Rubeis S, Bagni C. Fragile X mental retardation protein control of neuronal mRNA metabolism: insights into mRNA stability. Mol Cell Neurosci. 2010;43(1):43–50.CrossRefPubMed
7.
9.
go back to reference Kurosaki T, Imamachi N, Proschel C, Mitsutomi S, Nagao R, Akimitsu N, et al. Loss of the fragile X syndrome protein FMRP results in misregulation of nonsense-mediated mRNA decay. Nat Cell Biol. 2021;23(1):40–8.CrossRefPubMedPubMedCentral Kurosaki T, Imamachi N, Proschel C, Mitsutomi S, Nagao R, Akimitsu N, et al. Loss of the fragile X syndrome protein FMRP results in misregulation of nonsense-mediated mRNA decay. Nat Cell Biol. 2021;23(1):40–8.CrossRefPubMedPubMedCentral
10.
go back to reference Alpatov R, Lesch BJ, Nakamoto-Kinoshita M, Blanco A, Chen S, Stützer A, et al. A chromatin-dependent role of the fragile X mental retardation protein FMRP in the DNA damage response. Cell. 2014;157(4):869–81.CrossRefPubMedPubMedCentral Alpatov R, Lesch BJ, Nakamoto-Kinoshita M, Blanco A, Chen S, Stützer A, et al. A chromatin-dependent role of the fragile X mental retardation protein FMRP in the DNA damage response. Cell. 2014;157(4):869–81.CrossRefPubMedPubMedCentral
11.
13.
go back to reference Richter JD, Bassell GJ, Klann E. Dysregulation and restoration of translational homeostasis in fragile X syndrome. Nat Rev Neurosci. 2015;16(10):595–605.CrossRefPubMedPubMedCentral Richter JD, Bassell GJ, Klann E. Dysregulation and restoration of translational homeostasis in fragile X syndrome. Nat Rev Neurosci. 2015;16(10):595–605.CrossRefPubMedPubMedCentral
14.
go back to reference Ascano M, Mukherjee N, Bandaru P, Miller JB, Nusbaum JD, Corcoran DL, et al. FMRP targets distinct mRNA sequence elements to regulate protein expression. Nature. 2012;492(7429):382–6.CrossRefPubMedPubMedCentral Ascano M, Mukherjee N, Bandaru P, Miller JB, Nusbaum JD, Corcoran DL, et al. FMRP targets distinct mRNA sequence elements to regulate protein expression. Nature. 2012;492(7429):382–6.CrossRefPubMedPubMedCentral
15.
go back to reference Dansie LE, Phommahaxay K, Okusanya AG, Uwadia J, Huang M, Rotschafer SE, et al. Long-lasting effects of minocycline on behavior in young but not adult Fragile X mice. Neuroscience. 2013;246:186–98.CrossRefPubMed Dansie LE, Phommahaxay K, Okusanya AG, Uwadia J, Huang M, Rotschafer SE, et al. Long-lasting effects of minocycline on behavior in young but not adult Fragile X mice. Neuroscience. 2013;246:186–98.CrossRefPubMed
17.
go back to reference Bakker CE, de Diego OY, Bontekoe C, Raghoe P, Luteijn T, Hoogeveen AT, et al. Immunocytochemical and biochemical characterization of FMRP, FXR1P, and FXR2P in the mouse. Exp Cell Res. 2000;258(1):162–70.CrossRefPubMed Bakker CE, de Diego OY, Bontekoe C, Raghoe P, Luteijn T, Hoogeveen AT, et al. Immunocytochemical and biochemical characterization of FMRP, FXR1P, and FXR2P in the mouse. Exp Cell Res. 2000;258(1):162–70.CrossRefPubMed
18.
go back to reference Devys D, Lutz Y, Rouyer N, Bellocq J-P, Mandel J-L. The FMR–1 protein is cytoplasmic, most abundant in neurons and appears normal in carriers of a fragile X premutation. Nat Genet. 1993;4(4):335–40.CrossRefPubMed Devys D, Lutz Y, Rouyer N, Bellocq J-P, Mandel J-L. The FMR–1 protein is cytoplasmic, most abundant in neurons and appears normal in carriers of a fragile X premutation. Nat Genet. 1993;4(4):335–40.CrossRefPubMed
19.
go back to reference Luo Y, Shan G, Guo W, Smrt RD, Johnson EB, Li X, et al. Fragile x mental retardation protein regulates proliferation and differentiation of adult neural stem/progenitor cells. PLoS Genet. 2010;6(4). Luo Y, Shan G, Guo W, Smrt RD, Johnson EB, Li X, et al. Fragile x mental retardation protein regulates proliferation and differentiation of adult neural stem/progenitor cells. PLoS Genet. 2010;6(4).
20.
go back to reference Li Y, Stockton ME, Bhuiyan I, Eisinger BE, Gao Y, Miller JL, et al. MDM2 inhibition rescues neurogenic and cognitive deficits in a mouse model of fragile X syndrome. Sci Transl Med. 2016;8(336):336ra61.CrossRefPubMedPubMedCentral Li Y, Stockton ME, Bhuiyan I, Eisinger BE, Gao Y, Miller JL, et al. MDM2 inhibition rescues neurogenic and cognitive deficits in a mouse model of fragile X syndrome. Sci Transl Med. 2016;8(336):336ra61.CrossRefPubMedPubMedCentral
21.
go back to reference Li Y, Stockton ME, Eisinger BE, Zhao Y, Miller JL, Bhuiyan I, et al. Reducing histone acetylation rescues cognitive deficits in a mouse model of Fragile X syndrome. Nat Commun. 2018;9(1):1–16. Li Y, Stockton ME, Eisinger BE, Zhao Y, Miller JL, Bhuiyan I, et al. Reducing histone acetylation rescues cognitive deficits in a mouse model of Fragile X syndrome. Nat Commun. 2018;9(1):1–16.
22.
go back to reference Guo W, Allan AM, Zong R, Zhang L, Johnson EB, Schaller EG, et al. Ablation of Fmrp in adult neural stem cells disrupts hippocampus-dependent learning. Nat Med. 2011;17(5):559–65.CrossRefPubMedPubMedCentral Guo W, Allan AM, Zong R, Zhang L, Johnson EB, Schaller EG, et al. Ablation of Fmrp in adult neural stem cells disrupts hippocampus-dependent learning. Nat Med. 2011;17(5):559–65.CrossRefPubMedPubMedCentral
23.
go back to reference Liu B, Li Y, Stackpole EE, Novak A, Gao Y, Zhao Y, et al. Regulatory discrimination of mRNAs by FMRP controls mouse adult neural stem cell differentiation. Proc Natl Acad Sci. 2018;115(48):E11397–E405.CrossRefPubMedPubMedCentral Liu B, Li Y, Stackpole EE, Novak A, Gao Y, Zhao Y, et al. Regulatory discrimination of mRNAs by FMRP controls mouse adult neural stem cell differentiation. Proc Natl Acad Sci. 2018;115(48):E11397–E405.CrossRefPubMedPubMedCentral
24.
go back to reference Pinar C, Yau S-y, Sharp Z, Shamei A, Fontaine CJ, Meconi AL, et al. Effects of voluntary exercise on cell proliferation and neurogenesis in the dentate gyrus of adult FMR1 knockout mice. Brain Plast. 2018;4(2):185–95.CrossRefPubMedPubMedCentral Pinar C, Yau S-y, Sharp Z, Shamei A, Fontaine CJ, Meconi AL, et al. Effects of voluntary exercise on cell proliferation and neurogenesis in the dentate gyrus of adult FMR1 knockout mice. Brain Plast. 2018;4(2):185–95.CrossRefPubMedPubMedCentral
25.
go back to reference Lazarov O, Demars MP, Da Tommy ZK, Ali HM, Grauzas V, Kney A, et al. Impaired survival of neural progenitor cells in dentate gyrus of adult mice lacking fMRP. Hippocampus. 2012;22(6):1220–4.CrossRefPubMed Lazarov O, Demars MP, Da Tommy ZK, Ali HM, Grauzas V, Kney A, et al. Impaired survival of neural progenitor cells in dentate gyrus of adult mice lacking fMRP. Hippocampus. 2012;22(6):1220–4.CrossRefPubMed
26.
go back to reference Eadie B, Zhang W, Boehme F, Gil-Mohapel J, Kainer L, Simpson J, et al. Fmr1 knockout mice show reduced anxiety and alterations in neurogenesis that are specific to the ventral dentate gyrus. Neurobiol Dis. 2009;36(2):361–73.CrossRefPubMed Eadie B, Zhang W, Boehme F, Gil-Mohapel J, Kainer L, Simpson J, et al. Fmr1 knockout mice show reduced anxiety and alterations in neurogenesis that are specific to the ventral dentate gyrus. Neurobiol Dis. 2009;36(2):361–73.CrossRefPubMed
27.
go back to reference Kempermann G, Song H, Gage FH. Neurogenesis in the adult hippocampus. Cold Spring Harbor Perspect Biol. 2015;7(9):a018812.CrossRef Kempermann G, Song H, Gage FH. Neurogenesis in the adult hippocampus. Cold Spring Harbor Perspect Biol. 2015;7(9):a018812.CrossRef
28.
go back to reference Eisch AJ, Cameron HA, Encinas JM, Meltzer LA, Ming G-L, Overstreet-Wadiche LS. Adult neurogenesis, mental health, and mental illness: hope or hype? J Neurosci. 2008;28(46):11785–91.CrossRefPubMedPubMedCentral Eisch AJ, Cameron HA, Encinas JM, Meltzer LA, Ming G-L, Overstreet-Wadiche LS. Adult neurogenesis, mental health, and mental illness: hope or hype? J Neurosci. 2008;28(46):11785–91.CrossRefPubMedPubMedCentral
29.
go back to reference Babcock KR, Page JS, Fallon JR, Webb AE. Adult hippocampal neurogenesis in aging and Alzheimer’s disease. Stem Cell Rep. 2021;16(4):681–93.CrossRef Babcock KR, Page JS, Fallon JR, Webb AE. Adult hippocampal neurogenesis in aging and Alzheimer’s disease. Stem Cell Rep. 2021;16(4):681–93.CrossRef
30.
go back to reference Consortium TD-BFX. Fmr1 knockout mice: a model to study fragile X mental retardation. The Dutch-Belgian Fragile X Consortium. Cell. 1994;78(1):23–33. Consortium TD-BFX. Fmr1 knockout mice: a model to study fragile X mental retardation. The Dutch-Belgian Fragile X Consortium. Cell. 1994;78(1):23–33.
31.
go back to reference Yamaguchi M, Saito H, Suzuki M, Mori K. Visualization of neurogenesis in the central nervous system using nestin promoter-GFP transgenic mice. Neuroreport. 2000;11(9):1991–6.CrossRefPubMed Yamaguchi M, Saito H, Suzuki M, Mori K. Visualization of neurogenesis in the central nervous system using nestin promoter-GFP transgenic mice. Neuroreport. 2000;11(9):1991–6.CrossRefPubMed
32.
go back to reference Guo W, Zhang L, Christopher DM, Teng Z-Q, Fausett SR, Liu C, et al. RNA-binding protein FXR2 regulates adult hippocampal neurogenesis by reducing Noggin expression. Neuron. 2011;70(5):924–38.CrossRefPubMedPubMedCentral Guo W, Zhang L, Christopher DM, Teng Z-Q, Fausett SR, Liu C, et al. RNA-binding protein FXR2 regulates adult hippocampal neurogenesis by reducing Noggin expression. Neuron. 2011;70(5):924–38.CrossRefPubMedPubMedCentral
34.
go back to reference Contestabile A, Greco B, Ghezzi D, Tucci V, Benfenati F, Gasparini L. Lithium rescues synaptic plasticity and memory in Down syndrome mice. J Clin Investig. 2012;123(1). Contestabile A, Greco B, Ghezzi D, Tucci V, Benfenati F, Gasparini L. Lithium rescues synaptic plasticity and memory in Down syndrome mice. J Clin Investig. 2012;123(1).
35.
go back to reference Guo W, Patzlaff NE, Jobe EM, Zhao X. Isolation of multipotent neural stem or progenitor cells from both the dentate gyrus and subventricular zone of a single adult mouse. Nat Protoc. 2012;7(11):2005.CrossRefPubMedPubMedCentral Guo W, Patzlaff NE, Jobe EM, Zhao X. Isolation of multipotent neural stem or progenitor cells from both the dentate gyrus and subventricular zone of a single adult mouse. Nat Protoc. 2012;7(11):2005.CrossRefPubMedPubMedCentral
36.
go back to reference Gao Y, Shen M, Gonzalez JC, Dong Q, Kannan S, Hoang JT, et al. RGS6 mediates effects of voluntary running on adult hippocampalneurogenesis. Cell Rep. 2020;32(5):107997. Gao Y, Shen M, Gonzalez JC, Dong Q, Kannan S, Hoang JT, et al. RGS6 mediates effects of voluntary running on adult hippocampalneurogenesis. Cell Rep. 2020;32(5):107997.
37.
go back to reference Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics. 2013;14:128.CrossRefPubMedPubMedCentral Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics. 2013;14:128.CrossRefPubMedPubMedCentral
38.
go back to reference Walter W, Sanchez-Cabo F, Ricote M. GOplot: an R package for visually combining expression data with functional analysis. Bioinformatics. 2015;31(17):2912–4.CrossRefPubMed Walter W, Sanchez-Cabo F, Ricote M. GOplot: an R package for visually combining expression data with functional analysis. Bioinformatics. 2015;31(17):2912–4.CrossRefPubMed
39.
go back to reference Keenan AB, Torre D, Lachmann A, Leong AK, Wojciechowicz ML, Utti V, et al. ChEA3: transcription factor enrichment analysis by orthogonal omics integration. Nucleic Acids Res. 2019;47(W1):W212–W24.CrossRefPubMedPubMedCentral Keenan AB, Torre D, Lachmann A, Leong AK, Wojciechowicz ML, Utti V, et al. ChEA3: transcription factor enrichment analysis by orthogonal omics integration. Nucleic Acids Res. 2019;47(W1):W212–W24.CrossRefPubMedPubMedCentral
40.
go back to reference Kempermann G, Jessberger S, Steiner B, Kronenberg G. Milestones of neuronal development in the adult hippocampus. Trends Neurosci. 2004;27(8):447–52.CrossRefPubMed Kempermann G, Jessberger S, Steiner B, Kronenberg G. Milestones of neuronal development in the adult hippocampus. Trends Neurosci. 2004;27(8):447–52.CrossRefPubMed
41.
go back to reference Guo W, Murthy AC, Zhang L, Johnson EB, Schaller EG, Allan AM, et al. Inhibition of GSK3β improves hippocampus-dependent learning and rescues neurogenesis in a mouse model of fragile X syndrome. Hum Mol Genet. 2012;21(3):681–91.CrossRefPubMed Guo W, Murthy AC, Zhang L, Johnson EB, Schaller EG, Allan AM, et al. Inhibition of GSK3β improves hippocampus-dependent learning and rescues neurogenesis in a mouse model of fragile X syndrome. Hum Mol Genet. 2012;21(3):681–91.CrossRefPubMed
42.
go back to reference Eisinger BE, Zhao X. Identifying molecular mediators of environmentally enhanced neurogenesis. Cell Tissue Res. 2018;371(1):7–21.CrossRefPubMed Eisinger BE, Zhao X. Identifying molecular mediators of environmentally enhanced neurogenesis. Cell Tissue Res. 2018;371(1):7–21.CrossRefPubMed
43.
46.
go back to reference Kjell J, Fischer-Sternjak J, Thompson AJ, Friess C, Sticco MJ, Salinas F, et al. Defining the adult neural stem cell niche proteome identifies key regulators of adult neurogenesis. Cell Stem Cell. 2020;26(2):277–93. e8.CrossRefPubMedPubMedCentral Kjell J, Fischer-Sternjak J, Thompson AJ, Friess C, Sticco MJ, Salinas F, et al. Defining the adult neural stem cell niche proteome identifies key regulators of adult neurogenesis. Cell Stem Cell. 2020;26(2):277–93. e8.CrossRefPubMedPubMedCentral
48.
go back to reference Ziegler AN, Feng Q, Chidambaram S, Testai JM, Kumari E, Rothbard DE, et al. Insulin-like growth factor II: an essential adult stem cell niche constituent in brain and intestine. Stem Cell Rep. 2019;12(4):816–30.CrossRef Ziegler AN, Feng Q, Chidambaram S, Testai JM, Kumari E, Rothbard DE, et al. Insulin-like growth factor II: an essential adult stem cell niche constituent in brain and intestine. Stem Cell Rep. 2019;12(4):816–30.CrossRef
49.
go back to reference Sutcu HH, Ricchetti M. Loss of heterogeneity, quiescence, and differentiation in muscle stem cells. Stem Cell Invest. 2018;5. Sutcu HH, Ricchetti M. Loss of heterogeneity, quiescence, and differentiation in muscle stem cells. Stem Cell Invest. 2018;5.
50.
go back to reference Stevanovic M, Drakulic D, Lazic A, Ninkovic DS, Schwirtlich M, Mojsin M. SOX transcription factors as important regulators of neuronal and glial differentiation during nervous system development and adult neurogenesis. Front Mol Neurosci. 2021;14:51.CrossRef Stevanovic M, Drakulic D, Lazic A, Ninkovic DS, Schwirtlich M, Mojsin M. SOX transcription factors as important regulators of neuronal and glial differentiation during nervous system development and adult neurogenesis. Front Mol Neurosci. 2021;14:51.CrossRef
51.
go back to reference Francois M, Caprini A, Hosking B, Orsenigo F, Wilhelm D, Browne C, et al. Sox18 induces development of the lymphatic vasculature in mice. Nature. 2008;456(7222):643–7.CrossRefPubMed Francois M, Caprini A, Hosking B, Orsenigo F, Wilhelm D, Browne C, et al. Sox18 induces development of the lymphatic vasculature in mice. Nature. 2008;456(7222):643–7.CrossRefPubMed
52.
go back to reference Shimozaki K, Clemenson GD, Gage FH. Paired related homeobox protein 1 is a regulator of stemness in adult neural stem/progenitor cells. J Neurosci. 2013;33(9):4066–75.CrossRefPubMedPubMedCentral Shimozaki K, Clemenson GD, Gage FH. Paired related homeobox protein 1 is a regulator of stemness in adult neural stem/progenitor cells. J Neurosci. 2013;33(9):4066–75.CrossRefPubMedPubMedCentral
53.
go back to reference Panman L, Andersson E, Alekseenko Z, Hedlund E, Kee N, Mong J, et al. Transcription factor-induced lineage selection of stem-cell-derived neural progenitor cells. Cell Stem Cell. 2011;8(6):663–75.CrossRefPubMed Panman L, Andersson E, Alekseenko Z, Hedlund E, Kee N, Mong J, et al. Transcription factor-induced lineage selection of stem-cell-derived neural progenitor cells. Cell Stem Cell. 2011;8(6):663–75.CrossRefPubMed
54.
go back to reference Silva AC, Pereira C, Fonseca ACR, Pinto-do-Ó P, Nascimento DS. Bearing my heart: the role of extracellular matrix on cardiac development, homeostasis, and injury response. Front Cell Dev Biol. 2021;8:1705.CrossRef Silva AC, Pereira C, Fonseca ACR, Pinto-do-Ó P, Nascimento DS. Bearing my heart: the role of extracellular matrix on cardiac development, homeostasis, and injury response. Front Cell Dev Biol. 2021;8:1705.CrossRef
55.
go back to reference Hall BK, Miyake T. All for one and one for all: condensations and the initiation of skeletal development. Bioessays. 2000;22(2):138–47.CrossRefPubMed Hall BK, Miyake T. All for one and one for all: condensations and the initiation of skeletal development. Bioessays. 2000;22(2):138–47.CrossRefPubMed
56.
go back to reference Hu H, Lin S, Wang S, Chen X. The role of transcription factor 21 in epicardial cell differentiation and the development of coronary heart disease. Front Cell Dev Biol. 2020;8:457.CrossRefPubMedPubMedCentral Hu H, Lin S, Wang S, Chen X. The role of transcription factor 21 in epicardial cell differentiation and the development of coronary heart disease. Front Cell Dev Biol. 2020;8:457.CrossRefPubMedPubMedCentral
57.
go back to reference Berry-Kravis EM, Lindemann L, Jønch AE, Apostol G, Bear MF, Carpenter RL, et al. Drug development for neurodevelopmental disorders: lessons learned from fragile X syndrome. Nat Rev Drug Discov. 2018;17(4):280–99.CrossRefPubMed Berry-Kravis EM, Lindemann L, Jønch AE, Apostol G, Bear MF, Carpenter RL, et al. Drug development for neurodevelopmental disorders: lessons learned from fragile X syndrome. Nat Rev Drug Discov. 2018;17(4):280–99.CrossRefPubMed
58.
go back to reference Tranfaglia MR, Thibodeaux C, Mason DJ, Brown D, Roberts I, Smith R, et al. Repurposing available drugs for neurodevelopmental disorders: the fragile X experience. Neuropharmacology. 2019;147:74–86.CrossRefPubMed Tranfaglia MR, Thibodeaux C, Mason DJ, Brown D, Roberts I, Smith R, et al. Repurposing available drugs for neurodevelopmental disorders: the fragile X experience. Neuropharmacology. 2019;147:74–86.CrossRefPubMed
59.
go back to reference Secchiero P, Bosco R, Celeghini C, Zauli G. Recent advances in the therapeutic perspectives of Nutlin-3. Curr Pharm Des. 2011;17(6):569–77.CrossRefPubMed Secchiero P, Bosco R, Celeghini C, Zauli G. Recent advances in the therapeutic perspectives of Nutlin-3. Curr Pharm Des. 2011;17(6):569–77.CrossRefPubMed
60.
go back to reference Rufini A, Tucci P, Celardo I, Melino G. Senescence and aging: the critical roles of p53. Oncogene. 2013;32(43):5129–43.CrossRefPubMed Rufini A, Tucci P, Celardo I, Melino G. Senescence and aging: the critical roles of p53. Oncogene. 2013;32(43):5129–43.CrossRefPubMed
61.
go back to reference Beckerman R, Prives C. Transcriptional regulation by p53. Cold Spring Harbor Perspect Biol. 2010;2(8):a000935.CrossRef Beckerman R, Prives C. Transcriptional regulation by p53. Cold Spring Harbor Perspect Biol. 2010;2(8):a000935.CrossRef
62.
go back to reference Sheikh T, Sen E. p53 affects epigenetic signature on SOCS1 promoter in response to TLR4 inhibition. Cytokine. 2021;140:155418.CrossRefPubMed Sheikh T, Sen E. p53 affects epigenetic signature on SOCS1 promoter in response to TLR4 inhibition. Cytokine. 2021;140:155418.CrossRefPubMed
63.
go back to reference Tovy A, Spiro A, McCarthy R, Shipony Z, Aylon Y, Allton K, et al. p53 is essential for DNA methylation homeostasis in naïve embryonic stem cells, and its loss promotes clonal heterogeneity. Genes Dev. 2017;31(10):959–72.CrossRefPubMedPubMedCentral Tovy A, Spiro A, McCarthy R, Shipony Z, Aylon Y, Allton K, et al. p53 is essential for DNA methylation homeostasis in naïve embryonic stem cells, and its loss promotes clonal heterogeneity. Genes Dev. 2017;31(10):959–72.CrossRefPubMedPubMedCentral
65.
go back to reference Kempermann G. Seven principles in the regulation of adult neurogenesis. Eur J Neurosci. 2011;33(6):1018–24.CrossRefPubMed Kempermann G. Seven principles in the regulation of adult neurogenesis. Eur J Neurosci. 2011;33(6):1018–24.CrossRefPubMed
66.
go back to reference Kandasamy M, Lehner B, Kraus S, Sander PR, Marschallinger J, Rivera FJ, et al. TGF-beta signalling in the adult neurogenic niche promotes stem cell quiescence as well as generation of new neurons. J Cell Mol Med. 2014;18(7):1444–59.CrossRefPubMedPubMedCentral Kandasamy M, Lehner B, Kraus S, Sander PR, Marschallinger J, Rivera FJ, et al. TGF-beta signalling in the adult neurogenic niche promotes stem cell quiescence as well as generation of new neurons. J Cell Mol Med. 2014;18(7):1444–59.CrossRefPubMedPubMedCentral
67.
go back to reference Bond AM, Peng CY, Meyers EA, McGuire T, Ewaleifoh O, Kessler JA. BMP signaling regulates the tempo of adult hippocampal progenitor maturation at multiple stages of the lineage. Stem Cells. 2014;32(8):2201–14.CrossRefPubMed Bond AM, Peng CY, Meyers EA, McGuire T, Ewaleifoh O, Kessler JA. BMP signaling regulates the tempo of adult hippocampal progenitor maturation at multiple stages of the lineage. Stem Cells. 2014;32(8):2201–14.CrossRefPubMed
Metadata
Title
Sustained correction of hippocampal neurogenic and cognitive deficits after a brief treatment by Nutlin-3 in a mouse model of fragile X syndrome
Authors
Sahar Javadi
Yue Li
Jie Sheng
Lucy Zhao
Yao Fu
Daifeng Wang
Xinyu Zhao
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Medicine / Issue 1/2022
Electronic ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-022-02370-9

Other articles of this Issue 1/2022

BMC Medicine 1/2022 Go to the issue