Skip to main content
Top
Published in: BMC Medicine 1/2022

01-12-2022 | Streptococci | Research article

Analysis of host-pathogen gene association networks reveals patient-specific response to streptococcal and polymicrobial necrotising soft tissue infections

Authors: Sanjeevan Jahagirdar, Lorna Morris, Nirupama Benis, Oddvar Oppegaard, Mattias Svenson, Ole Hyldegaard, Steinar Skrede, Anna Norrby-Teglund, Vitor A. P. Martins dos Santos, Edoardo Saccenti, INFECT Study group

Published in: BMC Medicine | Issue 1/2022

Login to get access

Abstract

Background

Necrotising soft tissue infections (NSTIs) are rapidly progressing bacterial infections usually caused by either several pathogens in unison (polymicrobial infections) or Streptococcus pyogenes (mono-microbial infection). These infections are rare and are associated with high mortality rates. However, the underlying pathogenic mechanisms in this heterogeneous group remain elusive.

Methods

In this study, we built interactomes at both the population and individual levels consisting of host-pathogen interactions inferred from dual RNA-Seq gene transcriptomic profiles of the biopsies from NSTI patients.

Results

NSTI type-specific responses in the host were uncovered. The S. pyogenes mono-microbial subnetwork was enriched with host genes annotated with involved in cytokine production and regulation of response to stress. The polymicrobial network consisted of several significant associations between different species (S. pyogenes, Porphyromonas asaccharolytica and Escherichia coli) and host genes. The host genes associated with S. pyogenes in this subnetwork were characterised by cellular response to cytokines. We further found several virulence factors including hyaluronan synthase, Sic1, Isp, SagF, SagG, ScfAB-operon, Fba and genes upstream and downstream of EndoS along with bacterial housekeeping genes interacting with the human stress and immune response in various subnetworks between host and pathogen.

Conclusions

At the population level, we found aetiology-dependent responses showing the potential modes of entry and immune evasion strategies employed by S. pyogenes, congruent with general cellular processes such as differentiation and proliferation. After stratifying the patients based on the subject-specific networks to study the patient-specific response, we observed different patient groups with different collagens, cytoskeleton and actin monomers in association with virulence factors, immunogenic proteins and housekeeping genes which we utilised to postulate differing modes of entry and immune evasion for different bacteria in relationship to the patients’ phenotype.
Appendix
Available only for authorised users
Literature
1.
go back to reference Goldstein EJC, Anaya DA, Dellinger EP. Necrotizing soft-tissue infection: diagnosis and management. Clin Infect Dis. 2007;44:705–10.CrossRef Goldstein EJC, Anaya DA, Dellinger EP. Necrotizing soft-tissue infection: diagnosis and management. Clin Infect Dis. 2007;44:705–10.CrossRef
2.
go back to reference Bonne SL, Kadri SS. Evaluation and management of necrotizing soft tissue infections. Infect Dis Clin N Am. 2017;31:497–511.CrossRef Bonne SL, Kadri SS. Evaluation and management of necrotizing soft tissue infections. Infect Dis Clin N Am. 2017;31:497–511.CrossRef
3.
4.
go back to reference Pham TN, Moore ML, Costa BA, Cuschieri J, Klein MB. Assessment of functional limitation after necrotizing soft tissue infection. J Burn Care Res. 2009;30:301–6.PubMedCrossRef Pham TN, Moore ML, Costa BA, Cuschieri J, Klein MB. Assessment of functional limitation after necrotizing soft tissue infection. J Burn Care Res. 2009;30:301–6.PubMedCrossRef
5.
go back to reference May AK. Skin and soft tissue infections: The New Surgical Infection Society Guidelines. Surg Infect. 2011;12:179–84.CrossRef May AK. Skin and soft tissue infections: The New Surgical Infection Society Guidelines. Surg Infect. 2011;12:179–84.CrossRef
6.
go back to reference Madsen MB, et al. Patient’s characteristics and outcomes in necrotising soft-tissue infections: results from a Scandinavian, multicentre, prospective cohort study. Intensive Care Med. 2019;45:1241–51.PubMedCrossRef Madsen MB, et al. Patient’s characteristics and outcomes in necrotising soft-tissue infections: results from a Scandinavian, multicentre, prospective cohort study. Intensive Care Med. 2019;45:1241–51.PubMedCrossRef
7.
go back to reference Chan T, Yaghoubian A, Rosing D, Kaji A, de Virgilio C. Low sensitivity of physical examination findings in necrotizing soft tissue infection is improved with laboratory values: a prospective study. Am J Surg. 2008;196:926–30.PubMedCrossRef Chan T, Yaghoubian A, Rosing D, Kaji A, de Virgilio C. Low sensitivity of physical examination findings in necrotizing soft tissue infection is improved with laboratory values: a prospective study. Am J Surg. 2008;196:926–30.PubMedCrossRef
9.
go back to reference Bruun T, et al. Necrotizing soft tissue infections caused by Streptococcus pyogenes and Streptococcus dysgalactiae subsp. equisimilis of groups C and G in western Norway. Clin Microbiol Infect. 2013;19:E545–50.PubMedCrossRef Bruun T, et al. Necrotizing soft tissue infections caused by Streptococcus pyogenes and Streptococcus dysgalactiae subsp. equisimilis of groups C and G in western Norway. Clin Microbiol Infect. 2013;19:E545–50.PubMedCrossRef
10.
go back to reference Miller LG, et al. Necrotizing Fasciitis caused by community-associated methicillin-resistant Staphylococcus aureus in Los Angeles. N Engl J Med. 2005;352:1445–53.PubMedCrossRef Miller LG, et al. Necrotizing Fasciitis caused by community-associated methicillin-resistant Staphylococcus aureus in Los Angeles. N Engl J Med. 2005;352:1445–53.PubMedCrossRef
11.
go back to reference Cocanour CS, et al. Management and novel adjuncts of necrotizing soft tissue infections. Surg Infect. 2017;18:250–72.CrossRef Cocanour CS, et al. Management and novel adjuncts of necrotizing soft tissue infections. Surg Infect. 2017;18:250–72.CrossRef
12.
go back to reference Elliott D, Kufera JA, Myers RA. The microbiology of necrotizing soft tissue infections. Am J Surg. 2000;179:361–6.PubMedCrossRef Elliott D, Kufera JA, Myers RA. The microbiology of necrotizing soft tissue infections. Am J Surg. 2000;179:361–6.PubMedCrossRef
13.
go back to reference Johansson L, Thulin P, Low DE, Norrby-Teglund A. Getting under the skin: the immunopathogenesis of Streptococcus pyogenes deep tissue infections. Clin Infect Dis. 2010;51:58–65.PubMedCrossRef Johansson L, Thulin P, Low DE, Norrby-Teglund A. Getting under the skin: the immunopathogenesis of Streptococcus pyogenes deep tissue infections. Clin Infect Dis. 2010;51:58–65.PubMedCrossRef
15.
go back to reference Ito T, Chiba T, Yoshida M. Exploring the protein interactome using comprehensive two-hybrid projects. Trends Biotechnol. 2001;19:S23–7.PubMedCrossRef Ito T, Chiba T, Yoshida M. Exploring the protein interactome using comprehensive two-hybrid projects. Trends Biotechnol. 2001;19:S23–7.PubMedCrossRef
17.
go back to reference Alonso-López D, et al. APID interactomes: providing proteome-based interactomes with controlled quality for multiple species and derived networks. Nucleic Acids Res. 2016;44:W529–35.PubMedPubMedCentralCrossRef Alonso-López D, et al. APID interactomes: providing proteome-based interactomes with controlled quality for multiple species and derived networks. Nucleic Acids Res. 2016;44:W529–35.PubMedPubMedCentralCrossRef
18.
go back to reference Thänert R, et al. Molecular profiling of tissue biopsies reveals unique signatures associated with streptococcal necrotizing soft tissue infections. Nat Commun. 2019;10:3846.PubMedPubMedCentralCrossRef Thänert R, et al. Molecular profiling of tissue biopsies reveals unique signatures associated with streptococcal necrotizing soft tissue infections. Nat Commun. 2019;10:3846.PubMedPubMedCentralCrossRef
19.
go back to reference Madsen MB, et al. Necrotizing soft tissue infections - a multicentre, prospective observational study (INFECT): protocol and statistical analysis plan. Acta Anaesthesiol Scand. 2018;62:272–9.PubMedCrossRef Madsen MB, et al. Necrotizing soft tissue infections - a multicentre, prospective observational study (INFECT): protocol and statistical analysis plan. Acta Anaesthesiol Scand. 2018;62:272–9.PubMedCrossRef
20.
go back to reference Bruun T, et al. Risk factors and predictors of mortality in streptococcal necrotizing soft-tissue infections: a multicenter prospective study. Clin Infect Dis. 2021;72:293–300.PubMedCrossRef Bruun T, et al. Risk factors and predictors of mortality in streptococcal necrotizing soft-tissue infections: a multicenter prospective study. Clin Infect Dis. 2021;72:293–300.PubMedCrossRef
21.
go back to reference Simon A, Felix K, Anne S-P, Laura B, Krueger Christel WS. FastQC; 2010. Simon A, Felix K, Anne S-P, Laura B, Krueger Christel WS. FastQC; 2010.
22.
go back to reference Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016;34:525–7.PubMedCrossRef Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016;34:525–7.PubMedCrossRef
24.
go back to reference Suzek BE, Huang H, McGarvey P, Mazumder R, Wu CH. UniRef: comprehensive and non-redundant UniProt reference clusters. Bioinformatics. 2007;23:1282–8.PubMedCrossRef Suzek BE, Huang H, McGarvey P, Mazumder R, Wu CH. UniRef: comprehensive and non-redundant UniProt reference clusters. Bioinformatics. 2007;23:1282–8.PubMedCrossRef
25.
go back to reference Saccenti E, Suarez-Diez M, Luchinat C, Santucci C, Tenori L. Probabilistic networks of blood metabolites in healthy subjects as indicators of latent cardiovascular risk. J Proteome Res. 2015;14:1101–11.PubMedCrossRef Saccenti E, Suarez-Diez M, Luchinat C, Santucci C, Tenori L. Probabilistic networks of blood metabolites in healthy subjects as indicators of latent cardiovascular risk. J Proteome Res. 2015;14:1101–11.PubMedCrossRef
26.
go back to reference Jahagirdar S, Suarez-Diez M, Saccenti E. Simulation and reconstruction of metabolite–metabolite association networks using a metabolic dynamic model and correlation based algorithms. J Proteome Res. 2019;18:1099–113.PubMedCrossRef Jahagirdar S, Suarez-Diez M, Saccenti E. Simulation and reconstruction of metabolite–metabolite association networks using a metabolic dynamic model and correlation based algorithms. J Proteome Res. 2019;18:1099–113.PubMedCrossRef
27.
go back to reference Opgen-Rhein R, Strimmer K. From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data. BMC Syst Biol. 2007;1:37.PubMedPubMedCentralCrossRef Opgen-Rhein R, Strimmer K. From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data. BMC Syst Biol. 2007;1:37.PubMedPubMedCentralCrossRef
28.
go back to reference Schäfer J, Opgen-Rhein R, Strimmer K. Reverse engineering genetic networks using the GeneNet package. Newsl R Proj. 2006;6/5:50. Schäfer J, Opgen-Rhein R, Strimmer K. Reverse engineering genetic networks using the GeneNet package. Newsl R Proj. 2006;6/5:50.
29.
go back to reference Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B. 1995;57:289–300. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B. 1995;57:289–300.
30.
go back to reference Alexa A, Rahnenfuhrer J. topGO: Enrichment analysis for gene ontology. R package version 2.42; 2020. Alexa A, Rahnenfuhrer J. topGO: Enrichment analysis for gene ontology. R package version 2.42; 2020.
31.
go back to reference Kinsella RJ, et al. Ensembl BioMarts: a hub for data retrieval across taxonomic space. Database 2011; 2011. p. bar030. Kinsella RJ, et al. Ensembl BioMarts: a hub for data retrieval across taxonomic space. Database 2011; 2011. p. bar030.
32.
go back to reference Consortium, G. O. The gene ontology resource: 20 years and still GOing strong. Nucleic Acids Res. 2019;47:D330–8.CrossRef Consortium, G. O. The gene ontology resource: 20 years and still GOing strong. Nucleic Acids Res. 2019;47:D330–8.CrossRef
34.
go back to reference Jahagirdar S, Saccenti E. Evaluation of single sample network inference methods for metabolomics-based systems medicine. J Proteome Res. 2021;20:932–49.PubMedCrossRef Jahagirdar S, Saccenti E. Evaluation of single sample network inference methods for metabolomics-based systems medicine. J Proteome Res. 2021;20:932–49.PubMedCrossRef
37.
38.
go back to reference Terao Y, et al. Fba, a novel fibronectin-binding protein from Streptococcus pyogenes, promotes bacterial entry into epithelial cells, and the fba gene is positively transcribed under the Mga regulator. Mol Microbiol. 2008;42:75–86.CrossRef Terao Y, et al. Fba, a novel fibronectin-binding protein from Streptococcus pyogenes, promotes bacterial entry into epithelial cells, and the fba gene is positively transcribed under the Mga regulator. Mol Microbiol. 2008;42:75–86.CrossRef
39.
go back to reference Engel H, et al. Heteroresistance to fosfomycin is predominant in Streptococcus pneumoniae and depends on the murA1 gene. Antimicrob Agents Chemother. 2013;57:2801–8.PubMedPubMedCentralCrossRef Engel H, et al. Heteroresistance to fosfomycin is predominant in Streptococcus pneumoniae and depends on the murA1 gene. Antimicrob Agents Chemother. 2013;57:2801–8.PubMedPubMedCentralCrossRef
40.
go back to reference Bernish B, van de Rijn I. Characterization of a two-component system in Streptococcus pyogenes which is involved in regulation of hyaluronic acid production. J Biol Chem. 1999;274:4786–93.PubMedCrossRef Bernish B, van de Rijn I. Characterization of a two-component system in Streptococcus pyogenes which is involved in regulation of hyaluronic acid production. J Biol Chem. 1999;274:4786–93.PubMedCrossRef
41.
go back to reference McIver KS, Subbarao S, Kellner EM, Heath AS, Scott JR. Identification of isp, a locus encoding an immunogenic secreted protein conserved among group A streptococci. Infect Immun. 1996;64:2548–55.PubMedPubMedCentralCrossRef McIver KS, Subbarao S, Kellner EM, Heath AS, Scott JR. Identification of isp, a locus encoding an immunogenic secreted protein conserved among group A streptococci. Infect Immun. 1996;64:2548–55.PubMedPubMedCentralCrossRef
43.
go back to reference Deangelis PL, Yang N, Weigel PH. The Streptococcus pyogenes hyaluronan synthase: sequence comparison and conservation among various group A strains. Biochem Biophys Res Commun. 1994;199:1–10.PubMedCrossRef Deangelis PL, Yang N, Weigel PH. The Streptococcus pyogenes hyaluronan synthase: sequence comparison and conservation among various group A strains. Biochem Biophys Res Commun. 1994;199:1–10.PubMedCrossRef
44.
go back to reference Le Breton Y, et al. Genome-wide discovery of novel M1T1 group A streptococcal determinants important for fitness and virulence during soft-tissue infection. PLoS Pathog. 2017;13:e1006584.PubMedPubMedCentralCrossRef Le Breton Y, et al. Genome-wide discovery of novel M1T1 group A streptococcal determinants important for fitness and virulence during soft-tissue infection. PLoS Pathog. 2017;13:e1006584.PubMedPubMedCentralCrossRef
45.
go back to reference Terao Y, Kawabata S, Kunitomo E, Nakagawa I, Hamada S. Novel laminin-binding protein of Streptococcus pyogenes , Lbp, is involved in adhesion to epithelial cells. Infect Immun. 2002;70:993–7.PubMedPubMedCentralCrossRef Terao Y, Kawabata S, Kunitomo E, Nakagawa I, Hamada S. Novel laminin-binding protein of Streptococcus pyogenes , Lbp, is involved in adhesion to epithelial cells. Infect Immun. 2002;70:993–7.PubMedPubMedCentralCrossRef
46.
go back to reference Shumba P, Mairpady Shambat S, Siemens N. The role of Streptococcal and Staphylococcal exotoxins and proteases in human necrotizing soft tissue infections. Toxins (Basel). 2019;11:332.CrossRef Shumba P, Mairpady Shambat S, Siemens N. The role of Streptococcal and Staphylococcal exotoxins and proteases in human necrotizing soft tissue infections. Toxins (Basel). 2019;11:332.CrossRef
47.
go back to reference Singh B, Fleury C, Jalalvand F, Riesbeck K. Human pathogens utilize host extracellular matrix proteins laminin and collagen for adhesion and invasion of the host. FEMS Microbiol Rev. 2012;36:1122–80.PubMedCrossRef Singh B, Fleury C, Jalalvand F, Riesbeck K. Human pathogens utilize host extracellular matrix proteins laminin and collagen for adhesion and invasion of the host. FEMS Microbiol Rev. 2012;36:1122–80.PubMedCrossRef
48.
49.
go back to reference Greenspan DS, et al. Human collagen gene COL5A1 maps to the q34.2→q34.3 region of chromosome 9, near the locus for nail-patella syndrome. Genomics. 1992;12:836–7.PubMedCrossRef Greenspan DS, et al. Human collagen gene COL5A1 maps to the q34.2→q34.3 region of chromosome 9, near the locus for nail-patella syndrome. Genomics. 1992;12:836–7.PubMedCrossRef
50.
go back to reference Fitzgerald J, Rich C, Zhou FH, Hansen U. Three novel collagen VI chains, α4(VI), α5(VI), and α6(VI). J Biol Chem. 2008;283:20170–80.PubMedCrossRef Fitzgerald J, Rich C, Zhou FH, Hansen U. Three novel collagen VI chains, α4(VI), α5(VI), and α6(VI). J Biol Chem. 2008;283:20170–80.PubMedCrossRef
51.
go back to reference Glavey SV, et al. Proteomic characterization of human multiple myeloma bone marrow extracellular matrix. Leukemia. 2017;31:2426–34.PubMedCrossRef Glavey SV, et al. Proteomic characterization of human multiple myeloma bone marrow extracellular matrix. Leukemia. 2017;31:2426–34.PubMedCrossRef
52.
go back to reference Di Sanzo M, Quaresima B, Biamonte F, Palmieri C, Faniello MC. FTH1 pseudogenes in cancer and cell metabolism. Cells. 2020;9:2554.PubMedCentralCrossRef Di Sanzo M, Quaresima B, Biamonte F, Palmieri C, Faniello MC. FTH1 pseudogenes in cancer and cell metabolism. Cells. 2020;9:2554.PubMedCentralCrossRef
53.
go back to reference Chang MS, McNinch J, Basu R, Simonet S. Cloning and characterization of the human neutrophil-activating peptide (ENA-78) gene. J Biol Chem. 1994;269:25277–82.PubMedCrossRef Chang MS, McNinch J, Basu R, Simonet S. Cloning and characterization of the human neutrophil-activating peptide (ENA-78) gene. J Biol Chem. 1994;269:25277–82.PubMedCrossRef
54.
go back to reference Erdel M, Laich A, Utermann G, Werner ER, Werner-Felmayer G. The human gene encoding SCYB9B, a putative novel CXC chemokine, maps to human chromosome 4q21 like the closely related genes for MIG (SCYB9) and INP10 (SCYB10). Cytogenet Genome Res. 1998;81:271–2.CrossRef Erdel M, Laich A, Utermann G, Werner ER, Werner-Felmayer G. The human gene encoding SCYB9B, a putative novel CXC chemokine, maps to human chromosome 4q21 like the closely related genes for MIG (SCYB9) and INP10 (SCYB10). Cytogenet Genome Res. 1998;81:271–2.CrossRef
55.
go back to reference Tokunaga R, et al. CXCL9, CXCL10, CXCL11/CXCR3 axis for immune activation – A target for novel cancer therapy. Cancer Treat Rev. 2018;63:40–7.PubMedCrossRef Tokunaga R, et al. CXCL9, CXCL10, CXCL11/CXCR3 axis for immune activation – A target for novel cancer therapy. Cancer Treat Rev. 2018;63:40–7.PubMedCrossRef
56.
go back to reference Eraso JM, et al. Genomic Landscape of intrahost variation in group A Streptococcus: repeated and abundant mutational inactivation of the fabT gene encoding a regulator of fatty acid synthesis. Infect Immun. 2016;84:3268–81.PubMedPubMedCentralCrossRef Eraso JM, et al. Genomic Landscape of intrahost variation in group A Streptococcus: repeated and abundant mutational inactivation of the fabT gene encoding a regulator of fatty acid synthesis. Infect Immun. 2016;84:3268–81.PubMedPubMedCentralCrossRef
57.
go back to reference Westman J, Chakrakodi B, Snäll J, Mörgelin M, Bruun Madsen M, Hyldegaard O, Neumann A, et al. Protein SIC secreted from Streptococcus pyogenes forms complexes with extracellular histones that boost cytokine production. Front Immunol. 2018;9:236. https://doi.org/10.3389/fimmu.2018.00236. Westman J, Chakrakodi B, Snäll J, Mörgelin M, Bruun Madsen M, Hyldegaard O, Neumann A, et al. Protein SIC secreted from Streptococcus pyogenes forms complexes with extracellular histones that boost cytokine production. Front Immunol. 2018;9:236. https://​doi.​org/​10.​3389/​fimmu.​2018.​00236.
59.
go back to reference Kachroo P, Eraso JM, Olsen RJ, Zhu L, Kubiak SL, Pruitt L, Yerramilli P, et al. New pathogenesis mechanisms and translational leads identified by multidimensional analysis of necrotizing myositis in primates. MBio. 2020;11(1):e03363–19. https://doi.org/10.1128/mBio.03363-19. Kachroo P, Eraso JM, Olsen RJ, Zhu L, Kubiak SL, Pruitt L, Yerramilli P, et al. New pathogenesis mechanisms and translational leads identified by multidimensional analysis of necrotizing myositis in primates. MBio. 2020;11(1):e03363–19. https://​doi.​org/​10.​1128/​mBio.​03363-19.
60.
go back to reference Tan LKK, et al. Vaccine-induced, but not natural immunity, against the Streptococcal inhibitor of complement protects against invasive disease. npj Vaccines. 2021;6:62.PubMedPubMedCentralCrossRef Tan LKK, et al. Vaccine-induced, but not natural immunity, against the Streptococcal inhibitor of complement protects against invasive disease. npj Vaccines. 2021;6:62.PubMedPubMedCentralCrossRef
61.
go back to reference Frick I-M, et al. Streptococcal inhibitor of complement (SIC) modulates fibrinolysis and enhances bacterial survival within fibrin clots. J Biol Chem. 2018;293:13578–91.PubMedPubMedCentralCrossRef Frick I-M, et al. Streptococcal inhibitor of complement (SIC) modulates fibrinolysis and enhances bacterial survival within fibrin clots. J Biol Chem. 2018;293:13578–91.PubMedPubMedCentralCrossRef
64.
go back to reference Sartelli M, et al. 2018 WSES/SIS-E consensus conference: recommendations for the management of skin and soft-tissue infections. World J Emerg Surg. 2018;13:58.PubMedPubMedCentralCrossRef Sartelli M, et al. 2018 WSES/SIS-E consensus conference: recommendations for the management of skin and soft-tissue infections. World J Emerg Surg. 2018;13:58.PubMedPubMedCentralCrossRef
65.
go back to reference Pamp SJ, Frees D, Engelmann S, Hecker M, Ingmer H. Spx is a global effector impacting stress tolerance and biofilm formation in Staphylococcus aureus. J Bacteriol. 2006;188:4861–70.PubMedPubMedCentralCrossRef Pamp SJ, Frees D, Engelmann S, Hecker M, Ingmer H. Spx is a global effector impacting stress tolerance and biofilm formation in Staphylococcus aureus. J Bacteriol. 2006;188:4861–70.PubMedPubMedCentralCrossRef
66.
67.
go back to reference Bayle L, et al. Zinc uptake by Streptococcus pneumoniae depends on both AdcA and AdcAII and is essential for normal bacterial morphology and virulence. Mol Microbiol. 2011;82:904–16.PubMedCrossRef Bayle L, et al. Zinc uptake by Streptococcus pneumoniae depends on both AdcA and AdcAII and is essential for normal bacterial morphology and virulence. Mol Microbiol. 2011;82:904–16.PubMedCrossRef
69.
go back to reference Arad G, et al. Binding of superantigen toxins into the CD28 homodimer interface is essential for induction of cytokine genes that mediate lethal shock. PLoS Biol. 2011;9:e1001149.PubMedPubMedCentralCrossRef Arad G, et al. Binding of superantigen toxins into the CD28 homodimer interface is essential for induction of cytokine genes that mediate lethal shock. PLoS Biol. 2011;9:e1001149.PubMedPubMedCentralCrossRef
70.
go back to reference Chatila T, Geha RS. Signal transduction by microbial superantigens via MHC class II molecules. Immunol Rev. 1993;131:43–59.PubMedCrossRef Chatila T, Geha RS. Signal transduction by microbial superantigens via MHC class II molecules. Immunol Rev. 1993;131:43–59.PubMedCrossRef
71.
go back to reference Santos F, et al. Maintenance of intracellular hypoxia and adequate heat shock response are essential requirements for pathogenicity and virulence of E ntamoeba histolytica. Cell Microbiol. 2015;17:1037–51.PubMedCrossRef Santos F, et al. Maintenance of intracellular hypoxia and adequate heat shock response are essential requirements for pathogenicity and virulence of E ntamoeba histolytica. Cell Microbiol. 2015;17:1037–51.PubMedCrossRef
72.
73.
go back to reference Wilson DN. Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nat Rev Microbiol. 2014;12:35–48.PubMedCrossRef Wilson DN. Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nat Rev Microbiol. 2014;12:35–48.PubMedCrossRef
74.
go back to reference Dyer MD, et al. The human-bacterial pathogen protein interaction networks of Bacillus anthracis, Francisella tularensis, and Yersinia pestis. PLoS One. 2010;5:e12089.PubMedPubMedCentralCrossRef Dyer MD, et al. The human-bacterial pathogen protein interaction networks of Bacillus anthracis, Francisella tularensis, and Yersinia pestis. PLoS One. 2010;5:e12089.PubMedPubMedCentralCrossRef
75.
go back to reference Sforzini L, Nettis MA, Mondelli V, Pariante CM. Inflammation in cancer and depression: a starring role for the kynurenine pathway. Psychopharmacology. 2019;236:2997–3011.PubMedPubMedCentral Sforzini L, Nettis MA, Mondelli V, Pariante CM. Inflammation in cancer and depression: a starring role for the kynurenine pathway. Psychopharmacology. 2019;236:2997–3011.PubMedPubMedCentral
76.
go back to reference Tsai S, et al. Transcriptional profiling of human placentas from pregnancies complicated by preeclampsia reveals disregulation of sialic acid acetylesterase and immune signalling pathways. Placenta. 2011;32:175–82.PubMedCrossRef Tsai S, et al. Transcriptional profiling of human placentas from pregnancies complicated by preeclampsia reveals disregulation of sialic acid acetylesterase and immune signalling pathways. Placenta. 2011;32:175–82.PubMedCrossRef
77.
go back to reference Palma Medina LM, Rath E, Jahagirdar S, Bruun T, Madsen MB, Strålin K, Unge C, et al. Discriminatory plasma biomarkers predict specific clinical phenotypes of necrotizing soft-tissue infections. J Clin Invest. 2021;131(14):e149523. https://doi.org/10.1172/JCI149523. Palma Medina LM, Rath E, Jahagirdar S, Bruun T, Madsen MB, Strålin K, Unge C, et al. Discriminatory plasma biomarkers predict specific clinical phenotypes of necrotizing soft-tissue infections. J Clin Invest. 2021;131(14):e149523. https://​doi.​org/​10.​1172/​JCI149523.
78.
go back to reference Abdillahi SM, et al. Collagen VI contains multiple host defense peptides with potent in vivo activity. J Immunol. 2018;201:1007–20.PubMedCrossRef Abdillahi SM, et al. Collagen VI contains multiple host defense peptides with potent in vivo activity. J Immunol. 2018;201:1007–20.PubMedCrossRef
79.
go back to reference Bober M, Enochsson C, Collin M, Mörgelin M. Collagen VI is a subepithelial adhesive target for human respiratory tract pathogens. J Innate Immun. 2010;2:160–6.PubMedCrossRef Bober M, Enochsson C, Collin M, Mörgelin M. Collagen VI is a subepithelial adhesive target for human respiratory tract pathogens. J Innate Immun. 2010;2:160–6.PubMedCrossRef
82.
go back to reference Dinkla K, et al. Upregulation of capsule enables Streptococcus pyogenes to evade immune recognition by antigen-specific antibodies directed to the G-related α2-macroglobulin-binding protein GRAB located on the bacterial surface. Microbes Infect. 2007;9:922–31.PubMedCrossRef Dinkla K, et al. Upregulation of capsule enables Streptococcus pyogenes to evade immune recognition by antigen-specific antibodies directed to the G-related α2-macroglobulin-binding protein GRAB located on the bacterial surface. Microbes Infect. 2007;9:922–31.PubMedCrossRef
85.
go back to reference Truong D, Copeland JW, Brumell JH. Bacterial subversion of host cytoskeletal machinery: hijacking formins and the Arp2/3 complex. BioEssays. 2014;36:687–96.PubMedCrossRef Truong D, Copeland JW, Brumell JH. Bacterial subversion of host cytoskeletal machinery: hijacking formins and the Arp2/3 complex. BioEssays. 2014;36:687–96.PubMedCrossRef
87.
Metadata
Title
Analysis of host-pathogen gene association networks reveals patient-specific response to streptococcal and polymicrobial necrotising soft tissue infections
Authors
Sanjeevan Jahagirdar
Lorna Morris
Nirupama Benis
Oddvar Oppegaard
Mattias Svenson
Ole Hyldegaard
Steinar Skrede
Anna Norrby-Teglund
Vitor A. P. Martins dos Santos
Edoardo Saccenti
INFECT Study group
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Medicine / Issue 1/2022
Electronic ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-022-02355-8

Other articles of this Issue 1/2022

BMC Medicine 1/2022 Go to the issue