Skip to main content
Top
Published in: BMC Medicine 1/2022

01-12-2022 | Chronic Inflammatory Bowel Disease | Research article

Ketone body β-hydroxybutyrate ameliorates colitis by promoting M2 macrophage polarization through the STAT6-dependent signaling pathway

Authors: Chongyang Huang, Jun Wang, Hongbin Liu, Ruo Huang, Xinwen Yan, Mengyao Song, Gao Tan, Fachao Zhi

Published in: BMC Medicine | Issue 1/2022

Login to get access

Abstract

Background

Ketone body β-hydroxybutyrate (BHB) has received more and more attentions, because it possesses a lot of beneficial, life-preserving effects in the fields of clinical science and medicine. However, the role of BHB in intestinal inflammation has not yet been investigated.

Methods

Colonic mucosa of inflammatory bowel disease (IBD) patients and healthy controls were collected for evaluation of BHB level. Besides, the therapeutic effect of exogenous BHB in a murine model of acute dextran sulfate sodium (DSS)-induced colitis were assessed by body weight change, colon length, disease activity index, and histopathological sections. The regulatory effectors of BHB were analyzed by RT-qPCR, immunofluorescence, and microbe analysis in vivo. Moreover, the molecular mechanism of BHB was further verified in bone marrow-derived macrophages (BMDMs).

Results

In this study, significantly reduced BHB levels were found in the colonic mucosa from IBD patients and correlated with IBD activity index. In addition, we demonstrated that the administration of exogenous BHB alleviated the severity of acute experimental colitis, which was characterized by less weight loss, disease activity index, colon shortening, and histology scores, as well as decreased crypt loss and epithelium damage. Furthermore, BHB resulted in significantly increased colonic expression of M2 macrophage-associated genes, including IL-4Ra, IL-10, arginase 1 (Arg-1), and chitinase-like protein 3, following DSS exposure, suggesting an increased M2 macrophage skewing in vivo. Moreover, an in vitro experiment revealed that the addition of BHB directly promoted STAT6 phosphorylation and M2 macrophage-specific gene expression in IL-4-stimulated macrophages. Besides, we found that BHB obviously increased M2 macrophage-induced mucosal repair through promoting intestinal epithelial proliferation. However, the enhancement effect of BHB on M2 macrophage-induced mucosal repair and anti-inflammation was completely inhibited by the STAT6 inhibitor AS1517499.

Conclusions

In summary, we show that BHB promotes M2 macrophage polarization through the STAT6-dependent signaling pathway, which contributes to the resolution of intestinal inflammation and the repair of damaged intestinal tissues. Our finding suggests that exogenous BHB supplement may be a useful therapeutic approach for IBD treatment.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kaplan GG, Windsor JW. The four epidemiological stages in the global evolution of inflammatory bowel disease. Nat Rev Gastroenterol Hepatol. 2021;18(1):56–66.PubMedCrossRef Kaplan GG, Windsor JW. The four epidemiological stages in the global evolution of inflammatory bowel disease. Nat Rev Gastroenterol Hepatol. 2021;18(1):56–66.PubMedCrossRef
3.
go back to reference Xavier RJ, Podolsky DK. Unravelling the pathogenesis of inflammatory bowel disease. Nature. 2007;448(7152):427–34.PubMedCrossRef Xavier RJ, Podolsky DK. Unravelling the pathogenesis of inflammatory bowel disease. Nature. 2007;448(7152):427–34.PubMedCrossRef
4.
go back to reference Lin Y, Yang X, Yue W, Xu X, Li B, Zou L, et al. Chemerin aggravates DSS-induced colitis by suppressing M2 macrophage polarization. Cell Mol Immunol. 2014;11(4):355–66.PubMedPubMedCentralCrossRef Lin Y, Yang X, Yue W, Xu X, Li B, Zou L, et al. Chemerin aggravates DSS-induced colitis by suppressing M2 macrophage polarization. Cell Mol Immunol. 2014;11(4):355–66.PubMedPubMedCentralCrossRef
5.
go back to reference Na YR, Stakenborg M, Seok SH, Matteoli G. Macrophages in intestinal inflammation and resolution: a potential therapeutic target in IBD. Nat Rev Gastroenterol Hepatol. 2019;16(9):531–43.PubMedCrossRef Na YR, Stakenborg M, Seok SH, Matteoli G. Macrophages in intestinal inflammation and resolution: a potential therapeutic target in IBD. Nat Rev Gastroenterol Hepatol. 2019;16(9):531–43.PubMedCrossRef
7.
go back to reference Bar-On L, Zigmond E, Jung S. Management of gut inflammation through the manipulation of intestinal dendritic cells and macrophages? Semin Immunol. 2011;23(1):58–64.PubMedCrossRef Bar-On L, Zigmond E, Jung S. Management of gut inflammation through the manipulation of intestinal dendritic cells and macrophages? Semin Immunol. 2011;23(1):58–64.PubMedCrossRef
8.
go back to reference Zhang Y, Li X, Luo Z, Ma L, Zhu S, Wang Z, et al. ECM1 is an essential factor for the determination of M1 macrophage polarization in IBD in response to LPS stimulation. Proc Natl Acad Sci U S A. 2020;117(6):3083–92.PubMedPubMedCentralCrossRef Zhang Y, Li X, Luo Z, Ma L, Zhu S, Wang Z, et al. ECM1 is an essential factor for the determination of M1 macrophage polarization in IBD in response to LPS stimulation. Proc Natl Acad Sci U S A. 2020;117(6):3083–92.PubMedPubMedCentralCrossRef
9.
go back to reference Lissner D, Schumann M, Batra A, Kredel LI, Kuhl AA, Erben U, et al. Monocyte and M1 macrophage-induced barrier defect contributes to chronic intestinal inflammation in IBD. Inflamm Bowel Dis. 2015;21(6):1297–305.PubMed Lissner D, Schumann M, Batra A, Kredel LI, Kuhl AA, Erben U, et al. Monocyte and M1 macrophage-induced barrier defect contributes to chronic intestinal inflammation in IBD. Inflamm Bowel Dis. 2015;21(6):1297–305.PubMed
10.
go back to reference McAlindon ME, Galvin A, McKaig B, Gray T, Sewell HF, Mahida YR. Investigation of the expression of IL-1beta converting enzyme and apoptosis in normal and inflammatory bowel disease (IBD) mucosal macrophages. Clin Exp Immunol. 1999;116(2):251–7.PubMedPubMedCentralCrossRef McAlindon ME, Galvin A, McKaig B, Gray T, Sewell HF, Mahida YR. Investigation of the expression of IL-1beta converting enzyme and apoptosis in normal and inflammatory bowel disease (IBD) mucosal macrophages. Clin Exp Immunol. 1999;116(2):251–7.PubMedPubMedCentralCrossRef
11.
go back to reference Ai L, Ren Y, Zhu M, Lu S, Qian Y, Chen Z, et al. Synbindin restrains proinflammatory macrophage activation against microbiota and mucosal inflammation during colitis. Gut. 2021;70(12):2261–72.PubMedCrossRef Ai L, Ren Y, Zhu M, Lu S, Qian Y, Chen Z, et al. Synbindin restrains proinflammatory macrophage activation against microbiota and mucosal inflammation during colitis. Gut. 2021;70(12):2261–72.PubMedCrossRef
12.
go back to reference Deng F, Yan J, Lu J, Luo M, Xia P, Liu S, et al. M2 Macrophage-derived exosomal miR-590-3p attenuates DSS-induced mucosal damage and promotes epithelial repair via the LATS1/YAP/ beta-catenin signalling axis. J Crohns Colitis. 2021;15(4):665–77.PubMedCrossRef Deng F, Yan J, Lu J, Luo M, Xia P, Liu S, et al. M2 Macrophage-derived exosomal miR-590-3p attenuates DSS-induced mucosal damage and promotes epithelial repair via the LATS1/YAP/ beta-catenin signalling axis. J Crohns Colitis. 2021;15(4):665–77.PubMedCrossRef
13.
go back to reference Koelink PJ, Bloemendaal FM, Li B, Westera L, Vogels EWM, van Roest M, et al. Anti-TNF therapy in IBD exerts its therapeutic effect through macrophage IL-10 signalling. Gut. 2020;69(6):1053–63.PubMedCrossRef Koelink PJ, Bloemendaal FM, Li B, Westera L, Vogels EWM, van Roest M, et al. Anti-TNF therapy in IBD exerts its therapeutic effect through macrophage IL-10 signalling. Gut. 2020;69(6):1053–63.PubMedCrossRef
14.
go back to reference Maasfeh L, Hartlova A, Isaksson S, Sundin J, Mavroudis G, Savolainen O, et al. Impaired luminal control of intestinal macrophage maturation in patients with ulcerative colitis during remission. Cell Mol Gastroenterol Hepatol. 2021;12(4):1415–32.PubMedPubMedCentralCrossRef Maasfeh L, Hartlova A, Isaksson S, Sundin J, Mavroudis G, Savolainen O, et al. Impaired luminal control of intestinal macrophage maturation in patients with ulcerative colitis during remission. Cell Mol Gastroenterol Hepatol. 2021;12(4):1415–32.PubMedPubMedCentralCrossRef
15.
go back to reference Zhou X, Li W, Wang S, Zhang P, Wang Q, Xiao J, et al. YAP aggravates inflammatory bowel disease by regulating M1/M2 macrophage polarization and gut microbial homeostasis. Cell Rep. 2019;27(4):1176–89.e5.PubMedCrossRef Zhou X, Li W, Wang S, Zhang P, Wang Q, Xiao J, et al. YAP aggravates inflammatory bowel disease by regulating M1/M2 macrophage polarization and gut microbial homeostasis. Cell Rep. 2019;27(4):1176–89.e5.PubMedCrossRef
16.
go back to reference Steinbach EC, Plevy SE. The role of macrophages and dendritic cells in the initiation of inflammation in IBD. Inflamm Bowel Dis. 2014;20(1):166–75.PubMedCrossRef Steinbach EC, Plevy SE. The role of macrophages and dendritic cells in the initiation of inflammation in IBD. Inflamm Bowel Dis. 2014;20(1):166–75.PubMedCrossRef
17.
go back to reference Su S, Zhao Q, He C, Huang D, Liu J, Chen F, et al. miR-142-5p and miR-130a-3p are regulated by IL-4 and IL-13 and control profibrogenic macrophage program. Nat Commun. 2015;6:8523.PubMedCrossRef Su S, Zhao Q, He C, Huang D, Liu J, Chen F, et al. miR-142-5p and miR-130a-3p are regulated by IL-4 and IL-13 and control profibrogenic macrophage program. Nat Commun. 2015;6:8523.PubMedCrossRef
18.
go back to reference Cheng CW, Biton M, Haber AL, Gunduz N, Eng G, Gaynor LT, et al. Ketone body signaling mediates intestinal stem cell homeostasis and adaptation to diet. Cell. 2019;178(5):1115–31 e15.PubMedPubMedCentralCrossRef Cheng CW, Biton M, Haber AL, Gunduz N, Eng G, Gaynor LT, et al. Ketone body signaling mediates intestinal stem cell homeostasis and adaptation to diet. Cell. 2019;178(5):1115–31 e15.PubMedPubMedCentralCrossRef
19.
go back to reference Nosadini R, Avogaro A, Doria A, Fioretto P, Trevisan R, Morocutti A. Ketone body metabolism: a physiological and clinical overview. Diabetes Metab Rev. 1989;5(3):299–319.PubMedCrossRef Nosadini R, Avogaro A, Doria A, Fioretto P, Trevisan R, Morocutti A. Ketone body metabolism: a physiological and clinical overview. Diabetes Metab Rev. 1989;5(3):299–319.PubMedCrossRef
20.
go back to reference Fukao T, Lopaschuk GD, Mitchell GA. Pathways and control of ketone body metabolism: on the fringe of lipid biochemistry. Prostaglandins Leukot Essent Fatty Acids. 2004;70(3):243–51.PubMedCrossRef Fukao T, Lopaschuk GD, Mitchell GA. Pathways and control of ketone body metabolism: on the fringe of lipid biochemistry. Prostaglandins Leukot Essent Fatty Acids. 2004;70(3):243–51.PubMedCrossRef
22.
go back to reference Zhang SJ, Li ZH, Zhang YD, Chen J, Li Y, Wu FQ, et al. Ketone body 3-hydroxybutyrate ameliorates atherosclerosis via receptor Gpr109a-mediated calcium influx. Adv Sci (Weinh). 2021;8(9):2003410.CrossRef Zhang SJ, Li ZH, Zhang YD, Chen J, Li Y, Wu FQ, et al. Ketone body 3-hydroxybutyrate ameliorates atherosclerosis via receptor Gpr109a-mediated calcium influx. Adv Sci (Weinh). 2021;8(9):2003410.CrossRef
24.
go back to reference Moller N. Ketone body, 3-hydroxybutyrate: minor metabolite - major medical manifestations. J Clin Endocrinol Metab. 2020;105(9):2884–92.CrossRef Moller N. Ketone body, 3-hydroxybutyrate: minor metabolite - major medical manifestations. J Clin Endocrinol Metab. 2020;105(9):2884–92.CrossRef
25.
go back to reference Veech RL, Bradshaw PC, Clarke K, Curtis W, Pawlosky R, King MT. Ketone bodies mimic the life span extending properties of caloric restriction. IUBMB Life. 2017;69(5):305–14.PubMedCrossRef Veech RL, Bradshaw PC, Clarke K, Curtis W, Pawlosky R, King MT. Ketone bodies mimic the life span extending properties of caloric restriction. IUBMB Life. 2017;69(5):305–14.PubMedCrossRef
26.
go back to reference Sengupta S, Peterson TR, Laplante M, Oh S, Sabatini DM. mTORC1 controls fasting-induced ketogenesis and its modulation by ageing. Nature. 2010;468(7327):1100–4.PubMedCrossRef Sengupta S, Peterson TR, Laplante M, Oh S, Sabatini DM. mTORC1 controls fasting-induced ketogenesis and its modulation by ageing. Nature. 2010;468(7327):1100–4.PubMedCrossRef
27.
go back to reference Ang QY, Alexander M, Newman JC, Tian Y, Cai J, Upadhyay V, et al. Ketogenic diets alter the gut microbiome resulting in decreased intestinal Th17 cells. Cell. 2020;181(6):1263–75.e16.PubMedPubMedCentralCrossRef Ang QY, Alexander M, Newman JC, Tian Y, Cai J, Upadhyay V, et al. Ketogenic diets alter the gut microbiome resulting in decreased intestinal Th17 cells. Cell. 2020;181(6):1263–75.e16.PubMedPubMedCentralCrossRef
28.
go back to reference Youm YH, Nguyen KY, Grant RW, Goldberg EL, Bodogai M, Kim D, et al. The ketone metabolite beta-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat Med. 2015;21(3):263–9.PubMedPubMedCentralCrossRef Youm YH, Nguyen KY, Grant RW, Goldberg EL, Bodogai M, Kim D, et al. The ketone metabolite beta-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat Med. 2015;21(3):263–9.PubMedPubMedCentralCrossRef
29.
go back to reference Neudorf H, Myette-Cote E, Little JP. The impact of acute ingestion of a ketone monoester drink on LPS-stimulated NLRP3 activation in humans with obesity. Nutrients. 2020;12(3):854.PubMedCentralCrossRef Neudorf H, Myette-Cote E, Little JP. The impact of acute ingestion of a ketone monoester drink on LPS-stimulated NLRP3 activation in humans with obesity. Nutrients. 2020;12(3):854.PubMedCentralCrossRef
30.
go back to reference He C, Zhao Y, Jiang X, Liang X, Yin L, Yin Z, et al. Protective effect of Ketone musk on LPS/ATP-induced pyroptosis in J774A.1 cells through suppressing NLRP3/GSDMD pathway. Int Immunopharmacol. 2019;71:328–35.PubMedCrossRef He C, Zhao Y, Jiang X, Liang X, Yin L, Yin Z, et al. Protective effect of Ketone musk on LPS/ATP-induced pyroptosis in J774A.1 cells through suppressing NLRP3/GSDMD pathway. Int Immunopharmacol. 2019;71:328–35.PubMedCrossRef
31.
go back to reference Wirtz S, Popp V, Kindermann M, Gerlach K, Weigmann B, Fichtner-Feigl S, et al. Chemically induced mouse models of acute and chronic intestinal inflammation. Nat Protoc. 2017;12(7):1295–309.PubMedCrossRef Wirtz S, Popp V, Kindermann M, Gerlach K, Weigmann B, Fichtner-Feigl S, et al. Chemically induced mouse models of acute and chronic intestinal inflammation. Nat Protoc. 2017;12(7):1295–309.PubMedCrossRef
32.
go back to reference Tan G, Huang C, Chen J, Zhi F. HMGB1 released from GSDME-mediated pyroptotic epithelial cells participates in the tumorigenesis of colitis-associated colorectal cancer through the ERK1/2 pathway. J Hematol Oncol. 2020;13(1):149.PubMedPubMedCentralCrossRef Tan G, Huang C, Chen J, Zhi F. HMGB1 released from GSDME-mediated pyroptotic epithelial cells participates in the tumorigenesis of colitis-associated colorectal cancer through the ERK1/2 pathway. J Hematol Oncol. 2020;13(1):149.PubMedPubMedCentralCrossRef
33.
go back to reference Tan G, Huang C, Chen J, Chen B, Zhi F. Gasdermin-E-mediated pyroptosis participates in the pathogenesis of Crohn's disease by promoting intestinal inflammation. Cell Rep. 2021;35(11):109265.PubMedCrossRef Tan G, Huang C, Chen J, Chen B, Zhi F. Gasdermin-E-mediated pyroptosis participates in the pathogenesis of Crohn's disease by promoting intestinal inflammation. Cell Rep. 2021;35(11):109265.PubMedCrossRef
35.
go back to reference Huang C, Wang P, Xu X, Zhang Y, Gong Y, Hu W, et al. The ketone body metabolite beta-hydroxybutyrate induces an antidepression-associated ramification of microglia via HDACs inhibition-triggered Akt-small RhoGTPase activation. Glia. 2018;66(2):256–78.PubMedCrossRef Huang C, Wang P, Xu X, Zhang Y, Gong Y, Hu W, et al. The ketone body metabolite beta-hydroxybutyrate induces an antidepression-associated ramification of microglia via HDACs inhibition-triggered Akt-small RhoGTPase activation. Glia. 2018;66(2):256–78.PubMedCrossRef
36.
go back to reference Yu T, Gan S, Zhu Q, Dai D, Li N, Wang H, et al. Modulation of M2 macrophage polarization by the crosstalk between Stat6 and Trim24. Nat Commun. 2019;10(1):4353.PubMedPubMedCentralCrossRef Yu T, Gan S, Zhu Q, Dai D, Li N, Wang H, et al. Modulation of M2 macrophage polarization by the crosstalk between Stat6 and Trim24. Nat Commun. 2019;10(1):4353.PubMedPubMedCentralCrossRef
37.
go back to reference Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions. Immunity. 2010;32(5):593–604.PubMedCrossRef Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions. Immunity. 2010;32(5):593–604.PubMedCrossRef
38.
go back to reference Mantovani A, Biswas SK, Galdiero MR, Sica A, Locati M. Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol. 2013;229(2):176–85.PubMedCrossRef Mantovani A, Biswas SK, Galdiero MR, Sica A, Locati M. Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol. 2013;229(2):176–85.PubMedCrossRef
40.
41.
go back to reference Cosin-Roger J, Ortiz-Masia D, Calatayud S, Hernandez C, Esplugues JV, Barrachina MD. The activation of Wnt signaling by a STAT6-dependent macrophage phenotype promotes mucosal repair in murine IBD. Mucosal Immunol. 2016;9(4):986–98.PubMedCrossRef Cosin-Roger J, Ortiz-Masia D, Calatayud S, Hernandez C, Esplugues JV, Barrachina MD. The activation of Wnt signaling by a STAT6-dependent macrophage phenotype promotes mucosal repair in murine IBD. Mucosal Immunol. 2016;9(4):986–98.PubMedCrossRef
42.
go back to reference Arranz A, Doxaki C, Vergadi E, Martinez de la Torre Y, Vaporidi K, Lagoudaki ED, et al. Akt1 and Akt2 protein kinases differentially contribute to macrophage polarization. Proc Natl Acad Sci U S A. 2012;109(24):9517–22.PubMedPubMedCentralCrossRef Arranz A, Doxaki C, Vergadi E, Martinez de la Torre Y, Vaporidi K, Lagoudaki ED, et al. Akt1 and Akt2 protein kinases differentially contribute to macrophage polarization. Proc Natl Acad Sci U S A. 2012;109(24):9517–22.PubMedPubMedCentralCrossRef
43.
go back to reference Hunter MM, Wang A, Parhar KS, Johnston MJ, Van Rooijen N, Beck PL, et al. In vitro-derived alternatively activated macrophages reduce colonic inflammation in mice. Gastroenterology. 2010;138(4):1395–405.PubMedCrossRef Hunter MM, Wang A, Parhar KS, Johnston MJ, Van Rooijen N, Beck PL, et al. In vitro-derived alternatively activated macrophages reduce colonic inflammation in mice. Gastroenterology. 2010;138(4):1395–405.PubMedCrossRef
44.
45.
go back to reference Waqas SFH, Ampem G, Röszer T. Analysis of IL-4/STAT6 signaling in macrophages. Methods Mol Biol. 2019;1966:211–24.PubMedCrossRef Waqas SFH, Ampem G, Röszer T. Analysis of IL-4/STAT6 signaling in macrophages. Methods Mol Biol. 2019;1966:211–24.PubMedCrossRef
47.
go back to reference Satriano J, Matsufuji S, Murakami Y, Lortie MJ, Schwartz D, Kelly CJ, et al. Agmatine suppresses proliferation by frameshift induction of antizyme and attenuation of cellular polyamine levels. J Biol Chem. 1998;273(25):15313–6.PubMedCrossRef Satriano J, Matsufuji S, Murakami Y, Lortie MJ, Schwartz D, Kelly CJ, et al. Agmatine suppresses proliferation by frameshift induction of antizyme and attenuation of cellular polyamine levels. J Biol Chem. 1998;273(25):15313–6.PubMedCrossRef
48.
go back to reference Lin SL, Li B, Rao S, Yeo EJ, Hudson TE, Nowlin BT, et al. Macrophage Wnt7b is critical for kidney repair and regeneration. Proc Natl Acad Sci U S A. 2010;107(9):4194–9.PubMedPubMedCentralCrossRef Lin SL, Li B, Rao S, Yeo EJ, Hudson TE, Nowlin BT, et al. Macrophage Wnt7b is critical for kidney repair and regeneration. Proc Natl Acad Sci U S A. 2010;107(9):4194–9.PubMedPubMedCentralCrossRef
50.
go back to reference Bhattacharya K, Matar W, Tolun AA, Devanapalli B, Thompson S, Dalkeith T, et al. The use of sodium DL-3-Hydroxybutyrate in severe acute neuro-metabolic compromise in patients with inherited ketone body synthetic disorders. Orphanet J Rare Dis. 2020;15(1):53.PubMedPubMedCentralCrossRef Bhattacharya K, Matar W, Tolun AA, Devanapalli B, Thompson S, Dalkeith T, et al. The use of sodium DL-3-Hydroxybutyrate in severe acute neuro-metabolic compromise in patients with inherited ketone body synthetic disorders. Orphanet J Rare Dis. 2020;15(1):53.PubMedPubMedCentralCrossRef
51.
go back to reference Park JS, Kim YJ. Anti-aging effect of the ketone metabolite β-hydroxybutyrate in drosophila intestinal stem cells. Int J Mol Sci. 2020;21(10):3497.PubMedCentralCrossRef Park JS, Kim YJ. Anti-aging effect of the ketone metabolite β-hydroxybutyrate in drosophila intestinal stem cells. Int J Mol Sci. 2020;21(10):3497.PubMedCentralCrossRef
52.
go back to reference Kim JT, Li C, Weiss HL, Zhou Y, Liu C, Wang Q, et al. Regulation of ketogenic enzyme HMGCS2 by Wnt/β-catenin/PPARγ pathway in intestinal cells. Cells. 2019;8(9):1106.PubMedCentralCrossRef Kim JT, Li C, Weiss HL, Zhou Y, Liu C, Wang Q, et al. Regulation of ketogenic enzyme HMGCS2 by Wnt/β-catenin/PPARγ pathway in intestinal cells. Cells. 2019;8(9):1106.PubMedCentralCrossRef
Metadata
Title
Ketone body β-hydroxybutyrate ameliorates colitis by promoting M2 macrophage polarization through the STAT6-dependent signaling pathway
Authors
Chongyang Huang
Jun Wang
Hongbin Liu
Ruo Huang
Xinwen Yan
Mengyao Song
Gao Tan
Fachao Zhi
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Medicine / Issue 1/2022
Electronic ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-022-02352-x

Other articles of this Issue 1/2022

BMC Medicine 1/2022 Go to the issue