Skip to main content
Top
Published in: BMC Medicine 1/2021

Open Access 01-12-2021 | Research article

Physician-directed genetic screening to evaluate personal risk for medically actionable disorders: a large multi-center cohort study

Authors: Eden V. Haverfield, Edward D. Esplin, Sienna J. Aguilar, Kathryn E. Hatchell, Kelly E. Ormond, Andrea Hanson-Kahn, Paldeep S. Atwal, Sarah Macklin-Mantia, Stephanie Hines, Caron W.-M. Sak, Steven Tucker, Steven B. Bleyl, Peter J. Hulick, Ora K. Gordon, Lea Velsher, Jessica Y. J. Gu, Scott M. Weissman, Teresa Kruisselbrink, Christopher Abel, Michele Kettles, Anne Slavotinek, Bryce A. Mendelsohn, Robert C. Green, Swaroop Aradhya, Robert L. Nussbaum

Published in: BMC Medicine | Issue 1/2021

Login to get access

Abstract

Background

The use of proactive genetic screening for disease prevention and early detection is not yet widespread. Professional practice guidelines from the American College of Medical Genetics and Genomics (ACMG) have encouraged reporting pathogenic variants that confer personal risk for actionable monogenic hereditary disorders, but only as secondary findings from exome or genome sequencing. The Centers for Disease Control and Prevention (CDC) recognizes the potential public health impact of three Tier 1 actionable disorders. Here, we report results of a large multi-center cohort study to determine the yield and potential value of screening healthy individuals for variants associated with a broad range of actionable monogenic disorders, outside the context of secondary findings.

Methods

Eligible adults were offered a proactive genetic screening test by health care providers in a variety of clinical settings. The screening panel based on next-generation sequencing contained up to 147 genes associated with monogenic disorders within cancer, cardiovascular, and other important clinical areas. Sequence and intragenic copy number variants classified as pathogenic, likely pathogenic, pathogenic (low penetrance), or increased risk allele were considered clinically significant and reported. Results were analyzed by clinical area and severity/burden of disease using chi-square tests without Yates’ correction.

Results

Among 10,478 unrelated adults screened, 1619 (15.5%) had results indicating personal risk for an actionable monogenic disorder. In contrast, only 3.1 to 5.2% had clinically reportable variants in genes suggested by the ACMG version 2 secondary findings list to be examined during exome or genome sequencing, and 2% had reportable variants related to CDC Tier 1 conditions. Among patients, 649 (6.2%) were positive for a genotype associated with a disease of high severity/burden, including hereditary cancer syndromes, cardiovascular disorders, or malignant hyperthermia susceptibility.

Conclusions

This is one of the first real-world examples of specialists and primary care providers using genetic screening with a multi-gene panel to identify health risks in their patients. Nearly one in six individuals screened for variants associated with actionable monogenic disorders had clinically significant results. These findings provide a foundation for further studies to assess the role of genetic screening as part of regular medical care.
Appendix
Available only for authorised users
Literature
1.
go back to reference ACMG Board of Directors. The use of ACMG secondary findings recommendations for general population screening: a policy statement of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2019;21:1467–8.CrossRef ACMG Board of Directors. The use of ACMG secondary findings recommendations for general population screening: a policy statement of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2019;21:1467–8.CrossRef
3.
go back to reference Kalia SS, Adelman K, Bale SJ, Chung WK, Eng C, Evans JP, et al. Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): a policy statement of the American College of Medical Genetics and Genomics. Genet Med. 2017;19(2):249–55. https://doi.org/10.1038/gim.2016.190.CrossRefPubMed Kalia SS, Adelman K, Bale SJ, Chung WK, Eng C, Evans JP, et al. Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): a policy statement of the American College of Medical Genetics and Genomics. Genet Med. 2017;19(2):249–55. https://​doi.​org/​10.​1038/​gim.​2016.​190.CrossRefPubMed
11.
go back to reference Hu P, Dharmayat KI, Stevens CAT, Sharabiani MTA, Jones RS, Watts GF, et al. Prevalence of familial hypercholesterolemia among the general population and patients with atherosclerotic cardiovascular disease: a systematic review and meta-analysis. Circulation. 2020;141(22):1742–59. https://doi.org/10.1161/CIRCULATIONAHA.119.044795. Hu P, Dharmayat KI, Stevens CAT, Sharabiani MTA, Jones RS, Watts GF, et al. Prevalence of familial hypercholesterolemia among the general population and patients with atherosclerotic cardiovascular disease: a systematic review and meta-analysis. Circulation. 2020;141(22):1742–59. https://​doi.​org/​10.​1161/​CIRCULATIONAHA.​119.​044795.
12.
go back to reference Ormondroyd E, Mackley MP, Blair E, Craft J, Knight JC, Taylor JC, et al. “Not pathogenic until proven otherwise”: perspectives of UK clinical genomics professionals toward secondary findings in context of a Genomic Medicine Multidisciplinary Team and the 100,000 Genomes Project. Genet Med. 2018;20(3):320–8. https://doi.org/10.1038/gim.2017.157. Ormondroyd E, Mackley MP, Blair E, Craft J, Knight JC, Taylor JC, et al. “Not pathogenic until proven otherwise”: perspectives of UK clinical genomics professionals toward secondary findings in context of a Genomic Medicine Multidisciplinary Team and the 100,000 Genomes Project. Genet Med. 2018;20(3):320–8. https://​doi.​org/​10.​1038/​gim.​2017.​157.
15.
go back to reference Hart MR, Biesecker BB, Blout CL, Christensen KD, Amendola LM, Bergstrom KL, et al. Secondary findings from clinical genomic sequencing: prevalence, patient perspectives, family history assessment, and health-care costs from a multisite study. Genet Med. 2019;21(5):1100–10. https://doi.org/10.1038/s41436-018-0308-x. Hart MR, Biesecker BB, Blout CL, Christensen KD, Amendola LM, Bergstrom KL, et al. Secondary findings from clinical genomic sequencing: prevalence, patient perspectives, family history assessment, and health-care costs from a multisite study. Genet Med. 2019;21(5):1100–10. https://​doi.​org/​10.​1038/​s41436-018-0308-x.
16.
go back to reference Murray MF, Evans JP, Angrist M, Chan K, Uhlmann WR, Doyle DL, et al. A proposed approach for implementing genomics-based screening programs for healthy adults. In: NAM perspectives. Washington, DC: National Academy of Medicine; 2018. Murray MF, Evans JP, Angrist M, Chan K, Uhlmann WR, Doyle DL, et al. A proposed approach for implementing genomics-based screening programs for healthy adults. In: NAM perspectives. Washington, DC: National Academy of Medicine; 2018.
17.
go back to reference Webber EM, Hunter JE, Biesecker LG, Buchanan AH, Clarke EV, Currey E, et al. Evidence-based assessments of clinical actionability in the context of secondary findings: updates from ClinGen’s Actionability Working Group. Hum Mutat. 2018;39(11):1677–85. https://doi.org/10.1002/humu.23631. Webber EM, Hunter JE, Biesecker LG, Buchanan AH, Clarke EV, Currey E, et al. Evidence-based assessments of clinical actionability in the context of secondary findings: updates from ClinGen’s Actionability Working Group. Hum Mutat. 2018;39(11):1677–85. https://​doi.​org/​10.​1002/​humu.​23631.
18.
go back to reference Dewey FE, Murray MF, Overton JD, Habegger L, Leader JB, Fetterolf SN, et al. Distribution and clinical impact of functional variants in 50,726 whole-exome sequences from the DiscovEHR study. Science. 2016;354:aaf6814.CrossRef Dewey FE, Murray MF, Overton JD, Habegger L, Leader JB, Fetterolf SN, et al. Distribution and clinical impact of functional variants in 50,726 whole-exome sequences from the DiscovEHR study. Science. 2016;354:aaf6814.CrossRef
21.
30.
go back to reference Win AK, Dowty JG, Cleary SP, Kim H, Buchanan DD, Young JP, et al. Risk of colorectal cancer for carriers of mutations in MUTYH, with and without a family history of cancer. Gastroenterology. 2014;146:1208–11.e1-5.CrossRef Win AK, Dowty JG, Cleary SP, Kim H, Buchanan DD, Young JP, et al. Risk of colorectal cancer for carriers of mutations in MUTYH, with and without a family history of cancer. Gastroenterology. 2014;146:1208–11.e1-5.CrossRef
43.
go back to reference Murray MF, Giovanni MA, Doyle DL, Harrison SM, Lyon E, Manickam K, et al. DNA-based screening and population health: a points to consider statement for programs and sponsoring organizations from the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2021; online ahead of print. Murray MF, Giovanni MA, Doyle DL, Harrison SM, Lyon E, Manickam K, et al. DNA-based screening and population health: a points to consider statement for programs and sponsoring organizations from the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2021; online ahead of print.
44.
go back to reference Bean LJH, Scheuner MT, Murray MF, Biesecker LG, Green RC, Monaghan KG, et al. A framework for understanding the current challenges and opportunities in genomic sequencing of apparently healthy individuals: a points to consider document from the ACMG. Genet Med. 2021; in press. Bean LJH, Scheuner MT, Murray MF, Biesecker LG, Green RC, Monaghan KG, et al. A framework for understanding the current challenges and opportunities in genomic sequencing of apparently healthy individuals: a points to consider document from the ACMG. Genet Med. 2021; in press.
45.
46.
go back to reference Berliner JL, Cummings SA, Burnett BB, Ricker CN. Risk assessment and genetic counseling for hereditary breast and ovarian cancer syndromes – practice resource of the National Society of Genetic Counselors. J Genet Couns. 2021; online ahead of print. Berliner JL, Cummings SA, Burnett BB, Ricker CN. Risk assessment and genetic counseling for hereditary breast and ovarian cancer syndromes – practice resource of the National Society of Genetic Counselors. J Genet Couns. 2021; online ahead of print.
Metadata
Title
Physician-directed genetic screening to evaluate personal risk for medically actionable disorders: a large multi-center cohort study
Authors
Eden V. Haverfield
Edward D. Esplin
Sienna J. Aguilar
Kathryn E. Hatchell
Kelly E. Ormond
Andrea Hanson-Kahn
Paldeep S. Atwal
Sarah Macklin-Mantia
Stephanie Hines
Caron W.-M. Sak
Steven Tucker
Steven B. Bleyl
Peter J. Hulick
Ora K. Gordon
Lea Velsher
Jessica Y. J. Gu
Scott M. Weissman
Teresa Kruisselbrink
Christopher Abel
Michele Kettles
Anne Slavotinek
Bryce A. Mendelsohn
Robert C. Green
Swaroop Aradhya
Robert L. Nussbaum
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Medicine / Issue 1/2021
Electronic ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-021-01999-2

Other articles of this Issue 1/2021

BMC Medicine 1/2021 Go to the issue