Skip to main content
Top
Published in: BMC Medicine 1/2021

Open Access 01-12-2021 | Chronic Kidney Disease | Research article

Prediction of individuals at high risk of chronic kidney disease during treatment with lithium for bipolar disorder

Authors: Joseph F. Hayes, David P. J. Osborn, Emma Francis, Gareth Ambler, Laurie A. Tomlinson, Magnus Boman, Ian C. K. Wong, John R. Geddes, Christina Dalman, Glyn Lewis

Published in: BMC Medicine | Issue 1/2021

Login to get access

Abstract

Background

Lithium is the most effective treatment in bipolar disorder. Its use is limited by concerns about risk of chronic kidney disease (CKD). We aimed to develop a model to predict risk of CKD following lithium treatment initiation, by identifying individuals with a high-risk trajectory of kidney function.

Methods

We used United Kingdom Clinical Practice Research Datalink (CPRD) electronic health records (EHRs) from 2000 to 2018. CPRD Aurum for prediction model development and CPRD Gold for external validation. We used elastic net regularised regression to generate a prediction model from potential features. We performed discrimination and calibration assessments in an external validation data set.
We included all patients aged ≥ 16 with bipolar disorder prescribed lithium. To be included patients had to have ≥ 1 year of follow-up before lithium initiation, ≥ 3 estimated glomerular filtration rate (eGFR) measures after lithium initiation (to be able to determine a trajectory) and a normal (≥ 60 mL/min/1.73 m2) eGFR at lithium initiation (baseline). In the Aurum development cohort, 1609 fulfilled these criteria. The Gold external validation cohort included 934 patients.
We included 44 potential baseline features in the prediction model, including sociodemographic, mental and physical health and drug treatment characteristics. We compared a full model with the 3-variable 5-year kidney failure risk equation (KFRE) and a 3-variable elastic net model.
We used group-based trajectory modelling to identify latent trajectory groups for eGFR. We were interested in the group with deteriorating kidney function (the high-risk group).

Results

The high risk of deteriorating eGFR group included 191 (11.87%) of the Aurum cohort and 137 (14.67%) of the Gold cohort. Of these, 168 (87.96%) and 117 (85.40%) respectively developed CKD 3a or more severe during follow-up. The model, developed in Aurum, had a ROC area of 0.879 (95%CI 0.853–0.904) in the Gold external validation data set. At the empirical optimal cut-point defined in the development dataset, the model had a sensitivity of 0.91 (95%CI 0.84–0.97) and a specificity of 0.74 (95% CI 0.67–0.82). However, a 3-variable elastic net model (including only age, sex and baseline eGFR) performed similarly well (ROC area 0.888; 95%CI 0.864–0.912), as did the KFRE (ROC area 0.870; 95%CI 0.841–0.898).

Conclusions

Individuals at high risk of a poor eGFR trajectory can be identified before initiation of lithium treatment by a simple equation including age, sex and baseline eGFR. Risk was increased in individuals who were younger at commencement of lithium, female and had a lower baseline eGFR. We did not identify strong predicters of eGFR decline specific to lithium-treated patients. Notably, lithium duration and toxicity were not associated with high-risk trajectory.
Literature
1.
go back to reference Barroilhet SA, Ghaemi SN. When and how to use lithium. Acta Psychiatrica Scandinavica. 2020;142(3):161–72. Barroilhet SA, Ghaemi SN. When and how to use lithium. Acta Psychiatrica Scandinavica. 2020;142(3):161–72.
3.
go back to reference Gitlin M. Lithium side effects and toxicity: prevalence and management strategies. Int J Bipolar Disorders. 2016;4(1):1–10.CrossRef Gitlin M. Lithium side effects and toxicity: prevalence and management strategies. Int J Bipolar Disorders. 2016;4(1):1–10.CrossRef
5.
go back to reference Hayes JF, Marston L, Walters K, Geddes JR, King M, Osborn DP. Adverse renal, endocrine, hepatic, and metabolic events during maintenance mood stabilizer treatment for bipolar disorder: a population-based cohort study. PLoS medicine. 2016;13(8):e1002058. Hayes JF, Marston L, Walters K, Geddes JR, King M, Osborn DP. Adverse renal, endocrine, hepatic, and metabolic events during maintenance mood stabilizer treatment for bipolar disorder: a population-based cohort study. PLoS medicine. 2016;13(8):e1002058.
11.
go back to reference Ramspek CL, de Jong Y, Dekker FW, van Diepen M. Towards the best kidney failure prediction tool: a systematic review and selection aid. Nephrology Dialysis Transplantation. 2020;35(9):1527–38. Ramspek CL, de Jong Y, Dekker FW, van Diepen M. Towards the best kidney failure prediction tool: a systematic review and selection aid. Nephrology Dialysis Transplantation. 2020;35(9):1527–38.
14.
go back to reference Tangri N, Grams ME, Levey AS, Coresh J, Appel LJ, Astor BC, Chodick G, Collins AJ, Djurdjev O, Elley CR, Evans M, Garg AX, Hallan SI, Inker LA, Ito S, Jee SH, Kovesdy CP, Kronenberg F, Heerspink HJL, Marks A, Nadkarni GN, Navaneethan SD, Nelson RG, Titze S, Sarnak MJ, Stengel B, Woodward M, Iseki K, for the CKD Prognosis Consortium. Multinational assessment of accuracy of equations for predicting risk of kidney failure: a meta-analysis. Jama. 2016;315(2):164–74. https://doi.org/10.1001/jama.2015.18202.CrossRefPubMedPubMedCentral Tangri N, Grams ME, Levey AS, Coresh J, Appel LJ, Astor BC, Chodick G, Collins AJ, Djurdjev O, Elley CR, Evans M, Garg AX, Hallan SI, Inker LA, Ito S, Jee SH, Kovesdy CP, Kronenberg F, Heerspink HJL, Marks A, Nadkarni GN, Navaneethan SD, Nelson RG, Titze S, Sarnak MJ, Stengel B, Woodward M, Iseki K, for the CKD Prognosis Consortium. Multinational assessment of accuracy of equations for predicting risk of kidney failure: a meta-analysis. Jama. 2016;315(2):164–74. https://​doi.​org/​10.​1001/​jama.​2015.​18202.CrossRefPubMedPubMedCentral
16.
go back to reference Wolf A, Dedman D, Campbell J, Booth H, Lunn D, Chapman J, et al. Data resource profile: Clinical practice research datalink (cprd) aurum. Int J Epidemiol. 2019;48(6):1740-g.CrossRef Wolf A, Dedman D, Campbell J, Booth H, Lunn D, Chapman J, et al. Data resource profile: Clinical practice research datalink (cprd) aurum. Int J Epidemiol. 2019;48(6):1740-g.CrossRef
17.
go back to reference Matsushita K, Mahmoodi BK, Woodward M, Emberson JR, Jafar TH, Jee SH, Polkinghorne KR, Shankar A, Smith DH, Tonelli M, Warnock DG, Wen CP, Coresh J, Gansevoort RT, Hemmelgarn BR, Levey AS, Chronic Kidney Disease Prognosis Consortium. Comparison of risk prediction using the CKD-EPI equation and the MDRD study equation for estimated glomerular filtration rate. Jama. 2012;307(18):1941–51. https://doi.org/10.1001/jama.2012.3954.CrossRefPubMed Matsushita K, Mahmoodi BK, Woodward M, Emberson JR, Jafar TH, Jee SH, Polkinghorne KR, Shankar A, Smith DH, Tonelli M, Warnock DG, Wen CP, Coresh J, Gansevoort RT, Hemmelgarn BR, Levey AS, Chronic Kidney Disease Prognosis Consortium. Comparison of risk prediction using the CKD-EPI equation and the MDRD study equation for estimated glomerular filtration rate. Jama. 2012;307(18):1941–51. https://​doi.​org/​10.​1001/​jama.​2012.​3954.CrossRefPubMed
20.
go back to reference Davis J, Desmond M, Berk M. Lithium and nephrotoxicity: a literature review of approaches to clinical management and risk stratification. BMC Nephrol. 2018;19(1):1–7.CrossRef Davis J, Desmond M, Berk M. Lithium and nephrotoxicity: a literature review of approaches to clinical management and risk stratification. BMC Nephrol. 2018;19(1):1–7.CrossRef
24.
go back to reference StataCorp L. Stata statistical software: release 16. TX: College Station; 2019. StataCorp L. Stata statistical software: release 16. TX: College Station; 2019.
Metadata
Title
Prediction of individuals at high risk of chronic kidney disease during treatment with lithium for bipolar disorder
Authors
Joseph F. Hayes
David P. J. Osborn
Emma Francis
Gareth Ambler
Laurie A. Tomlinson
Magnus Boman
Ian C. K. Wong
John R. Geddes
Christina Dalman
Glyn Lewis
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Medicine / Issue 1/2021
Electronic ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-021-01964-z

Other articles of this Issue 1/2021

BMC Medicine 1/2021 Go to the issue