Skip to main content
Top
Published in: BMC Medicine 1/2021

01-12-2021 | Care | Research article

Exit strategies: optimising feasible surveillance for detection, elimination, and ongoing prevention of COVID-19 community transmission

Authors: K. Lokuge, E. Banks, S. Davis, L. Roberts, T. Street, D. O’Donovan, G. Caleo, K. Glass

Published in: BMC Medicine | Issue 1/2021

Login to get access

Abstract

Background

Following implementation of strong containment measures, several countries and regions have low detectable community transmission of COVID-19. We developed an efficient, rapid, and scalable surveillance strategy to detect remaining COVID-19 community cases through exhaustive identification of every active transmission chain. We identified measures to enable early detection and effective management of any reintroduction of transmission once containment measures are lifted to ensure strong containment measures do not require reinstatement.

Methods

We compared efficiency and sensitivity to detect community transmission chains through testing of the following: hospital cases; fever, cough and/or ARI testing at community/primary care; and asymptomatic testing; using surveillance evaluation methods and mathematical modelling, varying testing capacities, reproductive number (R) and weekly cumulative incidence of COVID-19 and non-COVID-19 respiratory symptoms using data from Australia. We assessed system requirements to identify all transmission chains and follow up all cases and primary contacts within each chain, per million population.

Results

Assuming 20% of cases are asymptomatic and 30% of symptomatic COVID-19 cases present for testing, with R = 2.2, a median of 14 unrecognised community cases (8 infectious) occur when a transmission chain is identified through hospital surveillance versus 7 unrecognised cases (4 infectious) through community-based surveillance. The 7 unrecognised community upstream cases are estimated to generate a further 55–77 primary contacts requiring follow-up. The unrecognised community cases rise to 10 if 50% of cases are asymptomatic. Screening asymptomatic community members cannot exhaustively identify all cases under any of the scenarios assessed. The most important determinant of testing requirements for symptomatic screening is levels of non-COVID-19 respiratory illness. If 4% of the community have respiratory symptoms, and 1% of those with symptoms have COVID-19, exhaustive symptomatic screening requires approximately 11,600 tests/million population using 1/4 pooling, with 98% of cases detected (2% missed), given 99.9% sensitivity. Even with a drop in sensitivity to 70%, pooling was more effective at detecting cases than individual testing under all scenarios examined.

Conclusions

Screening all acute respiratory disease in the community, in combination with exhaustive and meticulous case and contact identification and management, enables appropriate early detection and elimination of COVID-19 community transmission. An important component is identification, testing, and management of all contacts, including upstream contacts (i.e. potential sources of infection for identified cases, and their related transmission chains). Pooling allows increased case detection when testing capacity is limited, even given reduced test sensitivity. Critical to the effectiveness of all aspects of surveillance is appropriate community engagement, messaging to optimise testing uptake and compliance with other measures.
Appendix
Available only for authorised users
Literature
1.
go back to reference Lee VJ, Chiew CJ, Khong WX. Interrupting transmission of COVID-19: lessons from containment efforts in Singapore. J Travel Med. 2020;27(3):1–5. Lee VJ, Chiew CJ, Khong WX. Interrupting transmission of COVID-19: lessons from containment efforts in Singapore. J Travel Med. 2020;27(3):1–5.
2.
go back to reference World Health Organization. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). 2020 16–24 February 2020. World Health Organization. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). 2020 16–24 February 2020.
4.
go back to reference Chang S, Harding N, Zachreson C, Cliff O, Prokopenko M. Modelling transmission and control of the COVID-19 pandemic in Australia. Nature Comms. 2020;11(1):5710. Chang S, Harding N, Zachreson C, Cliff O, Prokopenko M. Modelling transmission and control of the COVID-19 pandemic in Australia. Nature Comms. 2020;11(1):5710.
6.
go back to reference Ferguson N, Laydon D, Nedjati Gilani G, Imai N, Ainslie K, Baguelin M, et al. Report 9: Impact of non-pharmaceutical interventions (NPIs) to reduce COVID19 mortality an healthcare demand. London: Imperial College London COVID-19 Response Team; 2020. Ferguson N, Laydon D, Nedjati Gilani G, Imai N, Ainslie K, Baguelin M, et al. Report 9: Impact of non-pharmaceutical interventions (NPIs) to reduce COVID19 mortality an healthcare demand. London: Imperial College London COVID-19 Response Team; 2020.
7.
go back to reference Lokuge K, Caleo G, Greig J, Duncombe J, McWilliam N, Squire J, et al. Successful control of Ebola virus disease: analysis of service based data from rural Sierra Leone. PLoS Negl Trop Dis. 2016;10(3):e0004498.CrossRef Lokuge K, Caleo G, Greig J, Duncombe J, McWilliam N, Squire J, et al. Successful control of Ebola virus disease: analysis of service based data from rural Sierra Leone. PLoS Negl Trop Dis. 2016;10(3):e0004498.CrossRef
8.
go back to reference Anderson RM, Heesterbeek H, Klinkenberg D, Hollingsworth TD. How will country-based mitigation measures influence the course of the COVID-19 epidemic? Lancet. 2020;395(10228):931–4.CrossRef Anderson RM, Heesterbeek H, Klinkenberg D, Hollingsworth TD. How will country-based mitigation measures influence the course of the COVID-19 epidemic? Lancet. 2020;395(10228):931–4.CrossRef
9.
go back to reference Ng Y, Li Z, Chua Y, et al. Evaluation of the effectiveness of surveillance and containment measures for the first 100 patients with COVID-19 in Singapore — January 2–February 29, 2020. MMWR Morb Mortal Wkly Rep 2020;69(11):307–11. Ng Y, Li Z, Chua Y, et al. Evaluation of the effectiveness of surveillance and containment measures for the first 100 patients with COVID-19 in Singapore — January 2–February 29, 2020. MMWR Morb Mortal Wkly Rep 2020;69(11):307–11.
10.
go back to reference Salathe M, Althaus CL, Neher R, Stringhini S, Hodcroft E, Fellay J, et al. COVID-19 epidemic in Switzerland: on the importance of testing, contact tracing and isolation. Swiss Med Wkly. 2020;150:w20225.PubMed Salathe M, Althaus CL, Neher R, Stringhini S, Hodcroft E, Fellay J, et al. COVID-19 epidemic in Switzerland: on the importance of testing, contact tracing and isolation. Swiss Med Wkly. 2020;150:w20225.PubMed
12.
go back to reference Gallagher J. Coronavirus: When will the outbreak end and life get back to normal? BBC News. 2020;2020. Gallagher J. Coronavirus: When will the outbreak end and life get back to normal? BBC News. 2020;2020.
14.
go back to reference Caleo G, Duncombe J, Jephcott F, Lokuge K, Mills C, Looijen E, et al. The factors affecting household transmission dynamics and community compliance with Ebola control measures: a mixed-methods study in a rural village in Sierra Leone. BMC Public Health. 2018;18(1):248.CrossRef Caleo G, Duncombe J, Jephcott F, Lokuge K, Mills C, Looijen E, et al. The factors affecting household transmission dynamics and community compliance with Ebola control measures: a mixed-methods study in a rural village in Sierra Leone. BMC Public Health. 2018;18(1):248.CrossRef
15.
go back to reference Noriega R, Samore MH. Increasing testing throughput and case detection with a pooled-sample Bayesian approach in the context of COVID-19. bioRxiv. 2020:2020.04.03.024216. Noriega R, Samore MH. Increasing testing throughput and case detection with a pooled-sample Bayesian approach in the context of COVID-19. bioRxiv. 2020:2020.04.03.024216.
16.
go back to reference Hogan CA, Sahoo MK, Pinsky BA. Sample pooling as a strategy to detect community transmission of SARS-CoV-2. JAMA. 2020;323(19):1967–9.CrossRef Hogan CA, Sahoo MK, Pinsky BA. Sample pooling as a strategy to detect community transmission of SARS-CoV-2. JAMA. 2020;323(19):1967–9.CrossRef
19.
go back to reference Ferretti L, Wymant C, Kendall M, Zhao L, Nurtay A, Bonsall D, et al. Quantifying dynamics of SARS-CoV-2 transmission suggests that epidemic control and avoidance is feasible through instantaneous digital contact tracing. Science. 2020;368(6491):eabb6936. Ferretti L, Wymant C, Kendall M, Zhao L, Nurtay A, Bonsall D, et al. Quantifying dynamics of SARS-CoV-2 transmission suggests that epidemic control and avoidance is feasible through instantaneous digital contact tracing. Science. 2020;368(6491):eabb6936.
20.
go back to reference Grant MC, Geoghegan L, Arbyn M, Mohammed Z, McGuinness L, Clarke EL, et al. The prevalence of symptoms in 24,410 adults infected by the novel coronavirus (SARS-CoV-2; COVID-19): a systematic review and meta-analysis of 148 studies from 9 countries. PLoS One. 2020;15(6):e0234765. Grant MC, Geoghegan L, Arbyn M, Mohammed Z, McGuinness L, Clarke EL, et al. The prevalence of symptoms in 24,410 adults infected by the novel coronavirus (SARS-CoV-2; COVID-19): a systematic review and meta-analysis of 148 studies from 9 countries. PLoS One. 2020;15(6):e0234765.
21.
go back to reference Zwartz H. A lot more of us can now get tested for coronavirus. Here’s what you need to know; 2020. Zwartz H. A lot more of us can now get tested for coronavirus. Here’s what you need to know; 2020.
22.
go back to reference Liu Y, Gayle AA, Wilder-Smith A, Rocklov J. The reproductive number of COVID-19 is higher compared to SARS coronavirus. J Travel Med. 2020;27(2):1–4. Liu Y, Gayle AA, Wilder-Smith A, Rocklov J. The reproductive number of COVID-19 is higher compared to SARS coronavirus. J Travel Med. 2020;27(2):1–4.
23.
go back to reference CDC COVID-19 Response Team. Severe outcomes among patients with coronavirus disease 2019 (COVID-19)—United States, February 12–March 16, 2020. MMWR Morb Mortal Wkly Rep; 2020; 69(12):343–6. CDC COVID-19 Response Team. Severe outcomes among patients with coronavirus disease 2019 (COVID-19)—United States, February 12–March 16, 2020. MMWR Morb Mortal Wkly Rep; 2020; 69(12):343–6.
24.
go back to reference Mizumoto K, Kagaya K, Zarebski A, Chowell G. Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the diamond princess cruise ship, Yokohama, Japan, 2020. Euro Surveill. 2020;25:2000180. Mizumoto K, Kagaya K, Zarebski A, Chowell G. Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the diamond princess cruise ship, Yokohama, Japan, 2020. Euro Surveill. 2020;25:2000180.
25.
go back to reference Nishiura H, Kobayashi T, Suzuki A, Jung S-M, Hayashi K, Kinoshita R, et al. Estimation of the asymptomatic ratio of novel coronavirus infections (COVID-19). Int J Infect Dis. 2020; Nishiura H, Kobayashi T, Suzuki A, Jung S-M, Hayashi K, Kinoshita R, et al. Estimation of the asymptomatic ratio of novel coronavirus infections (COVID-19). Int J Infect Dis. 2020;
26.
go back to reference Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–62.CrossRef Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–62.CrossRef
32.
go back to reference Mossong J, Hens N, Jit M, Beutels P, Auranen K, Mikolajczyk R, et al. Social contacts and mixing patterns relevant to the spread of infectious diseases. PLoS Med. 2008;5(3):e74.CrossRef Mossong J, Hens N, Jit M, Beutels P, Auranen K, Mikolajczyk R, et al. Social contacts and mixing patterns relevant to the spread of infectious diseases. PLoS Med. 2008;5(3):e74.CrossRef
34.
go back to reference South Australia Health. SA Health COVID-19 Active Surveillance Testing Operational Framework. 2020. South Australia Health. SA Health COVID-19 Active Surveillance Testing Operational Framework. 2020.
35.
go back to reference Russell T, Hellewell J, Abbott S, Golding N, Gibbs H, Jarvis C, et al. Reconstructing the early global dynamics of under-ascertained COVID-19 cases and infections. BMC Med 2020;18(332). Russell T, Hellewell J, Abbott S, Golding N, Gibbs H, Jarvis C, et al. Reconstructing the early global dynamics of under-ascertained COVID-19 cases and infections. BMC Med 2020;18(332).
36.
go back to reference Althouse BM, Wenger EA, Miller JC, Scarpino SV, Allard A, Hebert-Dufresne L, et al. Superspreading events in the transmission dynamics of SARS-CoV-2: opportunities for interventions and control. PLoS Biol. 2020; Althouse BM, Wenger EA, Miller JC, Scarpino SV, Allard A, Hebert-Dufresne L, et al. Superspreading events in the transmission dynamics of SARS-CoV-2: opportunities for interventions and control. PLoS Biol. 2020;
37.
go back to reference Baker MG, Kvalsvig A, Verrall AJ. New Zealand's COVID-19 elimination strategy. Med J Aust. 2020;213(5):198–200.CrossRef Baker MG, Kvalsvig A, Verrall AJ. New Zealand's COVID-19 elimination strategy. Med J Aust. 2020;213(5):198–200.CrossRef
38.
go back to reference Lokuge K, Banks E, Davis S, Roberts L, Street T, O'Donovan D, et al. Exit strategies: optimising feasible surveillance for detection, elimination and ongoing prevention of COVID-19 community transmission. medRxiv. 2020. 0419.20071217. Lokuge K, Banks E, Davis S, Roberts L, Street T, O'Donovan D, et al. Exit strategies: optimising feasible surveillance for detection, elimination and ongoing prevention of COVID-19 community transmission. medRxiv. 2020. 0419.20071217.
39.
go back to reference Communicable Diseases Network Australia. Australian National Disease Surveillance Plan for COVID-19. 2020 May 2020. Communicable Diseases Network Australia. Australian National Disease Surveillance Plan for COVID-19. 2020 May 2020.
40.
go back to reference Australian Health Protection Principal Committee. Coronavirus (COVID-19) in Australia - Pandemic Health Intelligence Plan. 2020. Australian Health Protection Principal Committee. Coronavirus (COVID-19) in Australia - Pandemic Health Intelligence Plan. 2020.
41.
go back to reference Fleming S. South Korea's Foreign Minister explains how the country contained COVID-19. World Economic Forum. 2020 31 March 2020. Fleming S. South Korea's Foreign Minister explains how the country contained COVID-19. World Economic Forum. 2020 31 March 2020.
43.
go back to reference Wingfield-Hayes R. Coronavirus lockdown: Lessons from Hokkaido’s second wave of infections. BBC News. 2020 16 April 2020. Wingfield-Hayes R. Coronavirus lockdown: Lessons from Hokkaido’s second wave of infections. BBC News. 2020 16 April 2020.
45.
go back to reference ABC News. Australian coronavirus testing hits world-leading levels above 1 per cent of population, Scott Morison says. ABC News. 2020 2 April 2020. ABC News. Australian coronavirus testing hits world-leading levels above 1 per cent of population, Scott Morison says. ABC News. 2020 2 April 2020.
47.
go back to reference Kojima N, Turner F, Slepnev V, Bacelar A, Deming L, Kodeboyina S, et al. Self-collected oral fluid and nasal swabs demonstrate comparable sensitivity to clinician collected nasopharyngeal swabs for Covid-19 detection. medRxiv. 2020:2020.04.11.20062372. Kojima N, Turner F, Slepnev V, Bacelar A, Deming L, Kodeboyina S, et al. Self-collected oral fluid and nasal swabs demonstrate comparable sensitivity to clinician collected nasopharyngeal swabs for Covid-19 detection. medRxiv. 2020:2020.04.11.20062372.
48.
go back to reference Seaman CP, Tran LTT, Cowling BJ, Sullivan SG. Self-collected compared with professional-collected swabbing in the diagnosis of influenza in symptomatic individuals: a meta-analysis and assessment of validity. J Clin Virol. 2019;118:28–35.CrossRef Seaman CP, Tran LTT, Cowling BJ, Sullivan SG. Self-collected compared with professional-collected swabbing in the diagnosis of influenza in symptomatic individuals: a meta-analysis and assessment of validity. J Clin Virol. 2019;118:28–35.CrossRef
49.
go back to reference Wyllie AL, Fournier J, Casanovas-Massana A, Campbell M, Tokuyama M, Vijayakumar P, et al. Saliva or nasopharyngeal swab specimens for detection of SARS-CoV-2. N Engl J Med. 2020;383:1283–6.CrossRef Wyllie AL, Fournier J, Casanovas-Massana A, Campbell M, Tokuyama M, Vijayakumar P, et al. Saliva or nasopharyngeal swab specimens for detection of SARS-CoV-2. N Engl J Med. 2020;383:1283–6.CrossRef
50.
go back to reference Heymann DL, Shindo N. COVID-19: what is next for public health? Lancet. 2020;395(10224):542–5.CrossRef Heymann DL, Shindo N. COVID-19: what is next for public health? Lancet. 2020;395(10224):542–5.CrossRef
52.
go back to reference Kucirka LM, Lauer SA, Laeyendecker O, Boon D, Lessler J. Variation in false-negative rate of reverse transcriptase polymerase chain reaction–based SARS-CoV-2 tests by time since exposure. Ann Intern Med. 2020; Kucirka LM, Lauer SA, Laeyendecker O, Boon D, Lessler J. Variation in false-negative rate of reverse transcriptase polymerase chain reaction–based SARS-CoV-2 tests by time since exposure. Ann Intern Med. 2020;
53.
go back to reference Boseley M, Visontay E. Coronavirus NSW: Crossroads Hotel outbreak linked to Victoria via genomic testing. The Guardian. 2020 15 July 2020. Boseley M, Visontay E. Coronavirus NSW: Crossroads Hotel outbreak linked to Victoria via genomic testing. The Guardian. 2020 15 July 2020.
54.
go back to reference COVID-19 Hotel Quarantine Policy. COVID-19 Hotel Quarantine Inquiry Interim Report and Recommendations. 2020 6 November 2020. COVID-19 Hotel Quarantine Policy. COVID-19 Hotel Quarantine Inquiry Interim Report and Recommendations. 2020 6 November 2020.
55.
go back to reference Tomevska S. How did Adelaide’s COVID-19 cluster begin and are medi-hotel procedures to blame? ABC News. 2020 17 November 2020. Tomevska S. How did Adelaide’s COVID-19 cluster begin and are medi-hotel procedures to blame? ABC News. 2020 17 November 2020.
56.
go back to reference Arevalo-Rodriguez I, Buitrago-Garcia D, Simancas-Racines D, Zambrano-Achig P, del Campo R, Ciapponi A, et al. False-negative results of initial RTPCR assays for COVID-19: a systematic review. MedRxiv. 2020;04(16):20066787. Arevalo-Rodriguez I, Buitrago-Garcia D, Simancas-Racines D, Zambrano-Achig P, del Campo R, Ciapponi A, et al. False-negative results of initial RTPCR assays for COVID-19: a systematic review. MedRxiv. 2020;04(16):20066787.
60.
go back to reference Huang Y, Sun M, Sui Y. How digital contact tracing slowed Covid-19 in East Asia. Harv Bus Rev. 2020 April;15:2020. Huang Y, Sun M, Sui Y. How digital contact tracing slowed Covid-19 in East Asia. Harv Bus Rev. 2020 April;15:2020.
61.
go back to reference Menni C, Valdes A, Freydin MB, Ganesh S, El-Sayed Moustafa J, Visconti A, et al. Loss of smell and taste in combination with other symptoms is a strong predictor of COVID-19 infection. medRxiv. 2020:2020.04.05.20048421. Menni C, Valdes A, Freydin MB, Ganesh S, El-Sayed Moustafa J, Visconti A, et al. Loss of smell and taste in combination with other symptoms is a strong predictor of COVID-19 infection. medRxiv. 2020:2020.04.05.20048421.
62.
go back to reference Medema G, Heijnen L, Elsinga G, Italiaander R, Brouwer A. Presence of SARS-Coronavirus-2 RNA in Sewage and Correlation with Reported COVID-19 Prevalence in the Early Stage of the Epidemic in The Netherlands. Environ Sci Technol Lett. 2020:acs.estlett.0c00357. Medema G, Heijnen L, Elsinga G, Italiaander R, Brouwer A. Presence of SARS-Coronavirus-2 RNA in Sewage and Correlation with Reported COVID-19 Prevalence in the Early Stage of the Epidemic in The Netherlands. Environ Sci Technol Lett. 2020:acs.estlett.0c00357.
63.
go back to reference Li Y, Reeves RM, Wang X, Bassat Q, Brooks WA, Cohen C, et al. Global patterns in monthly activity of influenza virus, respiratory syncytial virus, parainfluenza virus, and metapneumovirus: a systematic analysis. Lancet Glob Health. 2019;7(8):e1031–e45.CrossRef Li Y, Reeves RM, Wang X, Bassat Q, Brooks WA, Cohen C, et al. Global patterns in monthly activity of influenza virus, respiratory syncytial virus, parainfluenza virus, and metapneumovirus: a systematic analysis. Lancet Glob Health. 2019;7(8):e1031–e45.CrossRef
64.
go back to reference Kretzschmar ME, Rozhnova G, Bootsma MCJ, van Boven M, van de Wijgert JHHM, Bonten MJM. Impact of delays on effectiveness of contact tracing strategies for COVID-19: a modelling study. Lancet. 2020;5(8):E452–E9. Kretzschmar ME, Rozhnova G, Bootsma MCJ, van Boven M, van de Wijgert JHHM, Bonten MJM. Impact of delays on effectiveness of contact tracing strategies for COVID-19: a modelling study. Lancet. 2020;5(8):E452–E9.
65.
go back to reference McIlroy T, Moore T, Rudra N. SA cluster grows to 20, self-quarantine for 4000 contacts. Financial Review. 2020 17 November 2020. McIlroy T, Moore T, Rudra N. SA cluster grows to 20, self-quarantine for 4000 contacts. Financial Review. 2020 17 November 2020.
66.
go back to reference Volz E, Mishra S, Chand M, Barrett JC, Johnson R, Geidelberg L, et al. Transmission of SARS-CoV-2 lineage B.1.1.7 in England: insights from linking epidemiological and genetic data. medRxiv. 2020. Volz E, Mishra S, Chand M, Barrett JC, Johnson R, Geidelberg L, et al. Transmission of SARS-CoV-2 lineage B.1.1.7 in England: insights from linking epidemiological and genetic data. medRxiv. 2020.
67.
go back to reference Worthington B. Forced coronavirus quarantine for all people returning to Australia. ABC News. 2020 27 March 2020. Worthington B. Forced coronavirus quarantine for all people returning to Australia. ABC News. 2020 27 March 2020.
68.
go back to reference Manguvo A, Mafuvadze B. The impact of traditional and religious practices on the spread of Ebola in West Africa: time for a strategic shift. Pan African Med J. 2015;22 Suppl 1(Suppl 1):9. Manguvo A, Mafuvadze B. The impact of traditional and religious practices on the spread of Ebola in West Africa: time for a strategic shift. Pan African Med J. 2015;22 Suppl 1(Suppl 1):9.
69.
go back to reference Hamner L, Dubbel P, Capron I, Ross A, Jordan A, Lee J, et al. High SARS-CoV-2 attack rate following exposure at a choir practice—Skagit County, Washington, march 2020. MMWR Morb Mortal Wkly Rep. 2020;69(19):606–10.CrossRef Hamner L, Dubbel P, Capron I, Ross A, Jordan A, Lee J, et al. High SARS-CoV-2 attack rate following exposure at a choir practice—Skagit County, Washington, march 2020. MMWR Morb Mortal Wkly Rep. 2020;69(19):606–10.CrossRef
70.
go back to reference James E. Tasmania shuts hospitals in virus outbreak. The Esperance Express. 2020 12 April 2020. James E. Tasmania shuts hospitals in virus outbreak. The Esperance Express. 2020 12 April 2020.
Metadata
Title
Exit strategies: optimising feasible surveillance for detection, elimination, and ongoing prevention of COVID-19 community transmission
Authors
K. Lokuge
E. Banks
S. Davis
L. Roberts
T. Street
D. O’Donovan
G. Caleo
K. Glass
Publication date
01-12-2021
Publisher
BioMed Central
Keywords
Care
COVID-19
Published in
BMC Medicine / Issue 1/2021
Electronic ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-021-01934-5

Other articles of this Issue 1/2021

BMC Medicine 1/2021 Go to the issue