Skip to main content
Top
Published in: BMC Medicine 1/2020

Open Access 01-12-2020 | Research article

Statistical analyses and quality of individual participant data network meta-analyses were suboptimal: a cross-sectional study

Authors: Ya Gao, Shuzhen Shi, Muyang Li, Xinyue Luo, Ming Liu, Kelu Yang, Junhua Zhang, Fujian Song, Jinhui Tian

Published in: BMC Medicine | Issue 1/2020

Login to get access

Abstract

Background

Network meta-analyses using individual participant data (IPD-NMAs) have been increasingly used to compare the effects of multiple interventions. Although there have been many studies on statistical methods for IPD-NMAs, it is unclear whether there are statistical defects in published IPD-NMAs and whether the reporting of statistical analyses has improved. This study aimed to investigate statistical methods used and assess the reporting and methodological quality of IPD-NMAs.

Methods

We searched four bibliographic databases to identify published IPD-NMAs. The methodological quality was assessed using AMSTAR-2 and reporting quality assessed based on PRISMA-IPD and PRISMA-NMA. We performed stratified analyses and correlation analyses to explore the factors that might affect quality.

Results

We identified 21 IPD-NMAs. Only 23.8% of the included IPD-NMAs reported statistical techniques used for missing participant data, 42.9% assessed the consistency, and none assessed the transitivity. None of the included IPD-NMAs reported sources of funding for trials included, only 9.5% stated pre-registration of protocols, and 28.6% assessed the risk of bias in individual studies. For reporting quality, compliance rates were lower than 50.0% for more than half of the items. Less than 15.0% of the IPD-NMAs reported data integrity, presented the network geometry, or clarified risk of bias across studies. IPD-NMAs with statistical or epidemiological authors often better assessed the inconsistency (P = 0.017). IPD-NMAs with a priori protocol were associated with higher reporting quality in terms of search (P = 0.046), data collection process (P = 0.031), and syntheses of results (P = 0.006).

Conclusions

The reporting of statistical methods and compliance rates of methodological and reporting items of IPD-NMAs were suboptimal. Authors of future IPD-NMAs should address the identified flaws and strictly adhere to methodological and reporting guidelines.
Appendix
Available only for authorised users
Literature
1.
go back to reference Stewart LA, Clarke M, Rovers M, Riley RD, Simmonds M, Stewart G, Tierney JF. Preferred reporting items for systematic review and meta-analyses of individual participant data: the PRISMA-IPD statement. JAMA. 2015;313(16):1657–65.PubMedCrossRef Stewart LA, Clarke M, Rovers M, Riley RD, Simmonds M, Stewart G, Tierney JF. Preferred reporting items for systematic review and meta-analyses of individual participant data: the PRISMA-IPD statement. JAMA. 2015;313(16):1657–65.PubMedCrossRef
2.
go back to reference Simmonds M, Stewart G, Stewart L. A decade of individual participant data meta-analyses: a review of current practice. Contemp Clin Trials. 2015;45(Pt A):76–83.PubMedCrossRef Simmonds M, Stewart G, Stewart L. A decade of individual participant data meta-analyses: a review of current practice. Contemp Clin Trials. 2015;45(Pt A):76–83.PubMedCrossRef
3.
go back to reference Veroniki AA, Straus SE, Soobiah C, Elliott MJ, Tricco AC. A scoping review of indirect comparison methods and applications using individual patient data. BMC Med Res Methodol. 2016;16:47.PubMedCrossRef Veroniki AA, Straus SE, Soobiah C, Elliott MJ, Tricco AC. A scoping review of indirect comparison methods and applications using individual patient data. BMC Med Res Methodol. 2016;16:47.PubMedCrossRef
4.
go back to reference Schuit E, Li AH, Ioannidis JPA. How often can meta-analyses of individual-level data individualize treatment? A meta-epidemiologic study. Int J Epidemiol. 2019;48(2):596–608.PubMedCrossRef Schuit E, Li AH, Ioannidis JPA. How often can meta-analyses of individual-level data individualize treatment? A meta-epidemiologic study. Int J Epidemiol. 2019;48(2):596–608.PubMedCrossRef
5.
go back to reference Stewart LA, Tierney JF. To IPD or not to IPD? Advantages and disadvantages of systematic reviews using individual patient data. Eval Health Prof. 2002;25(1):76–97.CrossRef Stewart LA, Tierney JF. To IPD or not to IPD? Advantages and disadvantages of systematic reviews using individual patient data. Eval Health Prof. 2002;25(1):76–97.CrossRef
6.
go back to reference Tsujimoto Y, Fujii T, Onishi A, Omae K, Luo Y, Imai H, Takahashi S, Itaya T, Pinson C, Nevitt SJ, et al. No consistent evidence of data availability bias existed in recent individual participant data meta-analyses: a meta-epidemiological study. J Clin Epidemiol. 2020;118:107–14.e5.PubMedCrossRef Tsujimoto Y, Fujii T, Onishi A, Omae K, Luo Y, Imai H, Takahashi S, Itaya T, Pinson C, Nevitt SJ, et al. No consistent evidence of data availability bias existed in recent individual participant data meta-analyses: a meta-epidemiological study. J Clin Epidemiol. 2020;118:107–14.e5.PubMedCrossRef
7.
go back to reference Debray TPA, Schuit E, Efthimiou O, Reitsma JB, Ioannidis JPA, Salanti G, Moons KGM. An overview of methods for network meta-analysis using individual participant data: when do benefits arise? Stat Methods Med Res. 2018;27(5):1351–64.PubMedCrossRef Debray TPA, Schuit E, Efthimiou O, Reitsma JB, Ioannidis JPA, Salanti G, Moons KGM. An overview of methods for network meta-analysis using individual participant data: when do benefits arise? Stat Methods Med Res. 2018;27(5):1351–64.PubMedCrossRef
8.
go back to reference Tierney JF, Vale C, Riley R, Smith CT, Stewart L, Clarke M, Rovers M. Individual participant data (IPD) meta-analyses of randomised controlled trials: guidance on their use. PLoS Med. 2015;12(7):e1001855.PubMedPubMedCentralCrossRef Tierney JF, Vale C, Riley R, Smith CT, Stewart L, Clarke M, Rovers M. Individual participant data (IPD) meta-analyses of randomised controlled trials: guidance on their use. PLoS Med. 2015;12(7):e1001855.PubMedPubMedCentralCrossRef
9.
go back to reference Li T, Puhan MA, Vedula SS, Singh S, Dickersin K. Network meta-analysis-highly attractive but more methodological research is needed. BMC Med. 2011;9:79.PubMedCrossRef Li T, Puhan MA, Vedula SS, Singh S, Dickersin K. Network meta-analysis-highly attractive but more methodological research is needed. BMC Med. 2011;9:79.PubMedCrossRef
10.
go back to reference Mills EJ, Ioannidis JP, Thorlund K, Schunemann HJ, Puhan MA, Guyatt GH. How to use an article reporting a multiple treatment comparison meta-analysis. JAMA. 2012;308(12):1246–53.PubMedCrossRef Mills EJ, Ioannidis JP, Thorlund K, Schunemann HJ, Puhan MA, Guyatt GH. How to use an article reporting a multiple treatment comparison meta-analysis. JAMA. 2012;308(12):1246–53.PubMedCrossRef
11.
go back to reference Caldwell DM, Ades AE, Higgins JP. Simultaneous comparison of multiple treatments: combining direct and indirect evidence. BMJ (Clinical research ed). 2005;331(7521):897–900.CrossRef Caldwell DM, Ades AE, Higgins JP. Simultaneous comparison of multiple treatments: combining direct and indirect evidence. BMJ (Clinical research ed). 2005;331(7521):897–900.CrossRef
12.
go back to reference Li L, Tian J, Tian H, Moher D, Liang F, Jiang T, Yao L, Yang K. Network meta-analyses could be improved by searching more sources and by involving a librarian. J Clin Epidemiol. 2014;67(9):1001–7.PubMedCrossRef Li L, Tian J, Tian H, Moher D, Liang F, Jiang T, Yao L, Yang K. Network meta-analyses could be improved by searching more sources and by involving a librarian. J Clin Epidemiol. 2014;67(9):1001–7.PubMedCrossRef
13.
go back to reference Thom HH, Capkun G, Cerulli A, Nixon RM, Howard LS. Network meta-analysis combining individual patient and aggregate data from a mixture of study designs with an application to pulmonary arterial hypertension. BMC Med Res Methodol. 2015;15:34.PubMedCrossRef Thom HH, Capkun G, Cerulli A, Nixon RM, Howard LS. Network meta-analysis combining individual patient and aggregate data from a mixture of study designs with an application to pulmonary arterial hypertension. BMC Med Res Methodol. 2015;15:34.PubMedCrossRef
14.
go back to reference Donegan S, Welton NJ, Tudur Smith C, D'Alessandro U, Dias S. Network meta-analysis including treatment by covariate interactions: consistency can vary across covariate values. Res Synth Methods. 2017;8(4):485–95.PubMedCrossRef Donegan S, Welton NJ, Tudur Smith C, D'Alessandro U, Dias S. Network meta-analysis including treatment by covariate interactions: consistency can vary across covariate values. Res Synth Methods. 2017;8(4):485–95.PubMedCrossRef
15.
go back to reference Donegan S, Williamson P, D'Alessandro U, Garner P, Smith CT. Combining individual patient data and aggregate data in mixed treatment comparison meta-analysis: individual patient data may be beneficial if only for a subset of trials. Stat Med. 2013;32(6):914–30.PubMedCrossRef Donegan S, Williamson P, D'Alessandro U, Garner P, Smith CT. Combining individual patient data and aggregate data in mixed treatment comparison meta-analysis: individual patient data may be beneficial if only for a subset of trials. Stat Med. 2013;32(6):914–30.PubMedCrossRef
16.
go back to reference Saramago P, Sutton AJ, Cooper NJ, Manca A. Mixed treatment comparisons using aggregate and individual participant level data. Stat Med. 2012;31(28):3516–36.PubMedCrossRef Saramago P, Sutton AJ, Cooper NJ, Manca A. Mixed treatment comparisons using aggregate and individual participant level data. Stat Med. 2012;31(28):3516–36.PubMedCrossRef
17.
go back to reference Berlin JA, Santanna J, Schmid CH, Szczech LA, Feldman HI. Individual patient- versus group-level data meta-regressions for the investigation of treatment effect modifiers: ecological bias rears its ugly head. Stat Med. 2002;21(3):371–87.PubMedCrossRef Berlin JA, Santanna J, Schmid CH, Szczech LA, Feldman HI. Individual patient- versus group-level data meta-regressions for the investigation of treatment effect modifiers: ecological bias rears its ugly head. Stat Med. 2002;21(3):371–87.PubMedCrossRef
18.
go back to reference Riley RD, Lambert PC, Abo-Zaid G. Meta-analysis of individual participant data: rationale, conduct, and reporting. BMJ (Clinical research ed). 2010;340:c221.CrossRef Riley RD, Lambert PC, Abo-Zaid G. Meta-analysis of individual participant data: rationale, conduct, and reporting. BMJ (Clinical research ed). 2010;340:c221.CrossRef
19.
go back to reference Veroniki AA, Straus SE, Ashoor HM, Hamid JS, Hemmelgarn BR, Holroyd-Leduc J, Majumdar SR, McAuley G, Tricco AC. Comparative safety and effectiveness of cognitive enhancers for Alzheimer’s dementia: protocol for a systematic review and individual patient data network meta-analysis. BMJ Open. 2016;6(1):e010251.PubMedCrossRef Veroniki AA, Straus SE, Ashoor HM, Hamid JS, Hemmelgarn BR, Holroyd-Leduc J, Majumdar SR, McAuley G, Tricco AC. Comparative safety and effectiveness of cognitive enhancers for Alzheimer’s dementia: protocol for a systematic review and individual patient data network meta-analysis. BMJ Open. 2016;6(1):e010251.PubMedCrossRef
20.
go back to reference Simmonds MC, Higgins JPT, Stewart LA, Tierney JF, Clarke MJ, Thompson SG. Meta-analysis of individual patient data from randomized trials: a review of methods used in practice. Clin Trials. 2005;2(3):209–17.PubMedCrossRef Simmonds MC, Higgins JPT, Stewart LA, Tierney JF, Clarke MJ, Thompson SG. Meta-analysis of individual patient data from randomized trials: a review of methods used in practice. Clin Trials. 2005;2(3):209–17.PubMedCrossRef
21.
go back to reference Zarin W, Veroniki AA, Nincic V, Vafaei A, Reynen E, Motiwala SS, Antony J, Sullivan SM, Rios P, Daly C, et al. Characteristics and knowledge synthesis approach for 456 network meta-analyses: a scoping review. BMC Med. 2017;15(1):3.PubMedPubMedCentralCrossRef Zarin W, Veroniki AA, Nincic V, Vafaei A, Reynen E, Motiwala SS, Antony J, Sullivan SM, Rios P, Daly C, et al. Characteristics and knowledge synthesis approach for 456 network meta-analyses: a scoping review. BMC Med. 2017;15(1):3.PubMedPubMedCentralCrossRef
22.
go back to reference Tonin FS, Borba HH, Leonart LP, Mendes AM, Steimbach LM, Pontarolo R, Fernandez-Llimos F. Methodological quality assessment of network meta-analysis of drug interventions: implications from a systematic review. Int J Epidemiol. 2019;48(2):620–32.PubMedCrossRef Tonin FS, Borba HH, Leonart LP, Mendes AM, Steimbach LM, Pontarolo R, Fernandez-Llimos F. Methodological quality assessment of network meta-analysis of drug interventions: implications from a systematic review. Int J Epidemiol. 2019;48(2):620–32.PubMedCrossRef
23.
go back to reference Petropoulou M, Nikolakopoulou A, Veroniki AA, Rios P, Vafaei A, Zarin W, Giannatsi M, Sullivan S, Tricco AC, Chaimani A, et al. Bibliographic study showed improving statistical methodology of network meta-analyses published between 1999 and 2015. J Clin Epidemiol. 2017;82:20–8.PubMedCrossRef Petropoulou M, Nikolakopoulou A, Veroniki AA, Rios P, Vafaei A, Zarin W, Giannatsi M, Sullivan S, Tricco AC, Chaimani A, et al. Bibliographic study showed improving statistical methodology of network meta-analyses published between 1999 and 2015. J Clin Epidemiol. 2017;82:20–8.PubMedCrossRef
24.
go back to reference Gao Y, Ge L, Ma X, Shen X, Liu M, Tian J. Improvement needed in the network geometry and inconsistency of Cochrane network meta-analyses: a cross-sectional survey. J Clin Epidemiol. 2019;113:214–27.PubMedCrossRef Gao Y, Ge L, Ma X, Shen X, Liu M, Tian J. Improvement needed in the network geometry and inconsistency of Cochrane network meta-analyses: a cross-sectional survey. J Clin Epidemiol. 2019;113:214–27.PubMedCrossRef
25.
go back to reference Chaimani A, Vasiliadis HS, Pandis N, Schmid CH, Welton NJ, Salanti G. Effects of study precision and risk of bias in networks of interventions: a network meta-epidemiological study. Int J Epidemiol. 2013;42(4):1120–31.PubMedCrossRef Chaimani A, Vasiliadis HS, Pandis N, Schmid CH, Welton NJ, Salanti G. Effects of study precision and risk of bias in networks of interventions: a network meta-epidemiological study. Int J Epidemiol. 2013;42(4):1120–31.PubMedCrossRef
26.
go back to reference Jansen JP. Network meta-analysis of individual and aggregate level data. Res Synth Methods. 2012;3(2):177–90.PubMedCrossRef Jansen JP. Network meta-analysis of individual and aggregate level data. Res Synth Methods. 2012;3(2):177–90.PubMedCrossRef
27.
go back to reference Veroniki AA, Ashoor HM, Le SPC, Rios P, Stewart LA, Clarke M, Mavridis D, Straus SE, Tricco AC. Retrieval of individual patient data depended on study characteristics: a randomized controlled trial. J Clin Epidemiol. 2019;113:176–88.PubMedCrossRef Veroniki AA, Ashoor HM, Le SPC, Rios P, Stewart LA, Clarke M, Mavridis D, Straus SE, Tricco AC. Retrieval of individual patient data depended on study characteristics: a randomized controlled trial. J Clin Epidemiol. 2019;113:176–88.PubMedCrossRef
28.
go back to reference Freeman SC, Fisher D, Tierney JF, Carpenter JR. A framework for identifying treatment-covariate interactions in individual participant data network meta-analysis. Res Synth Methods. 2018;9(3):393–407.PubMed Freeman SC, Fisher D, Tierney JF, Carpenter JR. A framework for identifying treatment-covariate interactions in individual participant data network meta-analysis. Res Synth Methods. 2018;9(3):393–407.PubMed
29.
go back to reference Riley RD, Ensor J, Jackson D, Burke DL. Deriving percentage study weights in multi-parameter meta-analysis models: with application to meta-regression, network meta-analysis and one-stage individual participant data models. Stat Methods Med Res. 2018;27(10):2885–905.PubMedCrossRef Riley RD, Ensor J, Jackson D, Burke DL. Deriving percentage study weights in multi-parameter meta-analysis models: with application to meta-regression, network meta-analysis and one-stage individual participant data models. Stat Methods Med Res. 2018;27(10):2885–905.PubMedCrossRef
30.
go back to reference Signorovitch JE, Wu EQ, Yu AP, Gerrits CM, Kantor E, Bao Y, Gupta SR, Mulani PM. Comparative effectiveness without head-to-head trials: a method for matching-adjusted indirect comparisons applied to psoriasis treatment with adalimumab or etanercept. PharmacoEconomics. 2010;28(10):935–45.PubMedCrossRef Signorovitch JE, Wu EQ, Yu AP, Gerrits CM, Kantor E, Bao Y, Gupta SR, Mulani PM. Comparative effectiveness without head-to-head trials: a method for matching-adjusted indirect comparisons applied to psoriasis treatment with adalimumab or etanercept. PharmacoEconomics. 2010;28(10):935–45.PubMedCrossRef
31.
go back to reference Bucher HC, Guyatt GH, Griffith LE, Walter SD. The results of direct and indirect treatment comparisons in meta-analysis of randomized controlled trials. J Clin Epidemiol. 1997;50(6):683–91.PubMedCrossRef Bucher HC, Guyatt GH, Griffith LE, Walter SD. The results of direct and indirect treatment comparisons in meta-analysis of randomized controlled trials. J Clin Epidemiol. 1997;50(6):683–91.PubMedCrossRef
32.
go back to reference Caro JJ, Ishak KJ. No head-to-head trial? Simulate the missing arms. PharmacoEconomics. 2010;28(10):957–67.PubMedCrossRef Caro JJ, Ishak KJ. No head-to-head trial? Simulate the missing arms. PharmacoEconomics. 2010;28(10):957–67.PubMedCrossRef
33.
go back to reference Hutton B, Salanti G, Caldwell DM, Chaimani A, Schmid CH, Cameron C, Ioannidis JP, Straus S, Thorlund K, Jansen JP, et al. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann Intern Med. 2015;162(11):777–84.PubMedCrossRef Hutton B, Salanti G, Caldwell DM, Chaimani A, Schmid CH, Cameron C, Ioannidis JP, Straus S, Thorlund K, Jansen JP, et al. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann Intern Med. 2015;162(11):777–84.PubMedCrossRef
34.
go back to reference Ge L, Tian JH, Li YN, Pan JX, Li G, Wei D, Xing X, Pan B, Chen YL, Song FJ, et al. Association between prospective registration and overall reporting and methodological quality of systematic reviews: a meta-epidemiological study. J Clin Epidemiol. 2018;93:45–55.PubMedCrossRef Ge L, Tian JH, Li YN, Pan JX, Li G, Wei D, Xing X, Pan B, Chen YL, Song FJ, et al. Association between prospective registration and overall reporting and methodological quality of systematic reviews: a meta-epidemiological study. J Clin Epidemiol. 2018;93:45–55.PubMedCrossRef
35.
go back to reference Shea BJ, Reeves BC, Wells G, Thuku M, Hamel C, Moran J, Moher D, Tugwell P, Welch V, Kristjansson E, et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ (Clinical research ed). 2017;358:j4008.CrossRef Shea BJ, Reeves BC, Wells G, Thuku M, Hamel C, Moran J, Moher D, Tugwell P, Welch V, Kristjansson E, et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ (Clinical research ed). 2017;358:j4008.CrossRef
36.
go back to reference Villain B, Dechartres A, Boyer P, Ravaud P. Feasibility of individual patient data meta-analyses in orthopaedic surgery. BMC Med. 2015;13:131.PubMedCrossRef Villain B, Dechartres A, Boyer P, Ravaud P. Feasibility of individual patient data meta-analyses in orthopaedic surgery. BMC Med. 2015;13:131.PubMedCrossRef
37.
go back to reference Jaspers GJ, Degraeuwe PL. A failed attempt to conduct an individual patient data meta-analysis. Syst Rev. 2014;3:97. Jaspers GJ, Degraeuwe PL. A failed attempt to conduct an individual patient data meta-analysis. Syst Rev. 2014;3:97.
38.
go back to reference Jiang Q, Liu Q, Chen F, Zeng X, Song F, Lu Z, Cao S. Reporting quality and statistical analysis of published dose-response meta-analyses was suboptimal: a cross-sectional literature survey. J Clin Epidemiol. 2019;115:133–40.PubMedCrossRef Jiang Q, Liu Q, Chen F, Zeng X, Song F, Lu Z, Cao S. Reporting quality and statistical analysis of published dose-response meta-analyses was suboptimal: a cross-sectional literature survey. J Clin Epidemiol. 2019;115:133–40.PubMedCrossRef
39.
go back to reference Song F, Loke YK, Walsh T, Glenny AM, Eastwood AJ, Altman DG. Methodological problems in the use of indirect comparisons for evaluating healthcare interventions: survey of published systematic reviews. BMJ (Clinical research ed). 2009;338:b1147.CrossRef Song F, Loke YK, Walsh T, Glenny AM, Eastwood AJ, Altman DG. Methodological problems in the use of indirect comparisons for evaluating healthcare interventions: survey of published systematic reviews. BMJ (Clinical research ed). 2009;338:b1147.CrossRef
40.
go back to reference Hingorani AD, Windt DA, Riley RD, Abrams K, Moons KG, Steyerberg EW, Schroter S, Sauerbrei W, Altman DG, Hemingway H. Prognosis research strategy (PROGRESS) 4: stratified medicine research. BMJ (Clinical research ed). 2013;346:e5793. Hingorani AD, Windt DA, Riley RD, Abrams K, Moons KG, Steyerberg EW, Schroter S, Sauerbrei W, Altman DG, Hemingway H. Prognosis research strategy (PROGRESS) 4: stratified medicine research. BMJ (Clinical research ed). 2013;346:e5793.
41.
go back to reference Bafeta A, Trinquart L, Seror R, Ravaud P. Reporting of results from network meta-analyses: methodological systematic review. BMJ (Clinical research ed). 2014;348:g1741. Bafeta A, Trinquart L, Seror R, Ravaud P. Reporting of results from network meta-analyses: methodological systematic review. BMJ (Clinical research ed). 2014;348:g1741.
42.
go back to reference Habtewold TD, Alemu SM, Mohammed SH, Endalamaw A, Mohammed MA, Teferra AA, Tura AK, Asefa NG, Tegegne BS. Biomedical and public health reviews and meta-analyses in Ethiopia had poor methodological quality: overview of evidence from 1970 to 2018. J Clin Epidemiol. 2019;109:90–8.PubMedCrossRef Habtewold TD, Alemu SM, Mohammed SH, Endalamaw A, Mohammed MA, Teferra AA, Tura AK, Asefa NG, Tegegne BS. Biomedical and public health reviews and meta-analyses in Ethiopia had poor methodological quality: overview of evidence from 1970 to 2018. J Clin Epidemiol. 2019;109:90–8.PubMedCrossRef
43.
go back to reference Yan P, Yao L, Li H, Zhang M, Xun Y, Li M, Cai H, Lu C, Hu L, Guo T, et al. The methodological quality of robotic surgical meta-analyses needed to be improved: a cross-sectional study. J Clin Epidemiol. 2019;109:20–9.PubMedCrossRef Yan P, Yao L, Li H, Zhang M, Xun Y, Li M, Cai H, Lu C, Hu L, Guo T, et al. The methodological quality of robotic surgical meta-analyses needed to be improved: a cross-sectional study. J Clin Epidemiol. 2019;109:20–9.PubMedCrossRef
44.
go back to reference Riado Minguez D, Kowalski M, Vallve Odena M, Longin Pontzen D, Jelicic Kadic A, Jeric M, Dosenovic S, Jakus D, Vrdoljak M, Poklepovic Pericic T, et al. Methodological and reporting quality of systematic reviews published in the highest ranking journals in the field of pain. Anesth Analg. 2017;125(4):1348–54.PubMedCrossRef Riado Minguez D, Kowalski M, Vallve Odena M, Longin Pontzen D, Jelicic Kadic A, Jeric M, Dosenovic S, Jakus D, Vrdoljak M, Poklepovic Pericic T, et al. Methodological and reporting quality of systematic reviews published in the highest ranking journals in the field of pain. Anesth Analg. 2017;125(4):1348–54.PubMedCrossRef
45.
go back to reference Silagy CA, Middleton P, Hopewell S. Publishing protocols of systematic reviews: comparing what was done to what was planned. JAMA. 2002;287(21):2831–4.PubMedCrossRef Silagy CA, Middleton P, Hopewell S. Publishing protocols of systematic reviews: comparing what was done to what was planned. JAMA. 2002;287(21):2831–4.PubMedCrossRef
46.
go back to reference Koensgen N, Rombey T, Allers K, Mathes T, Hoffmann F, Pieper D. Comparison of non-Cochrane systematic reviews and their published protocols: differences occurred frequently but were seldom explained. J Clin Epidemiol. 2019;110:34–41.PubMedCrossRef Koensgen N, Rombey T, Allers K, Mathes T, Hoffmann F, Pieper D. Comparison of non-Cochrane systematic reviews and their published protocols: differences occurred frequently but were seldom explained. J Clin Epidemiol. 2019;110:34–41.PubMedCrossRef
47.
go back to reference Page MJ, McKenzie JE, Forbes A. Many scenarios exist for selective inclusion and reporting of results in randomized trials and systematic reviews. J Clin Epidemiol. 2013;66(5):524–37.PubMedCrossRef Page MJ, McKenzie JE, Forbes A. Many scenarios exist for selective inclusion and reporting of results in randomized trials and systematic reviews. J Clin Epidemiol. 2013;66(5):524–37.PubMedCrossRef
48.
go back to reference Allers K, Hoffmann F, Mathes T, Pieper D. Systematic reviews with published protocols compared to those without: more effort, older search. J Clin Epidemiol. 2018;95:102–10.PubMedCrossRef Allers K, Hoffmann F, Mathes T, Pieper D. Systematic reviews with published protocols compared to those without: more effort, older search. J Clin Epidemiol. 2018;95:102–10.PubMedCrossRef
Metadata
Title
Statistical analyses and quality of individual participant data network meta-analyses were suboptimal: a cross-sectional study
Authors
Ya Gao
Shuzhen Shi
Muyang Li
Xinyue Luo
Ming Liu
Kelu Yang
Junhua Zhang
Fujian Song
Jinhui Tian
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Medicine / Issue 1/2020
Electronic ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-020-01591-0

Other articles of this Issue 1/2020

BMC Medicine 1/2020 Go to the issue