Skip to main content
Top
Published in: BMC Medicine 1/2019

Open Access 01-12-2019 | Guideline

Microbiology Investigation Criteria for Reporting Objectively (MICRO): a framework for the reporting and interpretation of clinical microbiology data

Authors: Paul Turner, Andrew Fox-Lewis, Poojan Shrestha, David A. B. Dance, Tri Wangrangsimakul, Tomas-Paul Cusack, Clare L. Ling, Jill Hopkins, Tamalee Roberts, Direk Limmathurotsakul, Ben S. Cooper, Susanna Dunachie, Catrin E. Moore, Christiane Dolecek, H. Rogier van Doorn, Philippe J. Guerin, Nicholas P. J. Day, Elizabeth A. Ashley

Published in: BMC Medicine | Issue 1/2019

Login to get access

Abstract

Background

There is a pressing need to understand better the extent and distribution of antimicrobial resistance on a global scale, to inform development of effective interventions. Collation of datasets for meta-analysis, mathematical modelling and temporo-spatial analysis is hampered by the considerable variability in clinical sampling, variable quality in laboratory practice and inconsistencies in antimicrobial susceptibility testing and reporting.

Methods

The Microbiology Investigation Criteria for Reporting Objectively (MICRO) checklist was developed by an international working group of clinical and laboratory microbiologists, infectious disease physicians, epidemiologists and mathematical modellers.

Results

In keeping with the STROBE checklist, but applicable to all study designs, MICRO defines items to be included in reports of studies involving human clinical microbiology data. It provides a concise and comprehensive reference for clinicians, researchers, reviewers and journals working on, critically appraising, and publishing clinical microbiology datasets.

Conclusions

Implementation of the MICRO checklist will enhance the quality and scientific reporting of clinical microbiology data, increasing data utility and comparability to improve surveillance, grade data quality, facilitate meta-analyses and inform policy and interventions from local to global levels.
Appendix
Available only for authorised users
Literature
1.
go back to reference World Health Organization. Global action plan on antimicrobial resistance. 2015. World Health Organization. Global action plan on antimicrobial resistance. 2015.
2.
go back to reference Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18(3):318–27.CrossRef Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18(3):318–27.CrossRef
3.
go back to reference O'Neill J. The review on antimicrobial resistance. Tackling drug-resistant infections globally: final report and recommendations; 2016. O'Neill J. The review on antimicrobial resistance. Tackling drug-resistant infections globally: final report and recommendations; 2016.
4.
go back to reference Hay SI, Rao PC, Dolecek C, Day NPJ, Stergachis A, Lopez AD, et al. Measuring and mapping the global burden of antimicrobial resistance. BMC Med. 2018;16(1):78.CrossRef Hay SI, Rao PC, Dolecek C, Day NPJ, Stergachis A, Lopez AD, et al. Measuring and mapping the global burden of antimicrobial resistance. BMC Med. 2018;16(1):78.CrossRef
5.
go back to reference Ashley EA, Lubell Y, White NJ, Turner P. Antimicrobial susceptibility of bacterial isolates from community acquired infections in sub-Saharan Africa and Asian low and middle income countries. Tropical Med Int Health. 2011;16(9):1167–79.CrossRef Ashley EA, Lubell Y, White NJ, Turner P. Antimicrobial susceptibility of bacterial isolates from community acquired infections in sub-Saharan Africa and Asian low and middle income countries. Tropical Med Int Health. 2011;16(9):1167–79.CrossRef
6.
go back to reference Tenover FC, Mohammed MJ, Stelling J, O'Brien T, Williams R. Ability of laboratories to detect emerging antimicrobial resistance: proficiency testing and quality control results from the World Health Organization’s external quality assurance system for antimicrobial susceptibility testing. J Clin Microbiol. 2001;39(1):241–50.CrossRef Tenover FC, Mohammed MJ, Stelling J, O'Brien T, Williams R. Ability of laboratories to detect emerging antimicrobial resistance: proficiency testing and quality control results from the World Health Organization’s external quality assurance system for antimicrobial susceptibility testing. J Clin Microbiol. 2001;39(1):241–50.CrossRef
7.
go back to reference Chaitram JM, Jevitt LA, Lary S, Tenover FC, Group WHOAR. The World Health Organization’s External Quality Assurance System Proficiency Testing Program has improved the accuracy of antimicrobial susceptibility testing and reporting among participating laboratories using NCCLS methods. J Clin Microbiol. 2003;41(6):2372–7.CrossRef Chaitram JM, Jevitt LA, Lary S, Tenover FC, Group WHOAR. The World Health Organization’s External Quality Assurance System Proficiency Testing Program has improved the accuracy of antimicrobial susceptibility testing and reporting among participating laboratories using NCCLS methods. J Clin Microbiol. 2003;41(6):2372–7.CrossRef
8.
go back to reference Ashley EA, Dance DAB, Turner P. Grading antimicrobial susceptibility data quality: room for improvement. Lancet Infect Dis. 2018;18(6):603–4.CrossRef Ashley EA, Dance DAB, Turner P. Grading antimicrobial susceptibility data quality: room for improvement. Lancet Infect Dis. 2018;18(6):603–4.CrossRef
9.
go back to reference Carey RB, Bhattacharyya S, Kehl SC, Matukas LM, Pentella MA, Salfinger M, et al. Implementing a quality management system in the medical microbiology laboratory. Clin Microbiol Rev. 2018;31(3):e00062-17. Carey RB, Bhattacharyya S, Kehl SC, Matukas LM, Pentella MA, Salfinger M, et al. Implementing a quality management system in the medical microbiology laboratory. Clin Microbiol Rev. 2018;31(3):e00062-17.
10.
go back to reference Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268–81.CrossRef Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268–81.CrossRef
11.
go back to reference Hindler JF, Stelling J. Analysis and presentation of cumulative antibiograms: a new consensus guideline from the clinical and laboratory standards institute. Clin Infect Dis. 2007;44(6):867–73.CrossRef Hindler JF, Stelling J. Analysis and presentation of cumulative antibiograms: a new consensus guideline from the clinical and laboratory standards institute. Clin Infect Dis. 2007;44(6):867–73.CrossRef
12.
go back to reference Wertheim HF, Chandna A, Vu PD, Pham CV, Nguyen PD, Lam YM, et al. Providing impetus, tools, and guidance to strengthen national capacity for antimicrobial stewardship in Viet Nam. PLoS Med. 2013;10(5):e1001429.CrossRef Wertheim HF, Chandna A, Vu PD, Pham CV, Nguyen PD, Lam YM, et al. Providing impetus, tools, and guidance to strengthen national capacity for antimicrobial stewardship in Viet Nam. PLoS Med. 2013;10(5):e1001429.CrossRef
13.
go back to reference von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies*. Bull World Health Organ. 2007;85(11):867–72.CrossRef von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies*. Bull World Health Organ. 2007;85(11):867–72.CrossRef
14.
go back to reference Fitchett EJ, Seale AC, Vergnano S, Sharland M, Heath PT, Saha SK, et al. Strengthening the Reporting of Observational Studies in Epidemiology for Newborn Infection (STROBE-NI): an extension of the STROBE statement for neonatal infection research. Lancet Infect Dis. 2016;16(10):e202-e13. Fitchett EJ, Seale AC, Vergnano S, Sharland M, Heath PT, Saha SK, et al. Strengthening the Reporting of Observational Studies in Epidemiology for Newborn Infection (STROBE-NI): an extension of the STROBE statement for neonatal infection research. Lancet Infect Dis. 2016;16(10):e202-e13.
15.
go back to reference Field N, Cohen T, Struelens MJ, Palm D, Cookson B, Glynn JR, et al. Strengthening the Reporting of Molecular Epidemiology for Infectious Diseases (STROME-ID): an extension of the STROBE statement. Lancet Infect Dis. 2014;14(4):341–52.CrossRef Field N, Cohen T, Struelens MJ, Palm D, Cookson B, Glynn JR, et al. Strengthening the Reporting of Molecular Epidemiology for Infectious Diseases (STROME-ID): an extension of the STROBE statement. Lancet Infect Dis. 2014;14(4):341–52.CrossRef
16.
go back to reference Tacconelli E, Cataldo MA, Paul M, Leibovici L, Kluytmans J, Schroder W, et al. STROBE-AMS: recommendations to optimise reporting of epidemiological studies on antimicrobial resistance and informing improvement in antimicrobial stewardship. BMJ Open. 2016;6(2):e010134.CrossRef Tacconelli E, Cataldo MA, Paul M, Leibovici L, Kluytmans J, Schroder W, et al. STROBE-AMS: recommendations to optimise reporting of epidemiological studies on antimicrobial resistance and informing improvement in antimicrobial stewardship. BMJ Open. 2016;6(2):e010134.CrossRef
17.
go back to reference Moher D, Schulz KF, Simera I, Altman DG. Guidance for developers of health research reporting guidelines. PLoS Med. 2010;7(2):e1000217.CrossRef Moher D, Schulz KF, Simera I, Altman DG. Guidance for developers of health research reporting guidelines. PLoS Med. 2010;7(2):e1000217.CrossRef
19.
go back to reference CLSI. Performance standards for antimicrobial susceptibility testing. CLSI document M100-S28. 28th edition ed. Wayne: Clinical and Laboratory Standards Institute; 2018. CLSI. Performance standards for antimicrobial susceptibility testing. CLSI document M100-S28. 28th edition ed. Wayne: Clinical and Laboratory Standards Institute; 2018.
21.
go back to reference Hawkey PM, Warren RE, Livermore DM, McNulty CAM, Enoch DA, Otter JA, et al. Treatment of infections caused by multidrug-resistant Gram-negative bacteria: report of the British Society for Antimicrobial Chemotherapy/Healthcare Infection Society/British Infection Association Joint Working Party. J Antimicrob Chemother. 2018;73(suppl_3):iii2–iii78.CrossRef Hawkey PM, Warren RE, Livermore DM, McNulty CAM, Enoch DA, Otter JA, et al. Treatment of infections caused by multidrug-resistant Gram-negative bacteria: report of the British Society for Antimicrobial Chemotherapy/Healthcare Infection Society/British Infection Association Joint Working Party. J Antimicrob Chemother. 2018;73(suppl_3):iii2–iii78.CrossRef
22.
go back to reference German GJ, Gilmour M, Tipples G, Adam HJ, Almohri H, Bullard J, et al. Canadian recommendations for laboratory interpretation of multiple or extensive drug resistance in clinical isolates of Enterobacteriaceae, Acinetobacter species and Pseudomonas aeruginosa. Can Commun Dis Rep. 2018;44(1):29–34.CrossRef German GJ, Gilmour M, Tipples G, Adam HJ, Almohri H, Bullard J, et al. Canadian recommendations for laboratory interpretation of multiple or extensive drug resistance in clinical isolates of Enterobacteriaceae, Acinetobacter species and Pseudomonas aeruginosa. Can Commun Dis Rep. 2018;44(1):29–34.CrossRef
23.
go back to reference Weinstein MP, Klugman KP, Jones RN. Rationale for revised penicillin susceptibility breakpoints versus Streptococcus pneumoniae: coping with antimicrobial susceptibility in an era of resistance. Clin Infect Dis. 2009;48(11):1596–600.CrossRef Weinstein MP, Klugman KP, Jones RN. Rationale for revised penicillin susceptibility breakpoints versus Streptococcus pneumoniae: coping with antimicrobial susceptibility in an era of resistance. Clin Infect Dis. 2009;48(11):1596–600.CrossRef
24.
go back to reference Lim C, Takahashi E, Hongsuwan M, Wuthiekanun V, Thamlikitkul V, Hinjoy S, et al. Epidemiology and burden of multidrug-resistant bacterial infection in a developing country. Elife. 2016;5. Lim C, Takahashi E, Hongsuwan M, Wuthiekanun V, Thamlikitkul V, Hinjoy S, et al. Epidemiology and burden of multidrug-resistant bacterial infection in a developing country. Elife. 2016;5.
25.
go back to reference Fox-Lewis A, Takata J, Miliya T, Lubell Y, Soeng S, Sar P, et al. Antimicrobial resistance in invasive bacterial infections in hospitalized children, Cambodia, 2007-2016. Emerg Infect Dis. 2018;24(5):841–51.CrossRef Fox-Lewis A, Takata J, Miliya T, Lubell Y, Soeng S, Sar P, et al. Antimicrobial resistance in invasive bacterial infections in hospitalized children, Cambodia, 2007-2016. Emerg Infect Dis. 2018;24(5):841–51.CrossRef
26.
go back to reference Kohlmann R, Gatermann SG. Analysis and presentation of cumulative antimicrobial susceptibility test data--the influence of different parameters in a routine clinical microbiology laboratory. PLoS One. 2016;11(1):e0147965.CrossRef Kohlmann R, Gatermann SG. Analysis and presentation of cumulative antimicrobial susceptibility test data--the influence of different parameters in a routine clinical microbiology laboratory. PLoS One. 2016;11(1):e0147965.CrossRef
29.
go back to reference Hossain B, Islam MS, Rahman A, Marzan M, Rafiqullah I, Connor NE, et al. Understanding bacterial isolates in blood culture and approaches used to define bacteria as contaminants: a literature review. Pediatr Infect Dis J. 2016;35(5 Suppl 1):S45–51.CrossRef Hossain B, Islam MS, Rahman A, Marzan M, Rafiqullah I, Connor NE, et al. Understanding bacterial isolates in blood culture and approaches used to define bacteria as contaminants: a literature review. Pediatr Infect Dis J. 2016;35(5 Suppl 1):S45–51.CrossRef
30.
go back to reference Hossain B, Weber MW, Hamer DH, Hibberd PL, Ahmed AS, Marzan M, et al. Classification of blood culture isolates into contaminants and pathogens on the basis of clinical and laboratory data. Pediatr Infect Dis J. 2016;35(5 Suppl 1):S52–4.CrossRef Hossain B, Weber MW, Hamer DH, Hibberd PL, Ahmed AS, Marzan M, et al. Classification of blood culture isolates into contaminants and pathogens on the basis of clinical and laboratory data. Pediatr Infect Dis J. 2016;35(5 Suppl 1):S52–4.CrossRef
Metadata
Title
Microbiology Investigation Criteria for Reporting Objectively (MICRO): a framework for the reporting and interpretation of clinical microbiology data
Authors
Paul Turner
Andrew Fox-Lewis
Poojan Shrestha
David A. B. Dance
Tri Wangrangsimakul
Tomas-Paul Cusack
Clare L. Ling
Jill Hopkins
Tamalee Roberts
Direk Limmathurotsakul
Ben S. Cooper
Susanna Dunachie
Catrin E. Moore
Christiane Dolecek
H. Rogier van Doorn
Philippe J. Guerin
Nicholas P. J. Day
Elizabeth A. Ashley
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Medicine / Issue 1/2019
Electronic ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-019-1301-1

Other articles of this Issue 1/2019

BMC Medicine 1/2019 Go to the issue