Skip to main content
Top
Published in: BMC Medicine 1/2018

Open Access 01-12-2018 | Opinion

Utility of circulating tumor DNA in cancer diagnostics with emphasis on early detection

Authors: Clare Fiala, Eleftherios P. Diamandis

Published in: BMC Medicine | Issue 1/2018

Login to get access

Abstract

Various recent studies have focused on analyzing tumor genetic material released into the blood stream, known as circulating tumor DNA (ctDNA). Herein, we describe current research on the application of ctDNA to cancer management, including prognosis determination, monitoring for treatment efficacy/relapse, treatment selection, and quantification of tumor size and disease burden. Specifically, we examine the utility of ctDNA for early cancer diagnostics focusing on the development of a blood test to detect cancer in asymptomatic individuals by sequencing and analyzing mutations in ctDNA. Next, we discuss the prospect of using ctDNA to test for cancer, and present our calculations based on previously published empirical findings in cancer and prenatal diagnostics. We show that very early stage (asymptomatic) tumors are not likely to release enough ctDNA to be detectable in a typical blood draw of 10 mL. Data are also presented showing that mutations in circulating free DNA can be found in healthy individuals and will likely be very difficult to distinguish from those associated with cancer.
We conclude that the ctDNA test, in addition to its high cost and complexity, will likely suffer from the same issues of low sensitivity and specificity as traditional biomarkers when applied to population screening and early (asymptomatic) cancer diagnosis.
Literature
1.
go back to reference Mandel P, Métais P. Les acides nucléiques du plasma sanguin chez l’homme. C R Séances Soc Biol. 1948;142:241–3. Mandel P, Métais P. Les acides nucléiques du plasma sanguin chez l’homme. C R Séances Soc Biol. 1948;142:241–3.
2.
go back to reference Tie J, Wang J, Tomasetti C, et al. Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer. Sci Transl Med. 2016;8:346ra92.CrossRefPubMedPubMedCentral Tie J, Wang J, Tomasetti C, et al. Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer. Sci Transl Med. 2016;8:346ra92.CrossRefPubMedPubMedCentral
3.
go back to reference Nygaard AD, Holdgaard PC, Spindler KL, Pallisgaard N, Jakobsen A. The correlation between cell-free DNA and tumour burden was estimated by PET/CT in patients with advanced NSCLC. Br J Cancer. 2014;110:363–8.CrossRefPubMed Nygaard AD, Holdgaard PC, Spindler KL, Pallisgaard N, Jakobsen A. The correlation between cell-free DNA and tumour burden was estimated by PET/CT in patients with advanced NSCLC. Br J Cancer. 2014;110:363–8.CrossRefPubMed
4.
go back to reference Catarino R, Coelho A, Araújo A, et al. Circulating DNA: diagnostic tool and predictive marker for overall survival of NSCLC patients. PLoS One. 2012;7:e38559.CrossRefPubMedPubMedCentral Catarino R, Coelho A, Araújo A, et al. Circulating DNA: diagnostic tool and predictive marker for overall survival of NSCLC patients. PLoS One. 2012;7:e38559.CrossRefPubMedPubMedCentral
5.
go back to reference Dawson S-J, Tsui JW, Murtaza M, et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med. 2013;368:1199–209.CrossRefPubMed Dawson S-J, Tsui JW, Murtaza M, et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med. 2013;368:1199–209.CrossRefPubMed
6.
go back to reference Oshiro C, Kagara N, Naoi Y, et al. PIK3CA mutations in serum DNA are predictive of recurrence in primary breast cancer patients. Breast Cancer Res Treat. 2015;150:299–307.CrossRefPubMed Oshiro C, Kagara N, Naoi Y, et al. PIK3CA mutations in serum DNA are predictive of recurrence in primary breast cancer patients. Breast Cancer Res Treat. 2015;150:299–307.CrossRefPubMed
7.
go back to reference Lipson EJ, Velculescu VE, Pritchard TS, et al. Circulating tumor DNA analysis as a real-time method for monitoring tumor burden in melanoma patients undergoing treatment with immune checkpoint blockade. J Immunother Cancer. 2014;2:42.CrossRefPubMedPubMedCentral Lipson EJ, Velculescu VE, Pritchard TS, et al. Circulating tumor DNA analysis as a real-time method for monitoring tumor burden in melanoma patients undergoing treatment with immune checkpoint blockade. J Immunother Cancer. 2014;2:42.CrossRefPubMedPubMedCentral
8.
go back to reference Parkinson CA, Gale D, Piskorz AM, et al. Exploratory analysis of TP53 mutations in circulating tumour DNA as biomarkers of treatment response for patients with relapsed high-grade serous ovarian carcinoma: a retrospective study. PLoS Med. 2016;13:e1002198.CrossRefPubMedPubMedCentral Parkinson CA, Gale D, Piskorz AM, et al. Exploratory analysis of TP53 mutations in circulating tumour DNA as biomarkers of treatment response for patients with relapsed high-grade serous ovarian carcinoma: a retrospective study. PLoS Med. 2016;13:e1002198.CrossRefPubMedPubMedCentral
10.
go back to reference Wan JCM, Massie C, Garcia-Corbacho J, et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer. 2017;17:223–38.CrossRefPubMed Wan JCM, Massie C, Garcia-Corbacho J, et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer. 2017;17:223–38.CrossRefPubMed
11.
go back to reference Siravegna G, Marsoni S, Siena S, Bardelli A. Integrating liquid biopsies into the management of cancer. Nat Rev Clin Oncol. 2017;14:531–48.CrossRefPubMed Siravegna G, Marsoni S, Siena S, Bardelli A. Integrating liquid biopsies into the management of cancer. Nat Rev Clin Oncol. 2017;14:531–48.CrossRefPubMed
12.
14.
go back to reference Feng WN, Gu WQ, Zhao N, et al. Comparison of the SuperARMS and droplet digital PCR for detecting EGFR mutation in ctDNA from NSCLC patients. Transl Oncol. 2018;11:542–5.CrossRefPubMedPubMedCentral Feng WN, Gu WQ, Zhao N, et al. Comparison of the SuperARMS and droplet digital PCR for detecting EGFR mutation in ctDNA from NSCLC patients. Transl Oncol. 2018;11:542–5.CrossRefPubMedPubMedCentral
15.
go back to reference Diehl F, Schmidt K, Choti MA, et al. Circulating mutant DNA to assess tumor dynamics. Nat Med. 2008;14:985–90.CrossRefPubMed Diehl F, Schmidt K, Choti MA, et al. Circulating mutant DNA to assess tumor dynamics. Nat Med. 2008;14:985–90.CrossRefPubMed
16.
go back to reference Forshew T, Murtaza M, Parkinson C, et al. Non-invasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci Transl Med. 2012;4:136ra68.CrossRefPubMed Forshew T, Murtaza M, Parkinson C, et al. Non-invasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci Transl Med. 2012;4:136ra68.CrossRefPubMed
17.
go back to reference Newman AM, Bratman SV, To J, et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med. 2014;20:548–54.CrossRefPubMedPubMedCentral Newman AM, Bratman SV, To J, et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med. 2014;20:548–54.CrossRefPubMedPubMedCentral
18.
go back to reference Gray ES, Rizos H, Reid AL, et al. Circulating tumor DNA to monitor treatment response and detect acquired resistance in patients with metastatic melanoma. Oncotarget. 2015;6:42008–18.PubMedPubMedCentral Gray ES, Rizos H, Reid AL, et al. Circulating tumor DNA to monitor treatment response and detect acquired resistance in patients with metastatic melanoma. Oncotarget. 2015;6:42008–18.PubMedPubMedCentral
19.
go back to reference Schreuer M, Meersseman G, Van Den Herrewegen S, et al. Quantitative assessment of BRAF V600 mutant circulating cell-free tumor DNA as a tool for therapeutic monitoring in metastatic melanoma patients treated with BRAF/MEK inhibitors. J Transl Med. 2016;14:95.CrossRefPubMedPubMedCentral Schreuer M, Meersseman G, Van Den Herrewegen S, et al. Quantitative assessment of BRAF V600 mutant circulating cell-free tumor DNA as a tool for therapeutic monitoring in metastatic melanoma patients treated with BRAF/MEK inhibitors. J Transl Med. 2016;14:95.CrossRefPubMedPubMedCentral
20.
go back to reference Marchetti A, Palma J, Felicioni L, et al. Early prediction of response to tyrosine kinase inhibitors by quantification of EGFR mutations in plasma of NSCLC patients. J Thorac Oncol. 2015;10:1437–43.CrossRefPubMed Marchetti A, Palma J, Felicioni L, et al. Early prediction of response to tyrosine kinase inhibitors by quantification of EGFR mutations in plasma of NSCLC patients. J Thorac Oncol. 2015;10:1437–43.CrossRefPubMed
22.
go back to reference Mohan S, Heitzer E, Ulz P, et al. Changes in colorectal carcinoma genomes under anti-EGFR therapy identified by whole-genome plasma DNA sequencing. PLoS Genet. 2014;10:e1004271.CrossRefPubMedPubMedCentral Mohan S, Heitzer E, Ulz P, et al. Changes in colorectal carcinoma genomes under anti-EGFR therapy identified by whole-genome plasma DNA sequencing. PLoS Genet. 2014;10:e1004271.CrossRefPubMedPubMedCentral
23.
go back to reference Misale S, Yaeger R, Hobor S, et al. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature. 2012;486:532–6.CrossRefPubMedPubMedCentral Misale S, Yaeger R, Hobor S, et al. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature. 2012;486:532–6.CrossRefPubMedPubMedCentral
24.
go back to reference Yanagita M, Redig AJ, Paweletz CP, et al. A prospective evaluation of circulating tumor cells and cell-free DNA in EGFR-mutant non-small cell lung cancer patients treated with erlotinib on a phase II trial. Clin Cancer Res. 2016;22:6010–20.CrossRefPubMed Yanagita M, Redig AJ, Paweletz CP, et al. A prospective evaluation of circulating tumor cells and cell-free DNA in EGFR-mutant non-small cell lung cancer patients treated with erlotinib on a phase II trial. Clin Cancer Res. 2016;22:6010–20.CrossRefPubMed
25.
go back to reference Bettegowda C, Sausen M, Leary RJ, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014;6:224ra24.CrossRefPubMedPubMedCentral Bettegowda C, Sausen M, Leary RJ, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014;6:224ra24.CrossRefPubMedPubMedCentral
26.
go back to reference Villaflor V, Won B, Nagy R, et al. Biopsy-free circulating tumor DNA assay identifies actionable mutations in lung cancer. Oncotarget. 2016;7:66880–91.CrossRefPubMedPubMedCentral Villaflor V, Won B, Nagy R, et al. Biopsy-free circulating tumor DNA assay identifies actionable mutations in lung cancer. Oncotarget. 2016;7:66880–91.CrossRefPubMedPubMedCentral
28.
go back to reference Etzioni R, Urban N, Ramsey S, et al. The case for early detection. Nat Rev Cancer. 2003;3:243–52.CrossRefPubMed Etzioni R, Urban N, Ramsey S, et al. The case for early detection. Nat Rev Cancer. 2003;3:243–52.CrossRefPubMed
29.
go back to reference Aravanis AM, Lee M, Klausner RD. Next-generation sequencing of circulating tumor DNA for early cancer detection. Cell. 2017;168:571–4.CrossRefPubMed Aravanis AM, Lee M, Klausner RD. Next-generation sequencing of circulating tumor DNA for early cancer detection. Cell. 2017;168:571–4.CrossRefPubMed
30.
go back to reference Chiu RW, Cantor CR, Lo YM. Non-invasive prenatal diagnosis by single molecule counting technologies. Trends Genet. 2009;25:324–31.CrossRefPubMed Chiu RW, Cantor CR, Lo YM. Non-invasive prenatal diagnosis by single molecule counting technologies. Trends Genet. 2009;25:324–31.CrossRefPubMed
31.
32.
go back to reference Canick JA, Palomaki GE, Kloza EM, Lambert-Messerlian GM, Haddow JE. The impact of maternal plasma DNA fetal fraction on next generation sequencing tests for common fetal aneuploidies. Prenat Diagn. 2013;33:667–74.CrossRefPubMed Canick JA, Palomaki GE, Kloza EM, Lambert-Messerlian GM, Haddow JE. The impact of maternal plasma DNA fetal fraction on next generation sequencing tests for common fetal aneuploidies. Prenat Diagn. 2013;33:667–74.CrossRefPubMed
34.
go back to reference Uvili P, Mercatali L, Casoni GL, et al. Multiple marker detection in peripheral blood for NSCLC diagnosis. PLoS One. 2013;2:e57401. Uvili P, Mercatali L, Casoni GL, et al. Multiple marker detection in peripheral blood for NSCLC diagnosis. PLoS One. 2013;2:e57401.
35.
go back to reference Warton K, Lin W, Navin T, et al. Methylation-capture and next-generation sequencing of free circulating DNA from human plasma. BMC Genomics. 2014;15:476.CrossRefPubMedPubMedCentral Warton K, Lin W, Navin T, et al. Methylation-capture and next-generation sequencing of free circulating DNA from human plasma. BMC Genomics. 2014;15:476.CrossRefPubMedPubMedCentral
36.
go back to reference Breitbach S, Tug S, Simon P. Circulating cell-free DNA: an up-coming molecular marker in exercise physiology. Sports Med. 2012;42:565–86.CrossRefPubMed Breitbach S, Tug S, Simon P. Circulating cell-free DNA: an up-coming molecular marker in exercise physiology. Sports Med. 2012;42:565–86.CrossRefPubMed
37.
go back to reference El Messaoudi S, Rolet F, Mouliere F, Thierry AR. Circulating cell free DNA: preanalytical considerations. Clin Chim Acta. 2013;424:222–30.CrossRefPubMed El Messaoudi S, Rolet F, Mouliere F, Thierry AR. Circulating cell free DNA: preanalytical considerations. Clin Chim Acta. 2013;424:222–30.CrossRefPubMed
38.
go back to reference Mouliere F, El Messaoudi S, Pang D, Dritschillo A, Thierry AR. Multi-marker analysis of circulating cell-free DNA towards personalized medicine for colorectal cancer. Mol Oncol. 2014;8(5):927–41.CrossRefPubMedPubMedCentral Mouliere F, El Messaoudi S, Pang D, Dritschillo A, Thierry AR. Multi-marker analysis of circulating cell-free DNA towards personalized medicine for colorectal cancer. Mol Oncol. 2014;8(5):927–41.CrossRefPubMedPubMedCentral
39.
go back to reference Mouliere F, Robert B, Arnau Peyrotte E, et al. High fragmentation characterizes tumor derived circulating DNA. PLoS One. 2011;6:e233418.CrossRef Mouliere F, Robert B, Arnau Peyrotte E, et al. High fragmentation characterizes tumor derived circulating DNA. PLoS One. 2011;6:e233418.CrossRef
40.
go back to reference Manokhina I, Singh TH, Penaherrera MS, Robinson WP. Quantification of cell-free DNA in normal and complicated pregnancies: overcoming biological and technical issues. PLoS One. 2014;9:e101500.CrossRefPubMedPubMedCentral Manokhina I, Singh TH, Penaherrera MS, Robinson WP. Quantification of cell-free DNA in normal and complicated pregnancies: overcoming biological and technical issues. PLoS One. 2014;9:e101500.CrossRefPubMedPubMedCentral
41.
go back to reference Bischoff FZ, Lewis DE, Simpson JL. Cell-free fetal DNA in maternal blood: kinetics, source and structure. Human Reprod Update. 2004;11:59–67.CrossRef Bischoff FZ, Lewis DE, Simpson JL. Cell-free fetal DNA in maternal blood: kinetics, source and structure. Human Reprod Update. 2004;11:59–67.CrossRef
42.
go back to reference Aberle DR, Adams AM, et al. Reduced lung cancer mortality with low dose computed tomography screening. N Engl J Med. 2011;365:395–409.CrossRefPubMed Aberle DR, Adams AM, et al. Reduced lung cancer mortality with low dose computed tomography screening. N Engl J Med. 2011;365:395–409.CrossRefPubMed
43.
go back to reference Del Monte U. Does the cell number 109 still really fit one gram of tumor tissue? Cell Cycle. 2009;8:505–6.CrossRefPubMed Del Monte U. Does the cell number 109 still really fit one gram of tumor tissue? Cell Cycle. 2009;8:505–6.CrossRefPubMed
45.
go back to reference Weedon-Fekjaer H, Lindqvist BH, Vatten LJ, Aalen OO, Tretli S. Breast cancer tumor growth estimated through mammography screening data. Breast Cancer Res. 2008;10:R41.CrossRefPubMedPubMedCentral Weedon-Fekjaer H, Lindqvist BH, Vatten LJ, Aalen OO, Tretli S. Breast cancer tumor growth estimated through mammography screening data. Breast Cancer Res. 2008;10:R41.CrossRefPubMedPubMedCentral
46.
go back to reference Garber K. Ontario institute offers new model of cancer research. J Natl Cancer Inst. 2008;100:980–2.CrossRefPubMed Garber K. Ontario institute offers new model of cancer research. J Natl Cancer Inst. 2008;100:980–2.CrossRefPubMed
48.
go back to reference Elshimali Y, Khaddour H, Sarkissyan M, Wu Y, Vadgama JV. The clinical utilization of circulating cell free DNA (CCFDNA) in blood of cancer patients. Int J Mol Sci. 2013;14:18925–58.CrossRefPubMedPubMedCentral Elshimali Y, Khaddour H, Sarkissyan M, Wu Y, Vadgama JV. The clinical utilization of circulating cell free DNA (CCFDNA) in blood of cancer patients. Int J Mol Sci. 2013;14:18925–58.CrossRefPubMedPubMedCentral
49.
go back to reference Diaz LA Jr, Williams RT, Wu J, et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature. 2012;486:537–40.CrossRefPubMedPubMedCentral Diaz LA Jr, Williams RT, Wu J, et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature. 2012;486:537–40.CrossRefPubMedPubMedCentral
50.
go back to reference Diamandis EP. Cancer dynamics and the success of cancer screening programs. Clin Chem Lab Med. 2016;54:e211–2.PubMed Diamandis EP. Cancer dynamics and the success of cancer screening programs. Clin Chem Lab Med. 2016;54:e211–2.PubMed
51.
go back to reference Diamandis EP, Li M. The side effects of translational omics: overtesting, overdiagnosis, overtreatment. Clin Chem Lab Med. 2016;54:389–96.PubMed Diamandis EP, Li M. The side effects of translational omics: overtesting, overdiagnosis, overtreatment. Clin Chem Lab Med. 2016;54:389–96.PubMed
52.
go back to reference Esserman L, Shieh Y, Thompson I. Rethinking screening for breast cancer and prostrate cancer. JAMA. 2009;302:1685–92.CrossRefPubMed Esserman L, Shieh Y, Thompson I. Rethinking screening for breast cancer and prostrate cancer. JAMA. 2009;302:1685–92.CrossRefPubMed
53.
go back to reference Diamandis EP. Present and future of cancer biomarkers. Clin Chem Lab Med. 2014;52:791–4.PubMed Diamandis EP. Present and future of cancer biomarkers. Clin Chem Lab Med. 2014;52:791–4.PubMed
54.
go back to reference Diamandis EP. Prostate-specific antigen: a cancer fighter and a valuable messenger? Clin Chem. 2000;46:896–900.PubMed Diamandis EP. Prostate-specific antigen: a cancer fighter and a valuable messenger? Clin Chem. 2000;46:896–900.PubMed
55.
go back to reference Genovese G, Kahler AK, Handsaker RE, et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med. 2014;371:2477–87.CrossRefPubMedPubMedCentral Genovese G, Kahler AK, Handsaker RE, et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med. 2014;371:2477–87.CrossRefPubMedPubMedCentral
57.
go back to reference Schwaderle MC, Husain W, Fanta PT, et al. Detection rate of actionable mutations in diverse cancers using a biopsy-free (blood) circulating tumor DNA assay. Oncotarget. 2015;33:11004. Schwaderle MC, Husain W, Fanta PT, et al. Detection rate of actionable mutations in diverse cancers using a biopsy-free (blood) circulating tumor DNA assay. Oncotarget. 2015;33:11004.
58.
go back to reference Gormally E, Vineis P, Matullo G, et al. TP53 and KRAS2 mutations in plasma DNA of healthy subjects and subsequent cancer occurrence: a prospective study. Cancer Res. 2006;66:6871–6.CrossRefPubMed Gormally E, Vineis P, Matullo G, et al. TP53 and KRAS2 mutations in plasma DNA of healthy subjects and subsequent cancer occurrence: a prospective study. Cancer Res. 2006;66:6871–6.CrossRefPubMed
59.
go back to reference Fernandez-Cuesta L, Perdomo S, Avogbe PH, et al. Identification of circulating tumor DNA for the early detection of small-cell lung cancer. eBioMedicine. 2016;10:6–12.CrossRef Fernandez-Cuesta L, Perdomo S, Avogbe PH, et al. Identification of circulating tumor DNA for the early detection of small-cell lung cancer. eBioMedicine. 2016;10:6–12.CrossRef
60.
go back to reference Newman AM, Lovejoy AF, Klass DM, et al. Integrated digital error suppression for improved detection of circulating tumor DNA. Nat Biotechnol. 2016;34:547–55.CrossRefPubMedPubMedCentral Newman AM, Lovejoy AF, Klass DM, et al. Integrated digital error suppression for improved detection of circulating tumor DNA. Nat Biotechnol. 2016;34:547–55.CrossRefPubMedPubMedCentral
61.
go back to reference Phallen J, Sausen M, Adleff V, et al. direct detection of early-stage cancer using circulating tumor DNA. Sci Transl Med. 2017;9:eaan2415.CrossRefPubMed Phallen J, Sausen M, Adleff V, et al. direct detection of early-stage cancer using circulating tumor DNA. Sci Transl Med. 2017;9:eaan2415.CrossRefPubMed
62.
go back to reference McConnell MJ, Moran JV, Abyzov A, et al. Intersection of diverse neuronal genomes and neuropsychiatric disease: The Brain Somatic Mosaicism Network. Science. 2017;356:eaal1641.CrossRefPubMedPubMedCentral McConnell MJ, Moran JV, Abyzov A, et al. Intersection of diverse neuronal genomes and neuropsychiatric disease: The Brain Somatic Mosaicism Network. Science. 2017;356:eaal1641.CrossRefPubMedPubMedCentral
63.
go back to reference Stubbington MJT, Rozenblatt-Rosen O, Regev A, Teichmann SA. Single cell transcriptomics to explore the immune system in health and disease. Science. 2017;358:58–63.CrossRefPubMedPubMedCentral Stubbington MJT, Rozenblatt-Rosen O, Regev A, Teichmann SA. Single cell transcriptomics to explore the immune system in health and disease. Science. 2017;358:58–63.CrossRefPubMedPubMedCentral
64.
go back to reference Cohen JD, Li L, Wang Y, et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science. 2018; Cohen JD, Li L, Wang Y, et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science. 2018;
65.
go back to reference Liu MC, Maddala T, Aravanis A, et al. Breast cancer cell-free DNA (cfDNA) profiles reflect underlying tumor biology: The Circulating Cell-Free Genome Atlas (CCGA) study. J Clin Oncol. 2018;36:Suppl abstr 536. Liu MC, Maddala T, Aravanis A, et al. Breast cancer cell-free DNA (cfDNA) profiles reflect underlying tumor biology: The Circulating Cell-Free Genome Atlas (CCGA) study. J Clin Oncol. 2018;36:Suppl abstr 536.
66.
go back to reference Klein EA, Hubbel E, Maddala T, et al. Development of a comprehensive cell-free DNA (cfDNA) assay for early detection of multiple tumor types: The Circulating Cell-free Genome Atlas (CCGA) study. J Clin Oncol. 2018;36:Suppl abstr 12021. Klein EA, Hubbel E, Maddala T, et al. Development of a comprehensive cell-free DNA (cfDNA) assay for early detection of multiple tumor types: The Circulating Cell-free Genome Atlas (CCGA) study. J Clin Oncol. 2018;36:Suppl abstr 12021.
Metadata
Title
Utility of circulating tumor DNA in cancer diagnostics with emphasis on early detection
Authors
Clare Fiala
Eleftherios P. Diamandis
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Medicine / Issue 1/2018
Electronic ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-018-1157-9

Other articles of this Issue 1/2018

BMC Medicine 1/2018 Go to the issue