Skip to main content
Top
Published in: BMC Medicine 1/2018

Open Access 01-12-2018 | Research article

Quantifying where human acquisition of antibiotic resistance occurs: a mathematical modelling study

Authors: Gwenan M. Knight, Céire Costelloe, Sarah R. Deeny, Luke S. P. Moore, Susan Hopkins, Alan P. Johnson, Julie V. Robotham, Alison H. Holmes

Published in: BMC Medicine | Issue 1/2018

Login to get access

Abstract

Background

Antibiotic-resistant bacteria (ARB) are selected by the use of antibiotics. The rational design of interventions to reduce levels of antibiotic resistance requires a greater understanding of how and where ARB are acquired. Our aim was to determine whether acquisition of ARB occurs more often in the community or hospital setting.

Methods

We used a mathematical model of the natural history of ARB to estimate how many ARB were acquired in each of these two environments, as well as to determine key parameters for further investigation. To do this, we explored a range of realistic parameter combinations and considered a case study of parameters for an important subset of resistant strains in England.

Results

If we consider all people with ARB in the total population (community and hospital), the majority, under most clinically derived parameter combinations, acquired their resistance in the community, despite higher levels of antibiotic use and transmission of ARB in the hospital. However, if we focus on just the hospital population, under most parameter combinations a greater proportion of this population acquired ARB in the hospital.

Conclusions

It is likely that the majority of ARB are being acquired in the community, suggesting that efforts to reduce overall ARB carriage should focus on reducing antibiotic usage and transmission in the community setting. However, our framework highlights the need for better pathogen-specific data on antibiotic exposure, ARB clearance and transmission parameters, as well as the link between carriage of ARB and health impact. This is important to determine whether interventions should target total ARB carriage or hospital-acquired ARB carriage, as the latter often dominated in hospital populations.
Appendix
Available only for authorised users
Literature
1.
go back to reference Friedman ND, Temkin E, Carmeli Y. The negative impact of antibiotic resistance. Clin Microbiol Infect. 2016;22(5):416–25.CrossRefPubMed Friedman ND, Temkin E, Carmeli Y. The negative impact of antibiotic resistance. Clin Microbiol Infect. 2016;22(5):416–25.CrossRefPubMed
2.
go back to reference WHO: Antimicrobial resistance: global report on surveillance. 2014. WHO: Antimicrobial resistance: global report on surveillance. 2014.
3.
go back to reference Pelupessy I, Bonten MJ, Diekmann O. How to assess the relative importance of different colonization routes of pathogens within hospital settings. Proc Natl Acad Sci U S A. 2002;99(8):5601–5.CrossRefPubMedPubMedCentral Pelupessy I, Bonten MJ, Diekmann O. How to assess the relative importance of different colonization routes of pathogens within hospital settings. Proc Natl Acad Sci U S A. 2002;99(8):5601–5.CrossRefPubMedPubMedCentral
4.
go back to reference Mikolajczyk RT, Sagel U, Bornemann R, Kramer A, Kretzschmar M. A statistical method for estimating the proportion of cases resulting from cross-transmission of multi-resistant pathogens in an intensive care unit. J Hosp Infect. 2007;65(2):149–55.CrossRefPubMed Mikolajczyk RT, Sagel U, Bornemann R, Kramer A, Kretzschmar M. A statistical method for estimating the proportion of cases resulting from cross-transmission of multi-resistant pathogens in an intensive care unit. J Hosp Infect. 2007;65(2):149–55.CrossRefPubMed
7.
go back to reference Berendonk TU, Manaia CM, Merlin C, Fatta-Kassinos D, Cytryn E, Walsh F, et al. Tackling antibiotic resistance: the environmental framework. Nat Rev Microbiol. 2015;13(5):310–7.CrossRefPubMed Berendonk TU, Manaia CM, Merlin C, Fatta-Kassinos D, Cytryn E, Walsh F, et al. Tackling antibiotic resistance: the environmental framework. Nat Rev Microbiol. 2015;13(5):310–7.CrossRefPubMed
8.
go back to reference Tello A, Austin B, Telfer TC. Selective pressure of antibiotic pollution on bacteria of importance to public health. Environ Health Perspect. 2012;120(8):1100–6.CrossRefPubMedPubMedCentral Tello A, Austin B, Telfer TC. Selective pressure of antibiotic pollution on bacteria of importance to public health. Environ Health Perspect. 2012;120(8):1100–6.CrossRefPubMedPubMedCentral
12.
go back to reference Austin DJ, Anderson RM. Studies of antibiotic resistance within the patient, hospitals and the community using simple mathematical models. Philos Trans R Soc Lond Ser B Biol Sci. 1999;354(1384):721–38.CrossRef Austin DJ, Anderson RM. Studies of antibiotic resistance within the patient, hospitals and the community using simple mathematical models. Philos Trans R Soc Lond Ser B Biol Sci. 1999;354(1384):721–38.CrossRef
13.
go back to reference Ashiru-Oredope D, Hopkins S, English Surveillance Programme for Antimicrobial Utilization and Resistance Oversight Group. Antimicrobial stewardship: English Surveillance Programme for Antimicrobial Utilization and Resistance (ESPAUR). J Antimicrob Chemother. 2013;68(11):2421–3.CrossRefPubMed Ashiru-Oredope D, Hopkins S, English Surveillance Programme for Antimicrobial Utilization and Resistance Oversight Group. Antimicrobial stewardship: English Surveillance Programme for Antimicrobial Utilization and Resistance (ESPAUR). J Antimicrob Chemother. 2013;68(11):2421–3.CrossRefPubMed
14.
go back to reference Moore LS, Freeman R, Gilchrist MJ, Gharbi M, Brannigan ET, Donaldson H, Livermore DM, Holmes AH. Homogeneity of antimicrobial policy, yet heterogeneity of antimicrobial resistance: antimicrobial non-susceptibility among 108,717 clinical isolates from primary, secondary and tertiary care patients in London. J Antimicrob Chemother. 2014;69(12):3409–22.CrossRefPubMedPubMedCentral Moore LS, Freeman R, Gilchrist MJ, Gharbi M, Brannigan ET, Donaldson H, Livermore DM, Holmes AH. Homogeneity of antimicrobial policy, yet heterogeneity of antimicrobial resistance: antimicrobial non-susceptibility among 108,717 clinical isolates from primary, secondary and tertiary care patients in London. J Antimicrob Chemother. 2014;69(12):3409–22.CrossRefPubMedPubMedCentral
15.
go back to reference D'Agata EM, Webb GF, Horn MA, Moellering RC Jr, Ruan S. Modeling the invasion of community-acquired methicillin-resistant Staphylococcus aureus into hospitals. Clin Infect Dis. 2009;48(3):274–84.CrossRefPubMedPubMedCentral D'Agata EM, Webb GF, Horn MA, Moellering RC Jr, Ruan S. Modeling the invasion of community-acquired methicillin-resistant Staphylococcus aureus into hospitals. Clin Infect Dis. 2009;48(3):274–84.CrossRefPubMedPubMedCentral
16.
go back to reference Cooper BS, Medley GF, Stone SP, Kibbler CC, Cookson BD, Roberts JA, Duckworth G, Lai R, Ebrahim S. Methicillin-resistant Staphylococcus aureus in hospitals and the community: stealth dynamics and control catastrophes. Proc Natl Acad Sci U S A. 2004;101(27):10223–8.CrossRefPubMedPubMedCentral Cooper BS, Medley GF, Stone SP, Kibbler CC, Cookson BD, Roberts JA, Duckworth G, Lai R, Ebrahim S. Methicillin-resistant Staphylococcus aureus in hospitals and the community: stealth dynamics and control catastrophes. Proc Natl Acad Sci U S A. 2004;101(27):10223–8.CrossRefPubMedPubMedCentral
17.
go back to reference Kouyos RD, Abel Zur Wiesch P, Bonhoeffer S. On being the right size: the impact of population size and stochastic effects on the evolution of drug resistance in hospitals and the community. PLoS Pathog. 2011;7(4):e1001334.CrossRefPubMedPubMedCentral Kouyos RD, Abel Zur Wiesch P, Bonhoeffer S. On being the right size: the impact of population size and stochastic effects on the evolution of drug resistance in hospitals and the community. PLoS Pathog. 2011;7(4):e1001334.CrossRefPubMedPubMedCentral
18.
go back to reference Hetem DJ, Westh H, Boye K, Jarlov JO, Bonten MJ, Bootsma MC. Nosocomial transmission of community-associated methicillin-resistant Staphylococcus aureus in Danish hospitals. J Antimicrob Chemother. 2012;67(7):1775–80.CrossRefPubMed Hetem DJ, Westh H, Boye K, Jarlov JO, Bonten MJ, Bootsma MC. Nosocomial transmission of community-associated methicillin-resistant Staphylococcus aureus in Danish hospitals. J Antimicrob Chemother. 2012;67(7):1775–80.CrossRefPubMed
19.
20.
go back to reference Bootsma MC, Bonten MJ, Nijssen S, Fluit AC, Diekmann O. An algorithm to estimate the importance of bacterial acquisition routes in hospital settings. Am J Epidemiol. 2007;166(7):841–51.CrossRefPubMed Bootsma MC, Bonten MJ, Nijssen S, Fluit AC, Diekmann O. An algorithm to estimate the importance of bacterial acquisition routes in hospital settings. Am J Epidemiol. 2007;166(7):841–51.CrossRefPubMed
21.
go back to reference Forrester M, Pettitt AN. Use of stochastic epidemic modeling to quantify transmission rates of colonization with methicillin-resistant Staphylococcus aureus in an intensive care unit. Infect Control Hosp Epidemiol. 2005;26(7):598–606.CrossRefPubMed Forrester M, Pettitt AN. Use of stochastic epidemic modeling to quantify transmission rates of colonization with methicillin-resistant Staphylococcus aureus in an intensive care unit. Infect Control Hosp Epidemiol. 2005;26(7):598–606.CrossRefPubMed
22.
go back to reference McBryde ES, Pettitt AN, Cooper BS, DL ME. Characterizing an outbreak of vancomycin-resistant enterococci using hidden Markov models. J R Soc Interface. 2007;4(15):745–54.CrossRefPubMedPubMedCentral McBryde ES, Pettitt AN, Cooper BS, DL ME. Characterizing an outbreak of vancomycin-resistant enterococci using hidden Markov models. J R Soc Interface. 2007;4(15):745–54.CrossRefPubMedPubMedCentral
24.
go back to reference Knight GM, Costelloe C, Murray KA, Robotham JV, Atun R, Holmes AH. Addressing the unknowns of antimicrobial resistance: quantifying and mapping the drivers of burden. Clin Infect Dis. 2018;66(4):612–6.CrossRefPubMed Knight GM, Costelloe C, Murray KA, Robotham JV, Atun R, Holmes AH. Addressing the unknowns of antimicrobial resistance: quantifying and mapping the drivers of burden. Clin Infect Dis. 2018;66(4):612–6.CrossRefPubMed
25.
go back to reference Kardas-Sloma L, Boelle PY, Opatowski L, Brun-Buisson C, Guillemot D, Temime L. Impact of antibiotic exposure patterns on selection of community-associated methicillin-resistant Staphylococcus aureus in hospital settings. Antimicrob Agents Chemother. 2011;55(10):4888–95.CrossRefPubMedPubMedCentral Kardas-Sloma L, Boelle PY, Opatowski L, Brun-Buisson C, Guillemot D, Temime L. Impact of antibiotic exposure patterns on selection of community-associated methicillin-resistant Staphylococcus aureus in hospital settings. Antimicrob Agents Chemother. 2011;55(10):4888–95.CrossRefPubMedPubMedCentral
26.
go back to reference Austin DJ, Kristinsson KG, Anderson RM. The relationship between the volume of antimicrobial consumption in human communities and the frequency of resistance. Proc Natl Acad Sci U S A. 1999;96(3):1152–6.CrossRefPubMedPubMedCentral Austin DJ, Kristinsson KG, Anderson RM. The relationship between the volume of antimicrobial consumption in human communities and the frequency of resistance. Proc Natl Acad Sci U S A. 1999;96(3):1152–6.CrossRefPubMedPubMedCentral
27.
go back to reference Melzer M, Petersen I. Mortality following bacteraemic infection caused by extended spectrum beta-lactamase (ESBL) producing E. Coli compared to non-ESBL producing E. Coli. J Infect. 2007;55(3):254–9.CrossRefPubMed Melzer M, Petersen I. Mortality following bacteraemic infection caused by extended spectrum beta-lactamase (ESBL) producing E. Coli compared to non-ESBL producing E. Coli. J Infect. 2007;55(3):254–9.CrossRefPubMed
28.
go back to reference Robinson TP, Bu DP, Carrique-Mas J, Fevre EM, Gilbert M, Grace D, Hay SI, Jiwakanon J, Kakkar M, Kariuki S, et al. Antibiotic resistance is the quintessential one health issue. Trans R Soc Trop Med Hyg. 2016;110(7):377–80.CrossRefPubMedPubMedCentral Robinson TP, Bu DP, Carrique-Mas J, Fevre EM, Gilbert M, Grace D, Hay SI, Jiwakanon J, Kakkar M, Kariuki S, et al. Antibiotic resistance is the quintessential one health issue. Trans R Soc Trop Med Hyg. 2016;110(7):377–80.CrossRefPubMedPubMedCentral
30.
go back to reference Andersson DI, Hughes D. Antibiotic resistance and its cost: is it possible to reverse resistance? Nat Rev Microbiol. 2010;8(4):260–71.CrossRefPubMed Andersson DI, Hughes D. Antibiotic resistance and its cost: is it possible to reverse resistance? Nat Rev Microbiol. 2010;8(4):260–71.CrossRefPubMed
32.
go back to reference Iman RL, Helton JC, Campbell JE. An approach to sensitivity analysis of computer models. Part 2. Ranking of input variables, response-surface validation, distribution effect and technique synopsis. J Qual Technol. 1981;13(4):232–40.CrossRef Iman RL, Helton JC, Campbell JE. An approach to sensitivity analysis of computer models. Part 2. Ranking of input variables, response-surface validation, distribution effect and technique synopsis. J Qual Technol. 1981;13(4):232–40.CrossRef
33.
34.
go back to reference Roque F, Herdeiro MT, Soares S, Teixeira Rodrigues A, Breitenfeld L, Figueiras A. Educational interventions to improve prescription and dispensing of antibiotics: a systematic review. BMC Public Health. 2014;14:1276.CrossRefPubMedPubMedCentral Roque F, Herdeiro MT, Soares S, Teixeira Rodrigues A, Breitenfeld L, Figueiras A. Educational interventions to improve prescription and dispensing of antibiotics: a systematic review. BMC Public Health. 2014;14:1276.CrossRefPubMedPubMedCentral
35.
go back to reference Smieszek T, Pouwels KB, Dolk FCK, Smith DRM, Hopkins S, Sharland M, Hay AD, Moore MV, Robotham JV. Potential for reducing inappropriate antibiotic prescribing in English primary care. J Antimicrob Chemother. 2018;73(suppl_2):ii36–43.CrossRefPubMed Smieszek T, Pouwels KB, Dolk FCK, Smith DRM, Hopkins S, Sharland M, Hay AD, Moore MV, Robotham JV. Potential for reducing inappropriate antibiotic prescribing in English primary care. J Antimicrob Chemother. 2018;73(suppl_2):ii36–43.CrossRefPubMed
36.
go back to reference Opatowski L, Guillemot D, Boelle PY, Temime L. Contribution of mathematical modeling to the fight against bacterial antibiotic resistance. Curr Opin Infect Dis. 2011;24(3):279–87.CrossRefPubMed Opatowski L, Guillemot D, Boelle PY, Temime L. Contribution of mathematical modeling to the fight against bacterial antibiotic resistance. Curr Opin Infect Dis. 2011;24(3):279–87.CrossRefPubMed
40.
go back to reference English National Point Prevalence Survey on Healthcare-associated Infections and Antimicrobial Use, 2011. London: Health Protection Agency; 2012. English National Point Prevalence Survey on Healthcare-associated Infections and Antimicrobial Use, 2011. London: Health Protection Agency; 2012.
41.
go back to reference Wickramasinghe NH, Xu L, Eustace A, Shabir S, Saluja T, Hawkey PM. High community faecal carriage rates of CTX-M ESBL-producing Escherichia coli in a specific population group in Birmingham, UK. J Antimicrob Chemother. 2012;67(5):1108–13.CrossRefPubMed Wickramasinghe NH, Xu L, Eustace A, Shabir S, Saluja T, Hawkey PM. High community faecal carriage rates of CTX-M ESBL-producing Escherichia coli in a specific population group in Birmingham, UK. J Antimicrob Chemother. 2012;67(5):1108–13.CrossRefPubMed
Metadata
Title
Quantifying where human acquisition of antibiotic resistance occurs: a mathematical modelling study
Authors
Gwenan M. Knight
Céire Costelloe
Sarah R. Deeny
Luke S. P. Moore
Susan Hopkins
Alan P. Johnson
Julie V. Robotham
Alison H. Holmes
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Medicine / Issue 1/2018
Electronic ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-018-1121-8

Other articles of this Issue 1/2018

BMC Medicine 1/2018 Go to the issue