Skip to main content
Top
Published in: BMC Medicine 1/2017

Open Access 01-12-2017 | Research article

The relative importance of large problems far away versus small problems closer to home: insights into limiting the spread of antimicrobial resistance in England

Authors: Tjibbe Donker, Katherine L. Henderson, Katie L. Hopkins, Andrew R. Dodgson, Stephanie Thomas, Derrick W. Crook, Tim E. A. Peto, Alan P. Johnson, Neil Woodford, A. Sarah Walker, Julie V. Robotham

Published in: BMC Medicine | Issue 1/2017

Login to get access

Abstract

Background

To combat the spread of antimicrobial resistance (AMR), hospitals are advised to screen high-risk patients for carriage of antibiotic-resistant bacteria on admission. This often includes patients previously admitted to hospitals with a high AMR prevalence. However, the ability of such a strategy to identify introductions (and hence prevent onward transmission) is unclear, as it depends on AMR prevalence in each hospital, the number of patients moving between hospitals, and the number of hospitals considered ‘high risk’.

Methods

We tracked patient movements using data from the National Health Service of England Hospital Episode Statistics and estimated differences in regional AMR prevalences using, as an exemplar, data collected through the national reference laboratory service of Public Health England on carbapenemase-producing Enterobacteriaceae (CPE) from 2008 to 2014. Combining these datasets, we calculated expected CPE introductions into hospitals from across the hospital network to assess the effectiveness of admission screening based on defining high-prevalence hospitals as high risk.

Results

Based on numbers of exchanged patients, the English hospital network can be divided into 14 referral regions. England saw a sharp increase in numbers of CPE isolates referred to the national reference laboratory over 7 years, from 26 isolates in 2008 to 1649 in 2014. Large regional differences in numbers of confirmed CPE isolates overlapped with regional structuring of patient movements between hospitals. However, despite these large differences in prevalence between regions, we estimated that hospitals received only a small proportion (1.8%) of CPE-colonised patients from hospitals outside their own region, which decreased over time.

Conclusions

In contrast to the focus on import screening based on assigning a few hospitals as ‘high risk’, patient transfers between hospitals with small AMR problems in the same region often pose a larger absolute threat than patient transfers from hospitals in other regions with large problems, even if the prevalence in other regions is orders of magnitude higher. Because the difference in numbers of exchanged patients, between and within regions, was mostly larger than the difference in CPE prevalence, it would be more effective for hospitals to focus on their own populations or region to inform control efforts rather than focussing on problems elsewhere.
Appendix
Available only for authorised users
Literature
1.
go back to reference Gopal Rao G, Michalczyk P, Nayeem N, Walker G, Wigmore L. Prevalence and risk factors for meticillin-resistant Staphylococcus aureus in adult emergency admissions - a case for screening all patients? J Hosp Infect. 2007;66:15–21.CrossRefPubMed Gopal Rao G, Michalczyk P, Nayeem N, Walker G, Wigmore L. Prevalence and risk factors for meticillin-resistant Staphylococcus aureus in adult emergency admissions - a case for screening all patients? J Hosp Infect. 2007;66:15–21.CrossRefPubMed
3.
go back to reference Donker T, Wallinga J, Grundmann H. Patient referral patterns and the spread of hospital-acquired infections through national health care networks. PLoS Comput Biol. 2010;6:e1000715.CrossRefPubMedPubMedCentral Donker T, Wallinga J, Grundmann H. Patient referral patterns and the spread of hospital-acquired infections through national health care networks. PLoS Comput Biol. 2010;6:e1000715.CrossRefPubMedPubMedCentral
4.
go back to reference Huang SS, Avery TR, Song Y, et al. Quantifying interhospital patient sharing as a mechanism for infectious disease spread. Infect Control Hosp Epidemiol. 2010;31:1160–9.CrossRefPubMedPubMedCentral Huang SS, Avery TR, Song Y, et al. Quantifying interhospital patient sharing as a mechanism for infectious disease spread. Infect Control Hosp Epidemiol. 2010;31:1160–9.CrossRefPubMedPubMedCentral
5.
go back to reference Smith DL, Levin SA, Laxminarayan R. Strategic interactions in multi-institutional epidemics of antibiotic resistance. Proc Natl Acad Sci U S A. 2005;102:3153–8.CrossRefPubMedPubMedCentral Smith DL, Levin SA, Laxminarayan R. Strategic interactions in multi-institutional epidemics of antibiotic resistance. Proc Natl Acad Sci U S A. 2005;102:3153–8.CrossRefPubMedPubMedCentral
6.
go back to reference Karkada UH, Adamic LA, Kahn JM, Iwashyna TJ. Limiting the spread of highly resistant hospital-acquired microorganisms via critical care transfers: a simulation study. Intensive Care Med. 2011;37:1633–40.CrossRefPubMedPubMedCentral Karkada UH, Adamic LA, Kahn JM, Iwashyna TJ. Limiting the spread of highly resistant hospital-acquired microorganisms via critical care transfers: a simulation study. Intensive Care Med. 2011;37:1633–40.CrossRefPubMedPubMedCentral
7.
go back to reference Simmering JE, Polgreen LA, Campbell DR, Cavanaugh JE, Polgreen PM. Hospital transfer network structure as a risk factor for Clostridium difficile infection. Infect Control Hosp Epidemiol. 2015;36(9):1031–7.CrossRefPubMedPubMedCentral Simmering JE, Polgreen LA, Campbell DR, Cavanaugh JE, Polgreen PM. Hospital transfer network structure as a risk factor for Clostridium difficile infection. Infect Control Hosp Epidemiol. 2015;36(9):1031–7.CrossRefPubMedPubMedCentral
8.
go back to reference Donker T, Wallinga J, Slack R, Grundmann H. Hospital networks and the dispersal of hospital-acquired pathogens by patient transfer. PLoS One. 2012;7:e35002.CrossRefPubMedPubMedCentral Donker T, Wallinga J, Slack R, Grundmann H. Hospital networks and the dispersal of hospital-acquired pathogens by patient transfer. PLoS One. 2012;7:e35002.CrossRefPubMedPubMedCentral
9.
go back to reference Ke W, Huang SS, Hudson LO, et al. Patient sharing and population genetic structure of methicillin-resistant Staphylococcus aureus. Proc Natl Acad Sci U S A. 2012;109:6763–8.CrossRefPubMedPubMedCentral Ke W, Huang SS, Hudson LO, et al. Patient sharing and population genetic structure of methicillin-resistant Staphylococcus aureus. Proc Natl Acad Sci U S A. 2012;109:6763–8.CrossRefPubMedPubMedCentral
10.
go back to reference Chang H-H, Dordel J, Donker T, et al. Identifying the effect of patient sharing on between-hospital genetic differentiation of methicillin-resistant Staphylococcus aureus. Genome Med. 2016;8:18.CrossRefPubMedPubMedCentral Chang H-H, Dordel J, Donker T, et al. Identifying the effect of patient sharing on between-hospital genetic differentiation of methicillin-resistant Staphylococcus aureus. Genome Med. 2016;8:18.CrossRefPubMedPubMedCentral
13.
go back to reference Clauset A. Finding local community structure in networks. Phys Rev E. 2005;72:1–6.CrossRef Clauset A. Finding local community structure in networks. Phys Rev E. 2005;72:1–6.CrossRef
14.
go back to reference Sheppard AE, Stoesser N, Wilson DJ, et al. Nested Russian Doll-like Genetic Mobility Drives Rapid Dissemination of the Carbapenem Resistance Gene bla_kpc. Antimicrob Agents Chemother. 2016;60:3767–78.CrossRefPubMedPubMedCentral Sheppard AE, Stoesser N, Wilson DJ, et al. Nested Russian Doll-like Genetic Mobility Drives Rapid Dissemination of the Carbapenem Resistance Gene bla_kpc. Antimicrob Agents Chemother. 2016;60:3767–78.CrossRefPubMedPubMedCentral
15.
go back to reference Woodford N, Zhang J, Warner M, et al. Arrival of Klebsiella pneumoniae producing KPC carbapenemase in the United Kingdom. J Antimicrob Chemother. 2008;62:1261–4.CrossRefPubMed Woodford N, Zhang J, Warner M, et al. Arrival of Klebsiella pneumoniae producing KPC carbapenemase in the United Kingdom. J Antimicrob Chemother. 2008;62:1261–4.CrossRefPubMed
16.
go back to reference Struelens MJ, Monnet DL, Magiorakos AP, Santos O’Connor F, Giesecke J. New Delhi metallo-beta-lactamase 1-producing Enterobacteriaceae: emergence and response in Europe. Euro Surveill. 2010;15:1–10. Struelens MJ, Monnet DL, Magiorakos AP, Santos O’Connor F, Giesecke J. New Delhi metallo-beta-lactamase 1-producing Enterobacteriaceae: emergence and response in Europe. Euro Surveill. 2010;15:1–10.
17.
go back to reference Scalia Tomba G, Wallinga J. A simple explanation for the low impact of border control as a countermeasure to the spread of an infectious disease. Math Biosci. 2008;214:70–2.CrossRefPubMed Scalia Tomba G, Wallinga J. A simple explanation for the low impact of border control as a countermeasure to the spread of an infectious disease. Math Biosci. 2008;214:70–2.CrossRefPubMed
18.
go back to reference Ostrowsky BE, Trick WE, Sohn AH, et al. Control of vancomycin-resistant enterococcus in health care facilities in a region. N Engl J Med. 2001;344:1427–33.CrossRefPubMed Ostrowsky BE, Trick WE, Sohn AH, et al. Control of vancomycin-resistant enterococcus in health care facilities in a region. N Engl J Med. 2001;344:1427–33.CrossRefPubMed
19.
go back to reference Smith DL, Dushoff J, Perencevich EN, Harris AD, Levin SA. Persistent colonization and the spread of antibiotic resistance in nosocomial pathogens: resistance is a regional problem. Proc Natl Acad Sci U S A. 2004;101:3709–14.CrossRefPubMedPubMedCentral Smith DL, Dushoff J, Perencevich EN, Harris AD, Levin SA. Persistent colonization and the spread of antibiotic resistance in nosocomial pathogens: resistance is a regional problem. Proc Natl Acad Sci U S A. 2004;101:3709–14.CrossRefPubMedPubMedCentral
20.
go back to reference Ciccolini M, Donker T, Grundmann H, Bonten MJM, Woolhouse MEJ. Efficient surveillance for healthcare-associated infections spreading between hospitals. Proc Natl Acad Sci U S A. 2014;111:2271–6.CrossRefPubMedPubMedCentral Ciccolini M, Donker T, Grundmann H, Bonten MJM, Woolhouse MEJ. Efficient surveillance for healthcare-associated infections spreading between hospitals. Proc Natl Acad Sci U S A. 2014;111:2271–6.CrossRefPubMedPubMedCentral
21.
go back to reference Slayton RB, Toth D, Lee BY, et al. Estimated effects of a coordinated approach for action to reduce antibiotic-resistant infections in health care facilities. Morb Mortal Wkly Rep. 2015;64:826–31.CrossRef Slayton RB, Toth D, Lee BY, et al. Estimated effects of a coordinated approach for action to reduce antibiotic-resistant infections in health care facilities. Morb Mortal Wkly Rep. 2015;64:826–31.CrossRef
22.
go back to reference Schwaber MJ, Lev B, Israeli A, et al. Containment of a country-wide outbreak of carbapenem-resistant klebsiella pneumoniae in Israeli hospitals via a nationally implemented intervention. Clin Infect Dis. 2011;52:848–55.CrossRefPubMed Schwaber MJ, Lev B, Israeli A, et al. Containment of a country-wide outbreak of carbapenem-resistant klebsiella pneumoniae in Israeli hospitals via a nationally implemented intervention. Clin Infect Dis. 2011;52:848–55.CrossRefPubMed
23.
go back to reference Poole K, George R, Shryane T, et al. Evaluation of patient-held carbapenemase-producing Enterobacteriaceae (CPE) alert card. J Hosp Infect. 2016;92:102–5.CrossRefPubMed Poole K, George R, Shryane T, et al. Evaluation of patient-held carbapenemase-producing Enterobacteriaceae (CPE) alert card. J Hosp Infect. 2016;92:102–5.CrossRefPubMed
24.
go back to reference Venanzio V, Gharbi M, Moore LSP, et al. Screening suspected cases for carbapenemase-producing Enterobacteriaceae, inclusion criteria and demand. J Infect. 2015;71(4):493–5.CrossRefPubMed Venanzio V, Gharbi M, Moore LSP, et al. Screening suspected cases for carbapenemase-producing Enterobacteriaceae, inclusion criteria and demand. J Infect. 2015;71(4):493–5.CrossRefPubMed
Metadata
Title
The relative importance of large problems far away versus small problems closer to home: insights into limiting the spread of antimicrobial resistance in England
Authors
Tjibbe Donker
Katherine L. Henderson
Katie L. Hopkins
Andrew R. Dodgson
Stephanie Thomas
Derrick W. Crook
Tim E. A. Peto
Alan P. Johnson
Neil Woodford
A. Sarah Walker
Julie V. Robotham
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Medicine / Issue 1/2017
Electronic ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-017-0844-2

Other articles of this Issue 1/2017

BMC Medicine 1/2017 Go to the issue