Skip to main content
Top
Published in: BMC Health Services Research 1/2019

Open Access 01-12-2019 | Septicemia | Research article

An administrative model for benchmarking hospitals on their 30-day sepsis mortality

Authors: Jennifer L. Darby, Billie S. Davis, Ian J. Barbash, Jeremy M. Kahn

Published in: BMC Health Services Research | Issue 1/2019

Login to get access

Abstract

Background

Given the increased attention to sepsis at the population level there is a need to assess hospital performance in the care of sepsis patients using widely-available administrative data. The goal of this study was to develop an administrative risk-adjustment model suitable for profiling hospitals on their 30-day mortality rates for patients with sepsis.

Methods

We conducted a retrospective cohort study using hospital discharge data from general acute care hospitals in Pennsylvania in 2012 and 2013. We identified adult patients with sepsis as determined by validated diagnosis and procedure codes. We developed an administrative risk-adjustment model in 2012 data. We then validated this model in two ways: by examining the stability of performance assessments over time between 2012 and 2013, and by examining the stability of performance assessments in 2012 after the addition of laboratory variables measured on day one of hospital admission.

Results

In 2012 there were 115,213 sepsis encounters in 152 hospitals. The overall unadjusted mortality rate was 18.5%. The final risk-adjustment model had good discrimination (C-statistic = 0.78) and calibration (slope and intercept of the calibration curve = 0.960 and 0.007, respectively). Based on this model, hospital-specific risk-standardized mortality rates ranged from 12.2 to 24.5%. Comparing performance assessments between years, correlation in risk-adjusted mortality rates was good (Pearson’s correlation = 0.53) and only 19.7% of hospitals changed by more than one quintile in performance rankings. Comparing performance assessments after the addition of laboratory variables, correlation in risk-adjusted mortality rates was excellent (Pearson’s correlation = 0.93) and only 2.6% of hospitals changed by more than one quintile in performance rankings.

Conclusions

A novel claims-based risk-adjustment model demonstrated wide variation in risk-standardized 30-day sepsis mortality rates across hospitals. Individual hospitals’ performance rankings were stable across years and after the addition of laboratory data. This model provides a robust way to rank hospitals on sepsis mortality while adjusting for patient risk.
Appendix
Available only for authorised users
Literature
1.
go back to reference Fleischmann C, Scherag A, Adhikari NKJ, Hartog CS, Tsaganos T, Schlattmann P, et al. Assessment of global incidence and mortality of hospital-treated Sepsis. Current estimates and limitations. Am J Respir Crit Care Med. 2016;193:259–72.CrossRef Fleischmann C, Scherag A, Adhikari NKJ, Hartog CS, Tsaganos T, Schlattmann P, et al. Assessment of global incidence and mortality of hospital-treated Sepsis. Current estimates and limitations. Am J Respir Crit Care Med. 2016;193:259–72.CrossRef
2.
go back to reference Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, et al. Surviving Sepsis Campaign: International Guidelines for Management of Severe Sepsis and Septic Shock: 2012. 2013;41:580–637. Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, et al. Surviving Sepsis Campaign: International Guidelines for Management of Severe Sepsis and Septic Shock: 2012. 2013;41:580–637.
3.
go back to reference Levy MM, Rhodes A, Phillips GS, Townsend SR, Schorr CA, Beale R, et al. Surviving Sepsis campaign: association between performance metrics and outcomes in a 7.5-year study. Crit Care Med. 2015;43:3–12.CrossRef Levy MM, Rhodes A, Phillips GS, Townsend SR, Schorr CA, Beale R, et al. Surviving Sepsis campaign: association between performance metrics and outcomes in a 7.5-year study. Crit Care Med. 2015;43:3–12.CrossRef
4.
go back to reference Rhodes A, Phillips G, Beale R, Cecconi M, Chiche J-D, De Backer D, et al. The surviving Sepsis campaign bundles and outcome: results from the international multicentre prevalence study on Sepsis (the IMPreSS study). Intensive Care Med Springer Berlin Heidelberg; 2015;41:1620–8.CrossRef Rhodes A, Phillips G, Beale R, Cecconi M, Chiche J-D, De Backer D, et al. The surviving Sepsis campaign bundles and outcome: results from the international multicentre prevalence study on Sepsis (the IMPreSS study). Intensive Care Med Springer Berlin Heidelberg; 2015;41:1620–8.CrossRef
5.
go back to reference Scheer CS, Fuchs C, Kuhn S-O, Vollmer M, Rehberg S, Friesecke S, et al. Quality improvement initiative for severe Sepsis and septic shock reduces 90-day mortality: a 7.5-year observational study. Crit Care Med. 2017;45:241–52.CrossRef Scheer CS, Fuchs C, Kuhn S-O, Vollmer M, Rehberg S, Friesecke S, et al. Quality improvement initiative for severe Sepsis and septic shock reduces 90-day mortality: a 7.5-year observational study. Crit Care Med. 2017;45:241–52.CrossRef
6.
go back to reference Barbash IJ, Kahn JM, Thompson BT. Medicare’s Sepsis reporting program: two steps forward, one step Back. Am J Respir Crit Care Med. 2016;194(2):139.CrossRef Barbash IJ, Kahn JM, Thompson BT. Medicare’s Sepsis reporting program: two steps forward, one step Back. Am J Respir Crit Care Med. 2016;194(2):139.CrossRef
7.
go back to reference Hershey TB, Kahn JM. State Sepsis mandates - a new era for regulation of hospital quality. N Engl J Med. 2017;376:2311–3.CrossRef Hershey TB, Kahn JM. State Sepsis mandates - a new era for regulation of hospital quality. N Engl J Med. 2017;376:2311–3.CrossRef
8.
go back to reference Pine M, Jordan HS, Elixhauser A, Fry DE, Hoaglin DC, Jones B, et al. Enhancement of claims data to improve risk adjustment of hospital mortality. JAMA. 2007;297:71–6.CrossRef Pine M, Jordan HS, Elixhauser A, Fry DE, Hoaglin DC, Jones B, et al. Enhancement of claims data to improve risk adjustment of hospital mortality. JAMA. 2007;297:71–6.CrossRef
9.
go back to reference Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. 2001;29:1303–1310. Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. 2001;29:1303–1310.
10.
go back to reference Iwashyna TJ, Odden A, Rohde J, Bonham C, Kuhn L, Malani P, et al. Identifying patients with severe sepsis using administrative claims: patient-level validation of the angus implementation of the international consensus conference definition of severe sepsis. Med Care. 2014:e39–43.CrossRef Iwashyna TJ, Odden A, Rohde J, Bonham C, Kuhn L, Malani P, et al. Identifying patients with severe sepsis using administrative claims: patient-level validation of the angus implementation of the international consensus conference definition of severe sepsis. Med Care. 2014:e39–43.CrossRef
11.
go back to reference Zimmerman JE, Kramer AA, McNair DS, Malila FM. Acute Physiology and Chronic Health Evaluation (APACHE) IV: Hospital mortality assessment for today's critically ill patients. 2006;34:1297–1310.CrossRef Zimmerman JE, Kramer AA, McNair DS, Malila FM. Acute Physiology and Chronic Health Evaluation (APACHE) IV: Hospital mortality assessment for today's critically ill patients. 2006;34:1297–1310.CrossRef
12.
go back to reference Elias KM, Moromizato T, Gibbons FK, Christopher KB. Derivation and validation of the acute organ failure score to predict outcome in critically ill patients: a cohort study. Crit Care Med. 2015;43:856–64.CrossRef Elias KM, Moromizato T, Gibbons FK, Christopher KB. Derivation and validation of the acute organ failure score to predict outcome in critically ill patients: a cohort study. Crit Care Med. 2015;43:856–64.CrossRef
13.
go back to reference Quan H, Sundararajan V, Halfon P, Fong A, Burnand B, Luthi J-C, et al. Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Med Care. 2005;43:1130–9.CrossRef Quan H, Sundararajan V, Halfon P, Fong A, Burnand B, Luthi J-C, et al. Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Med Care. 2005;43:1130–9.CrossRef
14.
go back to reference Cleveland WS. Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc Taylor & Francis; 1979;74:829–36. Cleveland WS. Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc Taylor & Francis; 1979;74:829–36.
15.
go back to reference Knaus WA, Zimmerman JE, Wagner DP, Draper EA, Lawrence DE. APACHE-acute physiology and chronic health evaluation: a physiologically based classification system. Crit Care Med. 1981;9:591–7.CrossRef Knaus WA, Zimmerman JE, Wagner DP, Draper EA, Lawrence DE. APACHE-acute physiology and chronic health evaluation: a physiologically based classification system. Crit Care Med. 1981;9:591–7.CrossRef
16.
go back to reference Normand S, Glickman ME. Statistical methods for profiling providers of medical care: issues and applications. J Am Stat Assoc. 1997;92:803–14.CrossRef Normand S, Glickman ME. Statistical methods for profiling providers of medical care: issues and applications. J Am Stat Assoc. 1997;92:803–14.CrossRef
17.
go back to reference Cooke CR, Iwashyna TJ. Sepsis mandates: improving inpatient care while advancing quality improvement. JAMA. 2014;312:1397–8.CrossRef Cooke CR, Iwashyna TJ. Sepsis mandates: improving inpatient care while advancing quality improvement. JAMA. 2014;312:1397–8.CrossRef
18.
go back to reference Bradley EH, Curry LA, Ramanadhan S, Rowe L, Nembhard IM, Krumholz HM. Research in action: using positive deviance to improve quality of health care. Implement Sci. 2009;4:25.CrossRef Bradley EH, Curry LA, Ramanadhan S, Rowe L, Nembhard IM, Krumholz HM. Research in action: using positive deviance to improve quality of health care. Implement Sci. 2009;4:25.CrossRef
20.
go back to reference Schwarzkopf D, Fleischmann-Struzek C, Rüddel H, Reinhart K, Thomas-Rüddel DO. A risk-model for hospital mortality among patients with severe sepsis or septic shock based on German national administrative claims data. Lazzeri C, editor. PLoS One 2018;13:e0194371. Schwarzkopf D, Fleischmann-Struzek C, Rüddel H, Reinhart K, Thomas-Rüddel DO. A risk-model for hospital mortality among patients with severe sepsis or septic shock based on German national administrative claims data. Lazzeri C, editor. PLoS One 2018;13:e0194371.
21.
go back to reference Hatfield KM, Dantes RB, Baggs J, Sapiano MR, Fiore AE, Jernigan JA, et al. Assessing variability in hospital-level mortality among US medicare beneficiaries with hospitalizations for severe sepsis and septic shock. Crit. Care Med. 2018;46:1753–60.CrossRef Hatfield KM, Dantes RB, Baggs J, Sapiano MR, Fiore AE, Jernigan JA, et al. Assessing variability in hospital-level mortality among US medicare beneficiaries with hospitalizations for severe sepsis and septic shock. Crit. Care Med. 2018;46:1753–60.CrossRef
22.
go back to reference Walkey AJ, Shieh M-S, Liu VX, Lindenauer PK. Mortality measures to profile hospital performance for patients with septic shock. Crit Care Med. 2018;46:1247–54.CrossRef Walkey AJ, Shieh M-S, Liu VX, Lindenauer PK. Mortality measures to profile hospital performance for patients with septic shock. Crit Care Med. 2018;46:1247–54.CrossRef
23.
go back to reference Ford DW, Goodwin AJ, Simpson AN, Johnson E, Nadig N, Simpson KN. A severe Sepsis mortality prediction model and score for use with administrative data. Crit Care Med. 2016;44:319–27.CrossRef Ford DW, Goodwin AJ, Simpson AN, Johnson E, Nadig N, Simpson KN. A severe Sepsis mortality prediction model and score for use with administrative data. Crit Care Med. 2016;44:319–27.CrossRef
24.
go back to reference Reineck LA, Pike F, Le TQ, Cicero BD, Iwashyna TJ, Kahn JM. Hospital factors associated with discharge bias in ICU performance measurement. Crit Care Med. 2014;42:1055–64.CrossRef Reineck LA, Pike F, Le TQ, Cicero BD, Iwashyna TJ, Kahn JM. Hospital factors associated with discharge bias in ICU performance measurement. Crit Care Med. 2014;42:1055–64.CrossRef
25.
go back to reference Hall WB, Willis LE, Medvedev S, Carson SS. The implications of long-term acute care hospital transfer practices for measures of in-hospital mortality and length of stay. Am J Respir Crit Care Med. 2012;185:53–7.CrossRef Hall WB, Willis LE, Medvedev S, Carson SS. The implications of long-term acute care hospital transfer practices for measures of in-hospital mortality and length of stay. Am J Respir Crit Care Med. 2012;185:53–7.CrossRef
26.
go back to reference Vasilevskis EE, Kuzniewicz MW, Dean ML, Clay T, Vittinghoff E, Rennie DJ, et al. Relationship between discharge practices and intensive care unit in-hospital mortality performance: evidence of a discharge bias. Med Care. 2009;47:803–12.CrossRef Vasilevskis EE, Kuzniewicz MW, Dean ML, Clay T, Vittinghoff E, Rennie DJ, et al. Relationship between discharge practices and intensive care unit in-hospital mortality performance: evidence of a discharge bias. Med Care. 2009;47:803–12.CrossRef
27.
go back to reference Walkey AJ, Barnato AE, Wiener RS, Nallamothu BK. Accounting for patient preferences regarding life-sustaining treatment in evaluations of medical effectiveness and quality. Am J Respir Crit Care Med. 2017;196:958–63.CrossRef Walkey AJ, Barnato AE, Wiener RS, Nallamothu BK. Accounting for patient preferences regarding life-sustaining treatment in evaluations of medical effectiveness and quality. Am J Respir Crit Care Med. 2017;196:958–63.CrossRef
28.
go back to reference Rhee C, Jentzsch MS, Kadri SS, Seymour CW, Angus DC, Murphy DJ, et al. Variation in identifying Sepsis and organ dysfunction using administrative versus electronic clinical data and impact on hospital outcome comparisons. Crit Care Med. 2018:1. Rhee C, Jentzsch MS, Kadri SS, Seymour CW, Angus DC, Murphy DJ, et al. Variation in identifying Sepsis and organ dysfunction using administrative versus electronic clinical data and impact on hospital outcome comparisons. Crit Care Med. 2018:1.
Metadata
Title
An administrative model for benchmarking hospitals on their 30-day sepsis mortality
Authors
Jennifer L. Darby
Billie S. Davis
Ian J. Barbash
Jeremy M. Kahn
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Health Services Research / Issue 1/2019
Electronic ISSN: 1472-6963
DOI
https://doi.org/10.1186/s12913-019-4037-x

Other articles of this Issue 1/2019

BMC Health Services Research 1/2019 Go to the issue