Skip to main content
Top
Published in: BMC Health Services Research 1/2017

Open Access 01-12-2017 | Research article

Avoidable costs of stenting for aortic coarctation in the United Kingdom: an economic model

Authors: Maximilian Salcher, Alistair Mcguire, Vivek Muthurangu, Marcus Kelm, Titus Kuehne, Huseyin Naci, CARDIOPROOF

Published in: BMC Health Services Research | Issue 1/2017

Login to get access

Abstract

Background

Undesirable outcomes in health care are associated with patient harm and substantial excess costs. Coarctation of the aorta (CoA), one of the most common congenital heart diseases, can be repaired with stenting but requires monitoring and subsequent interventions to detect and treat disease recurrence and aortic wall injuries. Avoidable costs associated with stenting in patients with CoA are unknown.

Methods

We developed an economic model to calculate potentially avoidable costs in stenting treatment of CoA in the United Kingdom over 5 years. We calculated baseline costs for the intervention and potentially avoidable complications and follow-up interventions and compared these to the costs in hypothetical scenarios with improved treatment effectiveness and complication rates.

Results

Baseline costs were £16 688 ($25 182) per patient. Avoidable costs ranged from £137 ($207) per patient in a scenario assuming a 10% reduction in aortic wall injuries and reinterventions at follow-up, to £1627 ($2455) in a Best-case scenario with 100% treatment success and no complications. Overall costs in the Best-case scenario were 90.2% of overall costs at Baseline. Reintervention rate at follow-up was identified as most influential lever for overall costs. Probabilistic sensitivity analysis showed a considerable degree of uncertainty for avoidable costs with widely overlapping 95% confidence intervals.

Conclusions

Significant improvements in the treatment effectiveness and reductions in complication rates are required to realize discernible cost savings. Up to 10% of total baseline costs could be avoided in the best-case scenario. This highlights the need to pursue patient-specific treatment approaches which promise optimal outcomes.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hoffman JIE, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol. 2002;39:1890–900.CrossRefPubMed Hoffman JIE, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol. 2002;39:1890–900.CrossRefPubMed
2.
go back to reference Mackie AS, Pilote L, Ionescu-Ittu R, Rahme E, Marelli AJ. Health care resource utilization in adults with congenital heart disease. Am J Cardiol. 2007;99:839–43.CrossRefPubMed Mackie AS, Pilote L, Ionescu-Ittu R, Rahme E, Marelli AJ. Health care resource utilization in adults with congenital heart disease. Am J Cardiol. 2007;99:839–43.CrossRefPubMed
3.
go back to reference Verheugt CL, Uiterwaal CS, van der Velde ET, Meijboom FJ, Pieper PG, Sieswerda GT, et al. The emerging burden of hospital admissions of adults with congenital heart disease. Heart. 2010;96:872–8.CrossRefPubMed Verheugt CL, Uiterwaal CS, van der Velde ET, Meijboom FJ, Pieper PG, Sieswerda GT, et al. The emerging burden of hospital admissions of adults with congenital heart disease. Heart. 2010;96:872–8.CrossRefPubMed
4.
go back to reference Pasquali SK, He X, Jacobs ML, Shah SS, Peterson ED, Gaies MG, et al. Excess costs associated with complications and prolonged length of stay after congenital heart surgery. Ann Thorac Surg. 2014;98:1660–6.CrossRefPubMedPubMedCentral Pasquali SK, He X, Jacobs ML, Shah SS, Peterson ED, Gaies MG, et al. Excess costs associated with complications and prolonged length of stay after congenital heart surgery. Ann Thorac Surg. 2014;98:1660–6.CrossRefPubMedPubMedCentral
5.
go back to reference Benavidez OJ, Connor JA, Gauvreau K, Jenkins KJ. The contribution of complications to high resource utilization during congenital heart surgery admissions. Congenit Heart Dis. 2007;2:319–26.CrossRefPubMed Benavidez OJ, Connor JA, Gauvreau K, Jenkins KJ. The contribution of complications to high resource utilization during congenital heart surgery admissions. Congenit Heart Dis. 2007;2:319–26.CrossRefPubMed
6.
go back to reference Toro-Salazar OH, Steinberger J, Thomas W, Rocchini AP, Carpenter B, Moller JH. Long-term follow-up of patients after coarctation of the aorta repair. Am J Cardiol. 2002;89:541–7.CrossRefPubMed Toro-Salazar OH, Steinberger J, Thomas W, Rocchini AP, Carpenter B, Moller JH. Long-term follow-up of patients after coarctation of the aorta repair. Am J Cardiol. 2002;89:541–7.CrossRefPubMed
9.
go back to reference Salcher M, Naci H, Law TJ, Kuehne T, Schubert SS, Kelm M. Balloon dilatation and stenting for aortic coarctation: a systematic review and meta-analysis. Circ Cardiovasc Interv. 2016;9:e003153.CrossRefPubMed Salcher M, Naci H, Law TJ, Kuehne T, Schubert SS, Kelm M. Balloon dilatation and stenting for aortic coarctation: a systematic review and meta-analysis. Circ Cardiovasc Interv. 2016;9:e003153.CrossRefPubMed
10.
go back to reference Baumgartner H, Bonhoeffer P, De Groot NMS, de Haan F, Deanfield JE, Galie N, et al. ESC Guidelines for the management of grown-up congenital heart disease (new version 2010). Eur Heart J. 2010;31:2915–57.CrossRefPubMed Baumgartner H, Bonhoeffer P, De Groot NMS, de Haan F, Deanfield JE, Galie N, et al. ESC Guidelines for the management of grown-up congenital heart disease (new version 2010). Eur Heart J. 2010;31:2915–57.CrossRefPubMed
11.
go back to reference Feltes TF, Bacha E, Beekman RH, Cheatham JP, Feinstein JA, Gomes AS, et al. Indications for cardiac catheterization and intervention in pediatric cardiac disease a scientific statement from the American Heart Association. Circulation. 2011;123:2607–52.CrossRefPubMed Feltes TF, Bacha E, Beekman RH, Cheatham JP, Feinstein JA, Gomes AS, et al. Indications for cardiac catheterization and intervention in pediatric cardiac disease a scientific statement from the American Heart Association. Circulation. 2011;123:2607–52.CrossRefPubMed
12.
go back to reference de Suárez Lezo J, Pan M, Romero M, Segura J, Pavlovic D, Ojeda S, et al. Percutaneous interventions on severe coarctation of the aorta: a 21-year experience. Pediatr Cardiol. 2005;26:176–89.CrossRef de Suárez Lezo J, Pan M, Romero M, Segura J, Pavlovic D, Ojeda S, et al. Percutaneous interventions on severe coarctation of the aorta: a 21-year experience. Pediatr Cardiol. 2005;26:176–89.CrossRef
17.
18.
19.
go back to reference Cohen ER, Feinglass J, Barsuk JH, Barnard C, O’Donnell A, McGaghie WC, et al. Cost savings from reduced catheter-related bloodstream infection after simulation-based education for residents in a Medical Intensive Care Unit. Simul Healthc. 2010;5:98–102.CrossRefPubMed Cohen ER, Feinglass J, Barsuk JH, Barnard C, O’Donnell A, McGaghie WC, et al. Cost savings from reduced catheter-related bloodstream infection after simulation-based education for residents in a Medical Intensive Care Unit. Simul Healthc. 2010;5:98–102.CrossRefPubMed
20.
go back to reference Waters HR, Korn R, Colantuoni E, Berenholtz SM, Goeschel CA, Needham DM, et al. The business case for quality: economic analysis of the michigan keystone patient safety program in ICUs. Am J Med Qual. 2011;26:333–9.CrossRefPubMed Waters HR, Korn R, Colantuoni E, Berenholtz SM, Goeschel CA, Needham DM, et al. The business case for quality: economic analysis of the michigan keystone patient safety program in ICUs. Am J Med Qual. 2011;26:333–9.CrossRefPubMed
21.
go back to reference Cooper CJ, El-Shiekh RA, Cohen DJ, Blaesing L, Burket MW, Basu A, et al. Effect of transradial access on quality of life and cost of cardiac catheterization: a randomized comparison. Am Heart J. 1999;138:430–6.CrossRefPubMed Cooper CJ, El-Shiekh RA, Cohen DJ, Blaesing L, Burket MW, Basu A, et al. Effect of transradial access on quality of life and cost of cardiac catheterization: a randomized comparison. Am Heart J. 1999;138:430–6.CrossRefPubMed
22.
go back to reference Leatherman S, Berwick D, Iles D, Lewin LS, Davidoff F, Nolan T, et al. The business case for quality: case studies and an analysis. Health Aff (Millwood). 2003;22:17–30.CrossRef Leatherman S, Berwick D, Iles D, Lewin LS, Davidoff F, Nolan T, et al. The business case for quality: case studies and an analysis. Health Aff (Millwood). 2003;22:17–30.CrossRef
23.
go back to reference Vergales JE, Gangemi JJ, Rhueban KS, Lim DS. Coarctation of the aorta - the current state of surgical and transcatheter therapies. Curr Cardiol Rev. 2013;9:211–9.CrossRefPubMedPubMedCentral Vergales JE, Gangemi JJ, Rhueban KS, Lim DS. Coarctation of the aorta - the current state of surgical and transcatheter therapies. Curr Cardiol Rev. 2013;9:211–9.CrossRefPubMedPubMedCentral
24.
go back to reference Goubergrits L, Riesenkampff E, Yevtushenko P, Schaller J, Kertzscher U, Berger F, et al. Is MRI-based CFD able to improve clinical treatment of coarctations of aorta? Ann Biomed Eng. 2015;43:168–76.CrossRefPubMed Goubergrits L, Riesenkampff E, Yevtushenko P, Schaller J, Kertzscher U, Berger F, et al. Is MRI-based CFD able to improve clinical treatment of coarctations of aorta? Ann Biomed Eng. 2015;43:168–76.CrossRefPubMed
25.
go back to reference Neugebauer M, Glöckler M, Goubergrits L, Kelm M, Kuehne T, Hennemuth A. Interactive virtual stent planning for the treatment of coarctation of the aorta. Int J Comput Assist Radiol Surg. 2016;11:133–44.CrossRefPubMed Neugebauer M, Glöckler M, Goubergrits L, Kelm M, Kuehne T, Hennemuth A. Interactive virtual stent planning for the treatment of coarctation of the aorta. Int J Comput Assist Radiol Surg. 2016;11:133–44.CrossRefPubMed
26.
go back to reference Bhatt P, Patel NJ, Patel A, Sonani R, Patel A, Panaich SS, et al. Impact of hospital volume on outcomes of endovascular stenting for adult aortic coarctation. Am J Cardiol. 2015;116:1418–24.CrossRefPubMed Bhatt P, Patel NJ, Patel A, Sonani R, Patel A, Panaich SS, et al. Impact of hospital volume on outcomes of endovascular stenting for adult aortic coarctation. Am J Cardiol. 2015;116:1418–24.CrossRefPubMed
27.
go back to reference Correia AS, Gonçalves A, Paiva M, Sousa A, Oliveira SM, Lebreiro A, et al. Long-term follow-up after aortic coarctation repair: the unsolved issue of exercise-induced hypertension. Rev Port Cardiol. 2013;32:879–83.PubMed Correia AS, Gonçalves A, Paiva M, Sousa A, Oliveira SM, Lebreiro A, et al. Long-term follow-up after aortic coarctation repair: the unsolved issue of exercise-induced hypertension. Rev Port Cardiol. 2013;32:879–83.PubMed
28.
go back to reference Chakrabarti S, Kenny D, Morgan G, Curtis SL, Hamilton MCK, Wilde P, et al. Balloon expandable stent implantation for native and recurrent coarctation of the aorta--prospective computed tomography assessment of stent integrity, aneurysm formation and stenosis relief. Heart. 2010;96:1212–6.CrossRefPubMed Chakrabarti S, Kenny D, Morgan G, Curtis SL, Hamilton MCK, Wilde P, et al. Balloon expandable stent implantation for native and recurrent coarctation of the aorta--prospective computed tomography assessment of stent integrity, aneurysm formation and stenosis relief. Heart. 2010;96:1212–6.CrossRefPubMed
29.
go back to reference Chessa M, Carrozza M, Butera G, Piazza L, Negura DG, Bussadori C, et al. Results and mid-long-term follow-up of stent implantation for native and recurrent coarctation of the aorta. Eur Heart J. 2005;26:2728–32.CrossRefPubMed Chessa M, Carrozza M, Butera G, Piazza L, Negura DG, Bussadori C, et al. Results and mid-long-term follow-up of stent implantation for native and recurrent coarctation of the aorta. Eur Heart J. 2005;26:2728–32.CrossRefPubMed
30.
go back to reference Forbes TJ, Moore P, Pedra CAC, Zahn EM, Nykanen D, Amin Z, et al. Intermediate follow-up following intravascular stenting for treatment of coarctation of the aorta. Catheter Cardiovasc Interv. 2007;70:569–77.CrossRefPubMed Forbes TJ, Moore P, Pedra CAC, Zahn EM, Nykanen D, Amin Z, et al. Intermediate follow-up following intravascular stenting for treatment of coarctation of the aorta. Catheter Cardiovasc Interv. 2007;70:569–77.CrossRefPubMed
31.
go back to reference Forbes TJ, Kim DW, Du W, Turner DR, Holzer R, Amin Z, et al. Comparison of surgical, stent, and balloon angioplasty treatment of native coarctation of the aorta: an observational study by the CCISC (Congenital Cardiovascular Interventional Study Consortium). J Am Coll Cardiol. 2011;58:2664–74.CrossRefPubMed Forbes TJ, Kim DW, Du W, Turner DR, Holzer R, Amin Z, et al. Comparison of surgical, stent, and balloon angioplasty treatment of native coarctation of the aorta: an observational study by the CCISC (Congenital Cardiovascular Interventional Study Consortium). J Am Coll Cardiol. 2011;58:2664–74.CrossRefPubMed
32.
go back to reference Holzer R, Qureshi S, Ghasemi A, Vincent J, Sievert H, Gruenstein D, et al. Stenting of aortic coarctation: acute, intermediate, and long-term results of a prospective multi-institutional registry--Congenital Cardiovascular Interventional Study Consortium (CCISC). Catheter Cardiovasc Interv. 2010;76:553–63.CrossRefPubMed Holzer R, Qureshi S, Ghasemi A, Vincent J, Sievert H, Gruenstein D, et al. Stenting of aortic coarctation: acute, intermediate, and long-term results of a prospective multi-institutional registry--Congenital Cardiovascular Interventional Study Consortium (CCISC). Catheter Cardiovasc Interv. 2010;76:553–63.CrossRefPubMed
33.
go back to reference Krasemann T, Bano M, Rosenthal E, Qureshi SA. Results of stent implantation for native and recurrent coarctation of the aorta-follow-up of up to 13 years. Catheter Cardiovasc Interv. 2011;78:405–12.PubMed Krasemann T, Bano M, Rosenthal E, Qureshi SA. Results of stent implantation for native and recurrent coarctation of the aorta-follow-up of up to 13 years. Catheter Cardiovasc Interv. 2011;78:405–12.PubMed
34.
go back to reference Ledesma M, Alva C, Gómez FD, Sánchez-Soberanis A, Díaz y Díaz E, Benítez-Pérez C, et al. Results of stenting for aortic coarctation. Am J Cardiol. 2001;88:460–2.CrossRefPubMed Ledesma M, Alva C, Gómez FD, Sánchez-Soberanis A, Díaz y Díaz E, Benítez-Pérez C, et al. Results of stenting for aortic coarctation. Am J Cardiol. 2001;88:460–2.CrossRefPubMed
35.
go back to reference Mohan UR, Danon S, Levi D, Connolly D, Moore JW. Stent implantation for coarctation of the aorta in children <30 kg. JACC Cardiovasc Interv. 2009;2:877–83.CrossRefPubMed Mohan UR, Danon S, Levi D, Connolly D, Moore JW. Stent implantation for coarctation of the aorta in children <30 kg. JACC Cardiovasc Interv. 2009;2:877–83.CrossRefPubMed
36.
go back to reference Qureshi AM, McElhinney DB, Lock JE, Landzberg MJ, Lang P, Marshall AC. Acute and intermediate outcomes, and evaluation of injury to the aortic wall, as based on 15 years experience of implanting stents to treat aortic coarctation. Cardiol Young. 2007;17:307–18.CrossRefPubMed Qureshi AM, McElhinney DB, Lock JE, Landzberg MJ, Lang P, Marshall AC. Acute and intermediate outcomes, and evaluation of injury to the aortic wall, as based on 15 years experience of implanting stents to treat aortic coarctation. Cardiol Young. 2007;17:307–18.CrossRefPubMed
37.
go back to reference Ringel RE, Vincent J, Jenkins KJ, Gauvreau K, Moses H, Lofgren K, et al. Acute outcome of stent therapy for coarctation of the aorta: results of the coarctation of the aorta stent trial. Catheter Cardiovasc Interv. 2013;82:503–10.PubMed Ringel RE, Vincent J, Jenkins KJ, Gauvreau K, Moses H, Lofgren K, et al. Acute outcome of stent therapy for coarctation of the aorta: results of the coarctation of the aorta stent trial. Catheter Cardiovasc Interv. 2013;82:503–10.PubMed
38.
go back to reference Sohrabi B, Jamshidi P, Yaghoubi A, Habibzadeh A, Hashemi-aghdam Y, Moin A, et al. Comparison between covered and bare cheatham-platinum stents for endovascular treatment of patients with native post-ductal aortic coarctation: immediate and intermediate-term results. JACC Cardiovasc Interv. 2014;7:416–23.CrossRefPubMed Sohrabi B, Jamshidi P, Yaghoubi A, Habibzadeh A, Hashemi-aghdam Y, Moin A, et al. Comparison between covered and bare cheatham-platinum stents for endovascular treatment of patients with native post-ductal aortic coarctation: immediate and intermediate-term results. JACC Cardiovasc Interv. 2014;7:416–23.CrossRefPubMed
39.
go back to reference Thanopoulos BD, Giannakoulas G, Giannopoulos A, Galdo F, Tsaoussis GS. Initial and six-year results of stent implantation for aortic coarctation in children. Am J Cardiol. 2012;109:1499–503.CrossRefPubMed Thanopoulos BD, Giannakoulas G, Giannopoulos A, Galdo F, Tsaoussis GS. Initial and six-year results of stent implantation for aortic coarctation in children. Am J Cardiol. 2012;109:1499–503.CrossRefPubMed
40.
go back to reference Vanagt WY, Cools B, Boshoff DE, Frerich S, Heying R, Troost E, et al. Use of covered Cheatham-Platinum stents in congenital heart disease. Int J Cardiol. 2014;175:102–7.CrossRefPubMed Vanagt WY, Cools B, Boshoff DE, Frerich S, Heying R, Troost E, et al. Use of covered Cheatham-Platinum stents in congenital heart disease. Int J Cardiol. 2014;175:102–7.CrossRefPubMed
Metadata
Title
Avoidable costs of stenting for aortic coarctation in the United Kingdom: an economic model
Authors
Maximilian Salcher
Alistair Mcguire
Vivek Muthurangu
Marcus Kelm
Titus Kuehne
Huseyin Naci
CARDIOPROOF
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Health Services Research / Issue 1/2017
Electronic ISSN: 1472-6963
DOI
https://doi.org/10.1186/s12913-017-2215-2

Other articles of this Issue 1/2017

BMC Health Services Research 1/2017 Go to the issue