Skip to main content
Top
Published in: BMC Medical Informatics and Decision Making 1/2020

Open Access 01-12-2020 | Research article

Predicting patient outcomes in psychiatric hospitals with routine data: a machine learning approach

Authors: J. Wolff, A. Gary, D. Jung, C. Normann, K. Kaier, H. Binder, K. Domschke, A. Klimke, M. Franz

Published in: BMC Medical Informatics and Decision Making | Issue 1/2020

Login to get access

Abstract

Background

A common problem in machine learning applications is availability of data at the point of decision making. The aim of the present study was to use routine data readily available at admission to predict aspects relevant to the organization of psychiatric hospital care. A further aim was to compare the results of a machine learning approach with those obtained through a traditional method and those obtained through a naive baseline classifier.

Methods

The study included consecutively discharged patients between 1st of January 2017 and 31st of December 2018 from nine psychiatric hospitals in Hesse, Germany. We compared the predictive performance achieved by stochastic gradient boosting (GBM) with multiple logistic regression and a naive baseline classifier. We tested the performance of our final models on unseen patients from another calendar year and from different hospitals.

Results

The study included 45,388 inpatient episodes. The models’ performance, as measured by the area under the Receiver Operating Characteristic curve, varied strongly between the predicted outcomes, with relatively high performance in the prediction of coercive treatment (area under the curve: 0.83) and 1:1 observations (0.80) and relatively poor performance in the prediction of short length of stay (0.69) and non-response to treatment (0.65). The GBM performed slightly better than logistic regression. Both approaches were substantially better than a naive prediction based solely on basic diagnostic grouping.

Conclusion

The present study has shown that administrative routine data can be used to predict aspects relevant to the organisation of psychiatric hospital care. Future research should investigate the predictive performance that is necessary to provide effective assistance in clinical practice for the benefit of both staff and patients.
Literature
1.
go back to reference Amalberti R, Auroy Y, Berwick D, Barach P. Five system barriers to achieving ultrasafe health care. Ann Intern Med. 2005;142(9):756–64.PubMedCrossRef Amalberti R, Auroy Y, Berwick D, Barach P. Five system barriers to achieving ultrasafe health care. Ann Intern Med. 2005;142(9):756–64.PubMedCrossRef
2.
go back to reference Ackermann G, Bergman MM, Heinzmann C, Läubli LM. Komplexitätsreduktion durch Klassifikationsmodelle in der Gesundheitsförderung und Prävention. In: Aspekte der Prävention Ausgewählte Beiträge des 3 Nationalen Präventionskongresses Dresden, 27 bis 28 November 2009. Stuttgart: Thieme; 2009. p. 20–9. Available from: http://edoc.unibas.ch/dok/A5254405. Ackermann G, Bergman MM, Heinzmann C, Läubli LM. Komplexitätsreduktion durch Klassifikationsmodelle in der Gesundheitsförderung und Prävention. In: Aspekte der Prävention Ausgewählte Beiträge des 3 Nationalen Präventionskongresses Dresden, 27 bis 28 November 2009. Stuttgart: Thieme; 2009. p. 20–9. Available from: http://​edoc.​unibas.​ch/​dok/​A5254405.
3.
go back to reference Wolff J, McCrone P, Koeser L, Normann C, Patel A. Cost drivers of inpatient mental health care: a systematic review. Epidemiol Psychiatr Sci. 2015;24(01):78–89.PubMedCrossRef Wolff J, McCrone P, Koeser L, Normann C, Patel A. Cost drivers of inpatient mental health care: a systematic review. Epidemiol Psychiatr Sci. 2015;24(01):78–89.PubMedCrossRef
4.
go back to reference Barry CL, Weiner JP, Lemke K, Busch SH. Risk adjustment in health insurance exchanges for individuals with mental illness. Am J Psychiatry. 2012;169(7):704–9.PubMedPubMedCentralCrossRef Barry CL, Weiner JP, Lemke K, Busch SH. Risk adjustment in health insurance exchanges for individuals with mental illness. Am J Psychiatry. 2012;169(7):704–9.PubMedPubMedCentralCrossRef
5.
go back to reference Montz E, Layton T, Busch AB, Ellis RP, Rose S, McGuire TG. Risk-adjustment simulation: plans may have incentives to distort mental health and substance use coverage. Health Aff Proj Hope. 2016;35(6):1022–8.CrossRef Montz E, Layton T, Busch AB, Ellis RP, Rose S, McGuire TG. Risk-adjustment simulation: plans may have incentives to distort mental health and substance use coverage. Health Aff Proj Hope. 2016;35(6):1022–8.CrossRef
6.
go back to reference Wakefield JC. The concept of mental disorder: diagnostic implications of the harmful dysfunction analysis. World Psychiatry. 2007;6(3):149–56.PubMedPubMedCentral Wakefield JC. The concept of mental disorder: diagnostic implications of the harmful dysfunction analysis. World Psychiatry. 2007;6(3):149–56.PubMedPubMedCentral
7.
go back to reference Aboraya A, Rankin E, France C, El-Missiry A, John C. The reliability of psychiatric diagnosis revisited. Psychiatry Edgmont. 2006;3(1):41–50.PubMedPubMedCentral Aboraya A, Rankin E, France C, El-Missiry A, John C. The reliability of psychiatric diagnosis revisited. Psychiatry Edgmont. 2006;3(1):41–50.PubMedPubMedCentral
9.
go back to reference Evans-Lacko SE, Jarrett M, McCrone P, Thornicroft G. Clinical pathways in psychiatry. Br J Psychiatry. 2008;193(1):4–5.PubMedCrossRef Evans-Lacko SE, Jarrett M, McCrone P, Thornicroft G. Clinical pathways in psychiatry. Br J Psychiatry. 2008;193(1):4–5.PubMedCrossRef
10.
go back to reference Barbui C, Tansella M. Guideline implementation in mental health: current status and future goals. Epidemiol Psychiatr Sci. 2012;21(03):227–9.PubMedCrossRef Barbui C, Tansella M. Guideline implementation in mental health: current status and future goals. Epidemiol Psychiatr Sci. 2012;21(03):227–9.PubMedCrossRef
11.
go back to reference Hastie T, Tibshirani R, Friedman J. The elements of statistical learning: data mining, inference, and prediction. 2nd ed. New York: Springer-Verlag; 2009.CrossRef Hastie T, Tibshirani R, Friedman J. The elements of statistical learning: data mining, inference, and prediction. 2nd ed. New York: Springer-Verlag; 2009.CrossRef
12.
go back to reference McKinney SM, Sieniek M, Godbole V, Godwin J, Antropova N, Ashrafian H, et al. International evaluation of an AI system for breast cancer screening. Nature. 2020;577(7788):89–94.PubMedCrossRef McKinney SM, Sieniek M, Godbole V, Godwin J, Antropova N, Ashrafian H, et al. International evaluation of an AI system for breast cancer screening. Nature. 2020;577(7788):89–94.PubMedCrossRef
13.
go back to reference Tomašev N, Glorot X, Rae JW, Zielinski M, Askham H, Saraiva A, et al. A clinically applicable approach to continuous prediction of future acute kidney injury. Nature. 2019;572(7767):116–9.PubMedPubMedCentralCrossRef Tomašev N, Glorot X, Rae JW, Zielinski M, Askham H, Saraiva A, et al. A clinically applicable approach to continuous prediction of future acute kidney injury. Nature. 2019;572(7767):116–9.PubMedPubMedCentralCrossRef
14.
go back to reference Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542(7639):115–8.PubMedCrossRefPubMedCentral Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542(7639):115–8.PubMedCrossRefPubMedCentral
15.
go back to reference Litjens G, Sánchez CI, Timofeeva N, Hermsen M, Nagtegaal I, Kovacs I, et al. Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Sci Rep. 2016;6:26286.PubMedPubMedCentralCrossRef Litjens G, Sánchez CI, Timofeeva N, Hermsen M, Nagtegaal I, Kovacs I, et al. Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Sci Rep. 2016;6:26286.PubMedPubMedCentralCrossRef
16.
go back to reference Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016;316(22):2402–10.PubMedCrossRef Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016;316(22):2402–10.PubMedCrossRef
17.
go back to reference Schnyer DM, Clasen PC, Gonzalez C, Beevers CG. Evaluating the diagnostic utility of applying a machine learning algorithm to diffusion tensor MRI measures in individuals with major depressive disorder. Psychiatry Res Neuroimaging. 2017;264:1–9.PubMedCrossRef Schnyer DM, Clasen PC, Gonzalez C, Beevers CG. Evaluating the diagnostic utility of applying a machine learning algorithm to diffusion tensor MRI measures in individuals with major depressive disorder. Psychiatry Res Neuroimaging. 2017;264:1–9.PubMedCrossRef
18.
go back to reference Berlyand Y, Raja AS, Dorner SC, Prabhakar AM, Sonis JD, Gottumukkala RV, et al. How artificial intelligence could transform emergency department operations. Am J Emerg Med. 2018;36(8):1515–7.PubMedCrossRef Berlyand Y, Raja AS, Dorner SC, Prabhakar AM, Sonis JD, Gottumukkala RV, et al. How artificial intelligence could transform emergency department operations. Am J Emerg Med. 2018;36(8):1515–7.PubMedCrossRef
19.
20.
go back to reference Jones SS, Thomas A, Evans RS, Welch SJ, Haug PJ, Snow GL. Forecasting daily patient volumes in the emergency department. Acad Emerg Med Off J Soc Acad Emerg Med. 2008;15(2):159–70.CrossRef Jones SS, Thomas A, Evans RS, Welch SJ, Haug PJ, Snow GL. Forecasting daily patient volumes in the emergency department. Acad Emerg Med Off J Soc Acad Emerg Med. 2008;15(2):159–70.CrossRef
21.
go back to reference Desautels T, Calvert J, Hoffman J, Jay M, Kerem Y, Shieh L, et al. Prediction of Sepsis in the intensive care unit with minimal electronic health record data: a machine learning approach. JMIR Med Inform. 2016;4(3):e28.PubMedPubMedCentralCrossRef Desautels T, Calvert J, Hoffman J, Jay M, Kerem Y, Shieh L, et al. Prediction of Sepsis in the intensive care unit with minimal electronic health record data: a machine learning approach. JMIR Med Inform. 2016;4(3):e28.PubMedPubMedCentralCrossRef
22.
go back to reference Horng S, Sontag DA, Halpern Y, Jernite Y, Shapiro NI, Nathanson LA. Creating an automated trigger for sepsis clinical decision support at emergency department triage using machine learning. PLoS One. 2017;12(4):e0174708.PubMedPubMedCentralCrossRef Horng S, Sontag DA, Halpern Y, Jernite Y, Shapiro NI, Nathanson LA. Creating an automated trigger for sepsis clinical decision support at emergency department triage using machine learning. PLoS One. 2017;12(4):e0174708.PubMedPubMedCentralCrossRef
23.
go back to reference Gultepe E, Green JP, Nguyen H, Adams J, Albertson T, Tagkopoulos I. From vital signs to clinical outcomes for patients with sepsis: a machine learning basis for a clinical decision support system. J Am Med Inform Assoc. 2014;21(2):315–25.PubMedCrossRef Gultepe E, Green JP, Nguyen H, Adams J, Albertson T, Tagkopoulos I. From vital signs to clinical outcomes for patients with sepsis: a machine learning basis for a clinical decision support system. J Am Med Inform Assoc. 2014;21(2):315–25.PubMedCrossRef
25.
go back to reference Steyerberg EW, Moons KGM, van der Windt DA, Hayden JA, Perel P, Schroter S, et al. Prognosis research strategy (PROGRESS) 3: prognostic model research. PLoS Med. 2013;10(2):e1001381.PubMedPubMedCentralCrossRef Steyerberg EW, Moons KGM, van der Windt DA, Hayden JA, Perel P, Schroter S, et al. Prognosis research strategy (PROGRESS) 3: prognostic model research. PLoS Med. 2013;10(2):e1001381.PubMedPubMedCentralCrossRef
26.
go back to reference Car J, Sheikh A, Wicks P, Williams MS. Beyond the hype of big data and artificial intelligence: building foundations for knowledge and wisdom. BMC Med. 2019;17(1):143.PubMedPubMedCentralCrossRef Car J, Sheikh A, Wicks P, Williams MS. Beyond the hype of big data and artificial intelligence: building foundations for knowledge and wisdom. BMC Med. 2019;17(1):143.PubMedPubMedCentralCrossRef
27.
go back to reference Ngiam KY, Khor IW. Big data and machine learning algorithms for health-care delivery. Lancet Oncol. 2019;20(5):e262–73.PubMedCrossRef Ngiam KY, Khor IW. Big data and machine learning algorithms for health-care delivery. Lancet Oncol. 2019;20(5):e262–73.PubMedCrossRef
28.
go back to reference Tipping MD, Forth VE, Magill DB, Englert K, Williams MV. Systematic review of time studies evaluating physicians in the hospital setting. J Hosp Med Off Publ Soc Hosp Med. 2010;5(6):353–9. Tipping MD, Forth VE, Magill DB, Englert K, Williams MV. Systematic review of time studies evaluating physicians in the hospital setting. J Hosp Med Off Publ Soc Hosp Med. 2010;5(6):353–9.
29.
go back to reference Wolff J, Auber G, Schober T, Schwär F, Hoffmann K, Metzger M, et al. Work-time distribution of physicians at a German University hospital. Dtsch Arzteblatt Int. 2017;114(42):705–11. Wolff J, Auber G, Schober T, Schwär F, Hoffmann K, Metzger M, et al. Work-time distribution of physicians at a German University hospital. Dtsch Arzteblatt Int. 2017;114(42):705–11.
30.
go back to reference Panch T, Mattie H, Celi LA. The “inconvenient truth” about AI in healthcare. Npj Digit Med. 2019;2(1):1–3.CrossRef Panch T, Mattie H, Celi LA. The “inconvenient truth” about AI in healthcare. Npj Digit Med. 2019;2(1):1–3.CrossRef
31.
go back to reference Friedman JH. Greedy function approximation: a gradient boosting machine. Ann Stat. 2001;29(5):1189–232.CrossRef Friedman JH. Greedy function approximation: a gradient boosting machine. Ann Stat. 2001;29(5):1189–232.CrossRef
32.
go back to reference Kuhn M. Building predictive models in R using the caret package. J Stat Softw. 2008;28(5):1–26.CrossRef Kuhn M. Building predictive models in R using the caret package. J Stat Softw. 2008;28(5):1–26.CrossRef
34.
go back to reference Jones SH, Thornicroft G, Coffey M, Dunn G. A brief mental health outcome scale-reliability and validity of the global assessment of functioning (GAF). Br J Psychiatry. 1995;166(5):654–9.PubMedCrossRef Jones SH, Thornicroft G, Coffey M, Dunn G. A brief mental health outcome scale-reliability and validity of the global assessment of functioning (GAF). Br J Psychiatry. 1995;166(5):654–9.PubMedCrossRef
35.
go back to reference DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44(3):837–45.PubMedCrossRef DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44(3):837–45.PubMedCrossRef
36.
go back to reference Saito T, Rehmsmeier M. The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets. PLoS One. 2015;10(3):e0118432.PubMedPubMedCentralCrossRef Saito T, Rehmsmeier M. The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets. PLoS One. 2015;10(3):e0118432.PubMedPubMedCentralCrossRef
37.
go back to reference Emanuel EJ, Wachter RM. Artificial intelligence in health care: will the value match the hype? JAMA. 2019;321(23):2281–2.PubMedCrossRef Emanuel EJ, Wachter RM. Artificial intelligence in health care: will the value match the hype? JAMA. 2019;321(23):2281–2.PubMedCrossRef
39.
go back to reference Vollmer S, Mateen BA, Bohner G, Király FJ, Ghani R, Jonsson P, et al. Machine learning and AI research for Patient Benefit: 20 Critical Questions on Transparency, Replicability, Ethics and Effectiveness. CoRR. 2018; abs/1812.10404. Available from: http://arxiv.org/abs/1812.10404. Accessed 18 Sept 2019. Vollmer S, Mateen BA, Bohner G, Király FJ, Ghani R, Jonsson P, et al. Machine learning and AI research for Patient Benefit: 20 Critical Questions on Transparency, Replicability, Ethics and Effectiveness. CoRR. 2018; abs/1812.10404. Available from: http://​arxiv.​org/​abs/​1812.​10404. Accessed 18 Sept 2019.
40.
go back to reference Reilly BM, Evans AT. Translating clinical research into clinical practice: impact of using prediction rules to make decisions. Ann Intern Med. 2006;144(3):201.PubMedCrossRef Reilly BM, Evans AT. Translating clinical research into clinical practice: impact of using prediction rules to make decisions. Ann Intern Med. 2006;144(3):201.PubMedCrossRef
41.
go back to reference Altman DG, Vergouwe Y, Royston P, Moons KGM. Prognosis and prognostic research: validating a prognostic model. BMJ. 2009;338:b605.PubMedCrossRef Altman DG, Vergouwe Y, Royston P, Moons KGM. Prognosis and prognostic research: validating a prognostic model. BMJ. 2009;338:b605.PubMedCrossRef
42.
44.
go back to reference Nebeker C, Torous J, Bartlett Ellis RJ. Building the case for actionable ethics in digital health research supported by artificial intelligence. BMC Med. 2019;17(1):137.PubMedPubMedCentralCrossRef Nebeker C, Torous J, Bartlett Ellis RJ. Building the case for actionable ethics in digital health research supported by artificial intelligence. BMC Med. 2019;17(1):137.PubMedPubMedCentralCrossRef
45.
go back to reference English JT, Sharfstein SS, Scherl DJ, Astrachan B, Muszynski IL. Diagnosis-related groups and general hospital psychiatry: the APA study. Am J Psychiatry. 1986;143(2):131–9.PubMedCrossRef English JT, Sharfstein SS, Scherl DJ, Astrachan B, Muszynski IL. Diagnosis-related groups and general hospital psychiatry: the APA study. Am J Psychiatry. 1986;143(2):131–9.PubMedCrossRef
46.
go back to reference Wolff J, McCrone P, Patel A, Kaier K, Normann C. Predictors of length of stay in psychiatry: analyses of electronic medical records. BMC Psychiatry. 2015;15(1):1. Wolff J, McCrone P, Patel A, Kaier K, Normann C. Predictors of length of stay in psychiatry: analyses of electronic medical records. BMC Psychiatry. 2015;15(1):1.
47.
go back to reference Leighton SP, Krishnadas R, Chung K, Blair A, Brown S, Clark S, et al. Predicting one-year outcome in first episode psychosis using machine learning. PLoS One. 2019;14(3):e0212846.PubMedPubMedCentralCrossRef Leighton SP, Krishnadas R, Chung K, Blair A, Brown S, Clark S, et al. Predicting one-year outcome in first episode psychosis using machine learning. PLoS One. 2019;14(3):e0212846.PubMedPubMedCentralCrossRef
48.
go back to reference Koutsouleris N, Kahn RS, Chekroud AM, Leucht S, Falkai P, Wobrock T, et al. Multisite prediction of 4-week and 52-week treatment outcomes in patients with first-episode psychosis: a machine learning approach. Lancet Psychiatry. 2016;3(10):935–46.PubMedCrossRef Koutsouleris N, Kahn RS, Chekroud AM, Leucht S, Falkai P, Wobrock T, et al. Multisite prediction of 4-week and 52-week treatment outcomes in patients with first-episode psychosis: a machine learning approach. Lancet Psychiatry. 2016;3(10):935–46.PubMedCrossRef
49.
go back to reference Lin E, Kuo P-H, Liu Y-L, Yu YW-Y, Yang AC, Tsai S-J. A deep learning approach for predicting antidepressant response in major depression using clinical and genetic biomarkers. Front Psychiatry. 2018;9:290.PubMedPubMedCentralCrossRef Lin E, Kuo P-H, Liu Y-L, Yu YW-Y, Yang AC, Tsai S-J. A deep learning approach for predicting antidepressant response in major depression using clinical and genetic biomarkers. Front Psychiatry. 2018;9:290.PubMedPubMedCentralCrossRef
50.
go back to reference Wolff J, Heister T, Normann C, Kaier K. Hospital costs associated with psychiatric comorbidities: a retrospective study. BMC Health Serv Res. 2018;18(1):67.PubMedPubMedCentralCrossRef Wolff J, Heister T, Normann C, Kaier K. Hospital costs associated with psychiatric comorbidities: a retrospective study. BMC Health Serv Res. 2018;18(1):67.PubMedPubMedCentralCrossRef
51.
go back to reference Byrne N, Regan C, Howard L. Administrative registers in psychiatric research: a systematic review of validity studies. Acta Psychiatr Scand. 2005;112(6):409–14.PubMedCrossRef Byrne N, Regan C, Howard L. Administrative registers in psychiatric research: a systematic review of validity studies. Acta Psychiatr Scand. 2005;112(6):409–14.PubMedCrossRef
52.
go back to reference Oiesvold T, Nivison M, Hansen V, Skre I, Ostensen L, Sørgaard KW. Diagnosing comorbidity in psychiatric hospital: challenging the validity of administrative registers. BMC Psychiatry. 2013;13:13.PubMedPubMedCentralCrossRef Oiesvold T, Nivison M, Hansen V, Skre I, Ostensen L, Sørgaard KW. Diagnosing comorbidity in psychiatric hospital: challenging the validity of administrative registers. BMC Psychiatry. 2013;13:13.PubMedPubMedCentralCrossRef
53.
go back to reference Soo M, Robertson LM, Ali T, Clark LE, Fluck N, Johnston M, et al. Approaches to ascertaining comorbidity information: validation of routine hospital episode data with clinician-based case note review. BMC Res Notes. 2014;7:253.PubMedPubMedCentralCrossRef Soo M, Robertson LM, Ali T, Clark LE, Fluck N, Johnston M, et al. Approaches to ascertaining comorbidity information: validation of routine hospital episode data with clinician-based case note review. BMC Res Notes. 2014;7:253.PubMedPubMedCentralCrossRef
Metadata
Title
Predicting patient outcomes in psychiatric hospitals with routine data: a machine learning approach
Authors
J. Wolff
A. Gary
D. Jung
C. Normann
K. Kaier
H. Binder
K. Domschke
A. Klimke
M. Franz
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Medical Informatics and Decision Making / Issue 1/2020
Electronic ISSN: 1472-6947
DOI
https://doi.org/10.1186/s12911-020-1042-2

Other articles of this Issue 1/2020

BMC Medical Informatics and Decision Making 1/2020 Go to the issue