Skip to main content
Top
Published in: BMC Medical Informatics and Decision Making 14/2020

Open Access 01-12-2020 | Acute Kidney Injury | Research

Hyperchloremia in critically ill patients: association with outcomes and prediction using electronic health record data

Authors: Pete Yeh, Yiheng Pan, L. Nelson Sanchez-Pinto, Yuan Luo

Published in: BMC Medical Informatics and Decision Making | Special Issue 14/2020

Login to get access

Abstract

Background

Increased chloride in the context of intravenous fluid chloride load and serum chloride levels (hyperchloremia) have previously been associated with increased morbidity and mortality in select subpopulations of intensive care unit (ICU) patients (e.g patients with sepsis). Here, we study the general ICU population of the Medical Information Mart for Intensive Care III (MIMIC-III) database to corroborate these associations, and propose a supervised learning model for the prediction of hyperchloremia in ICU patients.

Methods

We assessed hyperchloremia and chloride load and their associations with several outcomes (ICU mortality, new acute kidney injury [AKI] by day 7, and multiple organ dysfunction syndrome [MODS] on day 7) using regression analysis. Four predictive supervised learning classifiers were trained to predict hyperchloremia using features representative of clinical records from the first 24h of adult ICU stays.

Results

Hyperchloremia was shown to have an independent association with increased odds of ICU mortality, new AKI by day 7, and MODS on day 7. High chloride load was also associated with increased odds of ICU mortality. Our best performing supervised learning model predicted second-day hyperchloremia with an AUC of 0.76 and a number needed to alert (NNA) of 7—a clinically-actionable rate.

Conclusions

Our results support the use of predictive models to aid clinicians in monitoring for and preventing hyperchloremia in high-risk patients and offers an opportunity to improve patient outcomes.
Literature
1.
go back to reference Reuter DA, Chappell D, Perel A. The dark sides of fluid administration in the critically ill patient. Intensive Care Med. 2018;44(7):1138–40.CrossRef Reuter DA, Chappell D, Perel A. The dark sides of fluid administration in the critically ill patient. Intensive Care Med. 2018;44(7):1138–40.CrossRef
2.
go back to reference Sen A, Keener CM, Sileanu FE, Foldes E, Clermont G, Murugan R, Kellum JA. Chloride content of fluids used for large-volume resuscitation is associated with reduced survival. Crit Care Med. 2017;45(2):146–53.CrossRef Sen A, Keener CM, Sileanu FE, Foldes E, Clermont G, Murugan R, Kellum JA. Chloride content of fluids used for large-volume resuscitation is associated with reduced survival. Crit Care Med. 2017;45(2):146–53.CrossRef
3.
go back to reference Raghunathan K, Shaw A, Nathanson B, Sturmer T, Brookhart A, Stefan MS, Setoguchi S, Beadles C, Lindenauer PK. Association between the choice of IV crystalloid and in-hospital mortality among critically ill adults with sepsis*. Crit Care Med. 2014;42(7):1585–91.CrossRef Raghunathan K, Shaw A, Nathanson B, Sturmer T, Brookhart A, Stefan MS, Setoguchi S, Beadles C, Lindenauer PK. Association between the choice of IV crystalloid and in-hospital mortality among critically ill adults with sepsis*. Crit Care Med. 2014;42(7):1585–91.CrossRef
4.
go back to reference Suetrong B, Pisitsak C, Boyd JH, Russell JA, Walley KR. Hyperchloremia and moderate increase in serum chloride are associated with acute kidney injury in severe sepsis and septic shock patients. Crit Care. 2016;20(1):315.CrossRef Suetrong B, Pisitsak C, Boyd JH, Russell JA, Walley KR. Hyperchloremia and moderate increase in serum chloride are associated with acute kidney injury in severe sepsis and septic shock patients. Crit Care. 2016;20(1):315.CrossRef
5.
go back to reference Neyra JA, Canepa-Escaro F, Li X, Manllo J, Adams-Huet B, Yee J, Yessayan L. Association of hyperchloremia with hospital mortality in critically ill septic patients. Crit Care Med. 2015;43(9):1938–44.CrossRef Neyra JA, Canepa-Escaro F, Li X, Manllo J, Adams-Huet B, Yee J, Yessayan L. Association of hyperchloremia with hospital mortality in critically ill septic patients. Crit Care Med. 2015;43(9):1938–44.CrossRef
6.
go back to reference Yunos NM, Bellomo R, Hegarty C, Story D, Ho L, Bailey M. Association between a chloride-liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults. JAMA. 2012;308(15):1566–72.CrossRef Yunos NM, Bellomo R, Hegarty C, Story D, Ho L, Bailey M. Association between a chloride-liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults. JAMA. 2012;308(15):1566–72.CrossRef
7.
go back to reference Sanchez-Pinto LN, Luo Y, Churpek MM. Big data and data science in critical care. Chest. 2018;154(5):1239–48.CrossRef Sanchez-Pinto LN, Luo Y, Churpek MM. Big data and data science in critical care. Chest. 2018;154(5):1239–48.CrossRef
8.
go back to reference Johnson AE, Pollard TJ, Shen L, Lehman LW, Feng M, Ghassemi M, Moody B, Szolovits P, Celi LA, Mark RG. MIMIC-III, a freely accessible critical care database. Sci Data. 2016;3:160035.CrossRef Johnson AE, Pollard TJ, Shen L, Lehman LW, Feng M, Ghassemi M, Moody B, Szolovits P, Celi LA, Mark RG. MIMIC-III, a freely accessible critical care database. Sci Data. 2016;3:160035.CrossRef
9.
go back to reference Lin K, Hu Y, Kong G. Predicting in-hospital mortality of patients with acute kidney injury in the ICU using random forest model. Int J Med Inform. 2019;125:55–61.CrossRef Lin K, Hu Y, Kong G. Predicting in-hospital mortality of patients with acute kidney injury in the ICU using random forest model. Int J Med Inform. 2019;125:55–61.CrossRef
10.
go back to reference Zhang S, Zhang K, Yu Y, Tian B, Cui W, Zhang G. A new prediction model for assessing the clinical outcomes of ICU patients with community-acquired pneumonia: a decision tree analysis. Ann Med. 2019;51(1):41–50.CrossRef Zhang S, Zhang K, Yu Y, Tian B, Cui W, Zhang G. A new prediction model for assessing the clinical outcomes of ICU patients with community-acquired pneumonia: a decision tree analysis. Ann Med. 2019;51(1):41–50.CrossRef
11.
go back to reference Barrett LA, Payrovnaziri SN, Bian J, He Z. Building computational models to predict one-year mortality in ICU patients with acute myocardial infarction and post myocardial infarction syndrome. AMIA Jt Summits Transl Sci Proc. 2019;2019:407–16.PubMedPubMedCentral Barrett LA, Payrovnaziri SN, Bian J, He Z. Building computational models to predict one-year mortality in ICU patients with acute myocardial infarction and post myocardial infarction syndrome. AMIA Jt Summits Transl Sci Proc. 2019;2019:407–16.PubMedPubMedCentral
12.
go back to reference Garcia-Gallo JE, Fonseca-Ruiz NJ, Celi LA, Duitama-Munoz JF. A machine learning-based model for 1-year mortality prediction in patients admitted to an Intensive Care Unit with a diagnosis of sepsis. Med Intensiva. 2018;44:160–70.CrossRef Garcia-Gallo JE, Fonseca-Ruiz NJ, Celi LA, Duitama-Munoz JF. A machine learning-based model for 1-year mortality prediction in patients admitted to an Intensive Care Unit with a diagnosis of sepsis. Med Intensiva. 2018;44:160–70.CrossRef
13.
go back to reference Luo Y, Xin Y, Joshi R, Celi L, Szolovits P. Predicting ICU mortality risk by grouping temporal trends from a multivariate panel of physiologic measurements. In: Thirtieth AAAI conference on artificial intelligence. 2016. Luo Y, Xin Y, Joshi R, Celi L, Szolovits P. Predicting ICU mortality risk by grouping temporal trends from a multivariate panel of physiologic measurements. In: Thirtieth AAAI conference on artificial intelligence. 2016.
14.
go back to reference Lee CH, Arzeno NM, Ho JC, Vikalo H, Ghosh J. An imputation-enhanced algorithm for ICU mortality prediction. Comput Cardiol. 2012;39:253–6. Lee CH, Arzeno NM, Ho JC, Vikalo H, Ghosh J. An imputation-enhanced algorithm for ICU mortality prediction. Comput Cardiol. 2012;39:253–6.
15.
go back to reference Silva I, Moody G, Scott DJ, Celi LA, Mark RG. Predicting in-hospital mortality of ICU patients: the PhysioNet/computing in cardiology challenge, vol. 39; 2012. p. 245–8. Silva I, Moody G, Scott DJ, Celi LA, Mark RG. Predicting in-hospital mortality of ICU patients: the PhysioNet/computing in cardiology challenge, vol. 39; 2012. p. 245–8.
16.
go back to reference Lin YW, Zhou Y, Faghri F, Shaw MJ, Campbell RH. Analysis and prediction of unplanned intensive care unit readmission using recurrent neural networks with long short-term memory. PLoS ONE. 2019;14(7):0218942. Lin YW, Zhou Y, Faghri F, Shaw MJ, Campbell RH. Analysis and prediction of unplanned intensive care unit readmission using recurrent neural networks with long short-term memory. PLoS ONE. 2019;14(7):0218942.
19.
go back to reference Zimmerman LP, Reyfman PA, Smith ADR, Zeng Z, Kho A, Sanchez-Pinto LN, Luo Y. Early prediction of acute kidney injury following ICU admission using a multivariate panel of physiological measurements. BMC Med Inform Decis Mak. 2019;19(Suppl 1):16.CrossRef Zimmerman LP, Reyfman PA, Smith ADR, Zeng Z, Kho A, Sanchez-Pinto LN, Luo Y. Early prediction of acute kidney injury following ICU admission using a multivariate panel of physiological measurements. BMC Med Inform Decis Mak. 2019;19(Suppl 1):16.CrossRef
20.
go back to reference He J, Hu Y, Zhang X, Wu L, Waitman LR, Liu M. Multi-perspective predictive modeling for acute kidney injury in general hospital populations using electronic medical records. JAMIA Open. 2018;2(1):115–22.CrossRef He J, Hu Y, Zhang X, Wu L, Waitman LR, Liu M. Multi-perspective predictive modeling for acute kidney injury in general hospital populations using electronic medical records. JAMIA Open. 2018;2(1):115–22.CrossRef
21.
go back to reference Li Y, Yao L, Mao C, Srivastava A, Jiang X, Luo Y. Early prediction of acute kidney injury in critical care setting using clinical notes. In: IEEE international conference on bioinformatics and biomedicine (BIBM). IEEE; 2018. p. 683–6. Li Y, Yao L, Mao C, Srivastava A, Jiang X, Luo Y. Early prediction of acute kidney injury in critical care setting using clinical notes. In: IEEE international conference on bioinformatics and biomedicine (BIBM). IEEE; 2018. p. 683–6.
22.
go back to reference Meyer A, Zverinski D, Pfahringer B, Kempfert J, Kuehne T, Sundermann SH, Stamm C, Hofmann T, Falk V, Eickhoff C. Machine learning for real-time prediction of complications in critical care: a retrospective study. Lancet Respir Med. 2018;6(12):905–14.CrossRef Meyer A, Zverinski D, Pfahringer B, Kempfert J, Kuehne T, Sundermann SH, Stamm C, Hofmann T, Falk V, Eickhoff C. Machine learning for real-time prediction of complications in critical care: a retrospective study. Lancet Respir Med. 2018;6(12):905–14.CrossRef
23.
go back to reference Yeh P, Pan Y, Sanchez-Pinto LN, Luo Y. Using machine learning to predict hyperchloremia in critically ill patients. 2019. Yeh P, Pan Y, Sanchez-Pinto LN, Luo Y. Using machine learning to predict hyperchloremia in critically ill patients. 2019.
24.
go back to reference Sakr Y, Lobo SM, Moreno RP, Gerlach H, Ranieri VM, Michalopoulos A, Vincent JL. Patterns and early evolution of organ failure in the intensive care unit and their relation to outcome. Crit Care. 2012;16(6):222.CrossRef Sakr Y, Lobo SM, Moreno RP, Gerlach H, Ranieri VM, Michalopoulos A, Vincent JL. Patterns and early evolution of organ failure in the intensive care unit and their relation to outcome. Crit Care. 2012;16(6):222.CrossRef
25.
go back to reference Vincent JL, Moreno R, Takala J, Willatts S, De Mendonca A, Bruining H, Reinhart CK, Suter PM, Thijs LG. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996;22(7):707–10. Vincent JL, Moreno R, Takala J, Willatts S, De Mendonca A, Bruining H, Reinhart CK, Suter PM, Thijs LG. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996;22(7):707–10.
26.
go back to reference Kidney Disease: Improving Global Outcomes (KDIGO). Kidney International Supplements. KDIGO Clinical Practice Guideline for Acute Kidney Injury. 2012;2(1):1–138. Kidney Disease: Improving Global Outcomes (KDIGO). Kidney International Supplements. KDIGO Clinical Practice Guideline for Acute Kidney Injury. 2012;2(1):1–138.
27.
go back to reference Quan H, Sundararajan V, Halfon P, Fong A, Burnand B, Luthi JC, Saunders LD, Beck CA, Feasby TE, Ghali WA. Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Med Care. 2005;43(11):1130–9.CrossRef Quan H, Sundararajan V, Halfon P, Fong A, Burnand B, Luthi JC, Saunders LD, Beck CA, Feasby TE, Ghali WA. Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Med Care. 2005;43(11):1130–9.CrossRef
28.
go back to reference Chen T, Guestrin C. XGBoost: a scalable tree boosting system. CoRR. abs/1603.02754. 2016. Chen T, Guestrin C. XGBoost: a scalable tree boosting system. CoRR. abs/1603.02754. 2016.
29.
go back to reference Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E. Scikit-learn: machine learning in Python. J Mach Learn Res. 2011;12:2825–30. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E. Scikit-learn: machine learning in Python. J Mach Learn Res. 2011;12:2825–30.
30.
go back to reference Dewan M, Sanchez-Pinto LN. Crystal balls and magic eight balls: the art of developing and implementing automated algorithms in acute care pediatrics. Pediatr Crit Care Med. 2019;20(12):1197–9.CrossRef Dewan M, Sanchez-Pinto LN. Crystal balls and magic eight balls: the art of developing and implementing automated algorithms in acute care pediatrics. Pediatr Crit Care Med. 2019;20(12):1197–9.CrossRef
Metadata
Title
Hyperchloremia in critically ill patients: association with outcomes and prediction using electronic health record data
Authors
Pete Yeh
Yiheng Pan
L. Nelson Sanchez-Pinto
Yuan Luo
Publication date
01-12-2020
Publisher
BioMed Central
DOI
https://doi.org/10.1186/s12911-020-01326-4

Other articles of this Special Issue 14/2020

BMC Medical Informatics and Decision Making 14/2020 Go to the issue