Skip to main content
Top
Published in: BMC Medical Informatics and Decision Making 1/2020

Open Access 01-12-2020 | Colorectal Cancer | Research article

Identification of most influential co-occurring gene suites for gastrointestinal cancer using biomedical literature mining and graph-based influence maximization

Authors: Charles C. N. Wang, Jennifer Jin, Jan-Gowth Chang, Masahiro Hayakawa, Atsushi Kitazawa, Jeffrey J. P. Tsai, Phillip C.-Y. Sheu

Published in: BMC Medical Informatics and Decision Making | Issue 1/2020

Login to get access

Abstract

Background

Gastrointestinal (GI) cancer including colorectal cancer, gastric cancer, pancreatic cancer, etc., are among the most frequent malignancies diagnosed annually and represent a major public health problem worldwide.

Methods

This paper reports an aided curation pipeline to identify potential influential genes for gastrointestinal cancer. The curation pipeline integrates biomedical literature to identify named entities by Bi-LSTM-CNN-CRF methods. The entities and their associations can be used to construct a graph, and from which we can compute the sets of co-occurring genes that are the most influential based on an influence maximization algorithm.

Results

The sets of co-occurring genes that are the most influential that we discover include RARA - CRBP1, CASP3 - BCL2, BCL2 - CASP3 – CRBP1, RARA - CASP3 – CRBP1, FOXJ1 - RASSF3 - ESR1, FOXJ1 - RASSF1A - ESR1, FOXJ1 - RASSF1A - TNFAIP8 - ESR1. With TCGA and functional and pathway enrichment analysis, we prove the proposed approach works well in the context of gastrointestinal cancer.

Conclusions

Our pipeline that uses text mining to identify objects and relationships to construct a graph and uses graph-based influence maximization to discover the most influential co-occurring genes presents a viable direction to assist knowledge discovery for clinical applications.
Literature
1.
go back to reference Toomey PG, Vohra NA, Ghansah T, Sarnaik AA, Pilon-Thomas SAJCC. Immunotherapy for gastrointestinal malignancies. Cancer Control, 2013;20(1):32–42. Toomey PG, Vohra NA, Ghansah T, Sarnaik AA, Pilon-Thomas SAJCC. Immunotherapy for gastrointestinal malignancies. Cancer Control, 2013;20(1):32–42.
2.
go back to reference Pöttgen C, Stuschke MJC. Radiotherapy versus surgery within multimodality protocols for esophageal cancer–a meta-analysis of the randomized trials. Cancer treatment reviews, 2012;38(6):599–604. Pöttgen C, Stuschke MJC. Radiotherapy versus surgery within multimodality protocols for esophageal cancer–a meta-analysis of the randomized trials. Cancer treatment reviews, 2012;38(6):599–604.
3.
go back to reference Vesely MD, Schreiber RDJANYAS. Cancer immunoediting: antigens, mechanisms, and implications to cancer immunotherapy. Annals of the New York Academy of Sciences, 2013;1284(1):1–5. Vesely MD, Schreiber RDJANYAS. Cancer immunoediting: antigens, mechanisms, and implications to cancer immunotherapy. Annals of the New York Academy of Sciences, 2013;1284(1):1–5.
4.
go back to reference Zumwalt TJ, Goel AJC. Immunotherapy of metastatic colorectal cancer: prevailing challenges and new perspectives. Current colorectal cancer reports, 2015;11(3):125–40. Zumwalt TJ, Goel AJC. Immunotherapy of metastatic colorectal cancer: prevailing challenges and new perspectives. Current colorectal cancer reports, 2015;11(3):125–40.
5.
go back to reference Jin S, Zeng X, Xia F, Huang W, Liu X. Application of deep learning methods in biological networks. Brief Bioinform. 2020;bbaa043. Jin S, Zeng X, Xia F, Huang W, Liu X. Application of deep learning methods in biological networks. Brief Bioinform. 2020;bbaa043.
6.
go back to reference Ali N, Amer E, Zayed H. Understanding Medical Text Related to Breast Cancer: A Review. In: International Conference on Advanced Intelligent Systems and Informatics: 2017: Springer; Cham. 2017. p. 280–8. Ali N, Amer E, Zayed H. Understanding Medical Text Related to Breast Cancer: A Review. In: International Conference on Advanced Intelligent Systems and Informatics: 2017: Springer; Cham. 2017. p. 280–8.
7.
go back to reference Jensen LJ, Saric J, Bork PJN. Literature mining for the biologist: from information retrieval to biological discovery. Nature reviews genetics, 2006;7(2):119–129. Jensen LJ, Saric J, Bork PJN. Literature mining for the biologist: from information retrieval to biological discovery. Nature reviews genetics, 2006;7(2):119–129.
8.
go back to reference Jurca G, Addam O, Aksac A, Gao S, Özyer T, Demetrick D, Alhajj RJB. Integrating text mining, data mining, and network analysis for identifying genetic breast cancer trends. BMC research notes, 2016;9(1):236. Jurca G, Addam O, Aksac A, Gao S, Özyer T, Demetrick D, Alhajj RJB. Integrating text mining, data mining, and network analysis for identifying genetic breast cancer trends. BMC research notes, 2016;9(1):236.
9.
go back to reference Cho H, Lee H. Biomedical named entity recognition using deep neural networks with contextual information. BMC Bioinformatics. 2019;20(1):735.CrossRef Cho H, Lee H. Biomedical named entity recognition using deep neural networks with contextual information. BMC Bioinformatics. 2019;20(1):735.CrossRef
10.
go back to reference Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ESJPNAS. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences, 2005;102(43):15545–50. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ESJPNAS. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences, 2005;102(43):15545–50.
11.
go back to reference Huang DW, Sherman BT, Lempicki RAJN. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature protocols, 2008;4(1):44. Huang DW, Sherman BT, Lempicki RAJN. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature protocols, 2008;4(1):44.
12.
go back to reference Zhu F, Patumcharoenpol P, Zhang C, Yang Y, Chan J, Meechai A, Vongsangnak W, Shen BJJ. Biomedical text mining and its applications in cancer research. Journal of biomedical informatics, 2013;46(2):200–11. Zhu F, Patumcharoenpol P, Zhang C, Yang Y, Chan J, Meechai A, Vongsangnak W, Shen BJJ. Biomedical text mining and its applications in cancer research. Journal of biomedical informatics, 2013;46(2):200–11.
13.
go back to reference Chang N-W, Dai H-J, Shih Y-Y, Wu C-Y, Rosa D, Obena RP, Chen Y-J, Hsu W-L, Oyang Y-JJD. Biomarker identification of hepatocellular carcinoma using a methodical literature mining strategy. Database, 2017;2017. Chang N-W, Dai H-J, Shih Y-Y, Wu C-Y, Rosa D, Obena RP, Chen Y-J, Hsu W-L, Oyang Y-JJD. Biomarker identification of hepatocellular carcinoma using a methodical literature mining strategy. Database, 2017;2017.
14.
go back to reference Kim Y-A, Przytycki JH, Wuchty S, Przytycka TMJP. Modeling information flow in biological networks. Physical biology, 2011;8(3):035012. Kim Y-A, Przytycki JH, Wuchty S, Przytycka TMJP. Modeling information flow in biological networks. Physical biology, 2011;8(3):035012.
15.
go back to reference Cancer Genome Atlas Research N, Weinstein JN, Collisson EA, Mills GB, Shaw KR, Ozenberger BA, Ellrott K, Shmulevich I, Sander C, Stuart JM. The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet. 2013;45(10):1113–20.CrossRef Cancer Genome Atlas Research N, Weinstein JN, Collisson EA, Mills GB, Shaw KR, Ozenberger BA, Ellrott K, Shmulevich I, Sander C, Stuart JM. The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet. 2013;45(10):1113–20.CrossRef
16.
go back to reference Wei C-H, Allot A, Leaman R, Lu Z. PubTator central: automated concept annotation for biomedical full text articles. Nucleic Acids Res. 2019;47(W1):W587–W593. Wei C-H, Allot A, Leaman R, Lu Z. PubTator central: automated concept annotation for biomedical full text articles. Nucleic Acids Res. 2019;47(W1):W587–W593.
17.
go back to reference Allot A, Peng Y, Wei C-H, Lee K, Phan L, Lu Z. LitVar: a semantic search engine for linking genomic variant data in PubMed and PMC. Nucleic Acids Res. 2018;46(W1):W530–6.CrossRef Allot A, Peng Y, Wei C-H, Lee K, Phan L, Lu Z. LitVar: a semantic search engine for linking genomic variant data in PubMed and PMC. Nucleic Acids Res. 2018;46(W1):W530–6.CrossRef
18.
go back to reference Fontaine JF, Barbosa-Silva A, Schaefer M, Huska MR, Muro EM, Andrade-Navarro MA. MedlineRanker: flexible ranking of biomedical literature. Nucleic Acids Res. 2009;37(Web Server issue):W141–6.CrossRef Fontaine JF, Barbosa-Silva A, Schaefer M, Huska MR, Muro EM, Andrade-Navarro MA. MedlineRanker: flexible ranking of biomedical literature. Nucleic Acids Res. 2009;37(Web Server issue):W141–6.CrossRef
19.
go back to reference Lee J, Yoon W, Kim S, Kim D, Kim S, So CH, Kang J. BioBERT: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics. 2020;36(4):1234–40.PubMed Lee J, Yoon W, Kim S, Kim D, Kim S, So CH, Kang J. BioBERT: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics. 2020;36(4):1234–40.PubMed
20.
go back to reference Smith L, Tanabe LK, Ando RJ, Kuo CJ, Chung IF, Hsu CN, Lin YS, Klinger R, Friedrich CM, Ganchev K, et al. Overview of BioCreative II gene mention recognition. Genome Biol. 2008;9(Suppl 2):S2.CrossRef Smith L, Tanabe LK, Ando RJ, Kuo CJ, Chung IF, Hsu CN, Lin YS, Klinger R, Friedrich CM, Ganchev K, et al. Overview of BioCreative II gene mention recognition. Genome Biol. 2008;9(Suppl 2):S2.CrossRef
21.
go back to reference Dang TH, Le H-Q, Nguyen TM, Vu ST. D3NER: biomedical named entity recognition using CRF-biLSTM improved with fine-tuned embeddings of various linguistic information. Bioinformatics. 2018;34(20):3539–46.CrossRef Dang TH, Le H-Q, Nguyen TM, Vu ST. D3NER: biomedical named entity recognition using CRF-biLSTM improved with fine-tuned embeddings of various linguistic information. Bioinformatics. 2018;34(20):3539–46.CrossRef
22.
go back to reference Ma X, Hovy EJ. End-to-end sequence labeling via bi-directional lstm-cnns-crf; 2016.CrossRef Ma X, Hovy EJ. End-to-end sequence labeling via bi-directional lstm-cnns-crf; 2016.CrossRef
23.
go back to reference Mork J, Aronson A, Demner-Fushman D. 12 years on–Is the NLM medical text indexer still useful and relevant? J Biomedi Semantics. 2017;8(1):8.CrossRef Mork J, Aronson A, Demner-Fushman D. 12 years on–Is the NLM medical text indexer still useful and relevant? J Biomedi Semantics. 2017;8(1):8.CrossRef
24.
go back to reference Lu Z, Hirschman L. Biocuration workflows and text mining: overview of the BioCreative 2012 Workshop Track II. Database. 2012;2012:bas043.PubMedPubMedCentral Lu Z, Hirschman L. Biocuration workflows and text mining: overview of the BioCreative 2012 Workshop Track II. Database. 2012;2012:bas043.PubMedPubMedCentral
25.
go back to reference Westergaard D, Stærfeldt H-H, Tønsberg C, Jensen LJ, Brunak S. A comprehensive and quantitative comparison of text-mining in 15 million full-text articles versus their corresponding abstracts. PLoS Comput Biol. 2018;14(2):e1005962.CrossRef Westergaard D, Stærfeldt H-H, Tønsberg C, Jensen LJ, Brunak S. A comprehensive and quantitative comparison of text-mining in 15 million full-text articles versus their corresponding abstracts. PLoS Comput Biol. 2018;14(2):e1005962.CrossRef
26.
go back to reference Comeau DC, Wei C-H, Islamaj Doğan R, Lu Z. PMC text mining subset in BioC: about three million full-text articles and growing. Bioinformatics. 2019;35(18):3533–3535. Comeau DC, Wei C-H, Islamaj Doğan R, Lu Z. PMC text mining subset in BioC: about three million full-text articles and growing. Bioinformatics. 2019;35(18):3533–3535.
27.
go back to reference Barbosa-Silva A, Soldatos TG, Magalhães IL, Pavlopoulos GA, Fontaine J-F, Andrade-Navarro MA, Schneider R, Ortega JM. Laitor-literature assistant for identification of terms co-occurrences and relationships. BMC Bioinformatics. 2010;11(1):70.CrossRef Barbosa-Silva A, Soldatos TG, Magalhães IL, Pavlopoulos GA, Fontaine J-F, Andrade-Navarro MA, Schneider R, Ortega JM. Laitor-literature assistant for identification of terms co-occurrences and relationships. BMC Bioinformatics. 2010;11(1):70.CrossRef
28.
go back to reference Mika S, Rost B. NLProt: extracting protein names and sequences from papers. Nucleic Acids Res. 2004;32(suppl_2):W634–7.CrossRef Mika S, Rost B. NLProt: extracting protein names and sequences from papers. Nucleic Acids Res. 2004;32(suppl_2):W634–7.CrossRef
29.
go back to reference Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez R, Magrane M. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2004;32(suppl_1):D115–9.CrossRef Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez R, Magrane M. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2004;32(suppl_1):D115–9.CrossRef
30.
go back to reference Barbosa-Silva A, Fontaine JF, Donnard ER, Stussi F, Ortega JM, Andrade-Navarro MA. PESCADOR, a web-based tool to assist text-mining of biointeractions extracted from PubMed queries. BMC Bioinformatics. 2011;12:435.CrossRef Barbosa-Silva A, Fontaine JF, Donnard ER, Stussi F, Ortega JM, Andrade-Navarro MA. PESCADOR, a web-based tool to assist text-mining of biointeractions extracted from PubMed queries. BMC Bioinformatics. 2011;12:435.CrossRef
31.
go back to reference Shakarian P, Bhatnagar A, Aleali A, Shaabani E, Guo R. The independent cascade and linear threshold models. In: Diffusion in Social Networks: Springer; Cham. 2015. p. 35–48. Shakarian P, Bhatnagar A, Aleali A, Shaabani E, Guo R. The independent cascade and linear threshold models. In: Diffusion in Social Networks: Springer; Cham. 2015. p. 35–48.
32.
go back to reference Kempe D, Kleinberg J, Tardos É. Maximizing the spread of influence through a social network. In: Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining: 2003: ACM; 2003. p. 137–46. Kempe D, Kleinberg J, Tardos É. Maximizing the spread of influence through a social network. In: Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining: 2003: ACM; 2003. p. 137–46.
33.
go back to reference Jin J. Influence Maximization in GOLAP. Irvine: University of California; 2019. Jin J. Influence Maximization in GOLAP. Irvine: University of California; 2019.
34.
go back to reference Hashimoto RF, Kim S, Shmulevich I, Zhang W, Bittner ML, Dougherty ERJB. Growing genetic regulatory networks from seed genes. Bioinformatics, 2004;20(8):1241–7. Hashimoto RF, Kim S, Shmulevich I, Zhang W, Bittner ML, Dougherty ERJB. Growing genetic regulatory networks from seed genes. Bioinformatics, 2004;20(8):1241–7.
35.
go back to reference Greenlee MHW, Honavar VG, Hecker LA, Alcon TAJB, Insights B. Using a seed-network to query multiple large-scale gene expression datasets from the developing retina in order to identify and prioritize experimental targets. Bioinformatics and Biology Insights, 2008;2:91–102. Greenlee MHW, Honavar VG, Hecker LA, Alcon TAJB, Insights B. Using a seed-network to query multiple large-scale gene expression datasets from the developing retina in order to identify and prioritize experimental targets. Bioinformatics and Biology Insights, 2008;2:91–102.
36.
go back to reference Gibbs DL, Shmulevich IJP. Solving the influence maximization problem reveals regulatory organization of the yeast cell cycle. 2017;13(6):e1005591. Gibbs DL, Shmulevich IJP. Solving the influence maximization problem reveals regulatory organization of the yeast cell cycle. 2017;13(6):e1005591.
37.
go back to reference Nalluri JJ, Rana P, Barh D, Azevedo V, Dinh TN, Vladimirov V, Ghosh PJS. Determining causal miRNAs and their signaling cascade in diseases using an influence diffusion model. Scientific reports, 2017;7(1):1–14. Nalluri JJ, Rana P, Barh D, Azevedo V, Dinh TN, Vladimirov V, Ghosh PJS. Determining causal miRNAs and their signaling cascade in diseases using an influence diffusion model. Scientific reports, 2017;7(1):1–14.
38.
go back to reference Bunescu R, Ge R, Kate RJ, Marcotte EM, Mooney RJ, Ramani AK, Wong YW. Comparative experiments on learning information extractors for proteins and their interactions. Artif Intell Med. 2005;33(2):139–55.CrossRef Bunescu R, Ge R, Kate RJ, Marcotte EM, Mooney RJ, Ramani AK, Wong YW. Comparative experiments on learning information extractors for proteins and their interactions. Artif Intell Med. 2005;33(2):139–55.CrossRef
39.
go back to reference Xiang Z, Huang X, Wang J, Zhang J, Ji J, Yan R, Zhu Z, Cai W, Yu YJF. Cross-database analysis reveals sensitive biomarkers for combined therapy for ERBB2+ gastric cancer. Frontiers in Pharmacology, 2018;9:861. Xiang Z, Huang X, Wang J, Zhang J, Ji J, Yan R, Zhu Z, Cai W, Yu YJF. Cross-database analysis reveals sensitive biomarkers for combined therapy for ERBB2+ gastric cancer. Frontiers in Pharmacology, 2018;9:861.
40.
go back to reference Esteller M, Guo M, Moreno V, Peinado MA, Capella G, Galm O, Baylin SB, Herman JGJC. Hypermethylation-associated inactivation of the cellular retinol-binding-protein 1 gene in human cancer. Cancer research, 2002;62(20):5902–5. Esteller M, Guo M, Moreno V, Peinado MA, Capella G, Galm O, Baylin SB, Herman JGJC. Hypermethylation-associated inactivation of the cellular retinol-binding-protein 1 gene in human cancer. Cancer research, 2002;62(20):5902–5.
41.
go back to reference Yao Q, Wang W, Jin J, Min K, Yang J, Zhong Y, Xu C, Deng J, Zhou YJCB: Synergistic role of Caspase-8 and Caspase-3 expressions: Prognostic and predictive biomarkers in colorectal cancer. Cancer biomarkers: section A of Disease markers, 2018;21(4):899–908. Yao Q, Wang W, Jin J, Min K, Yang J, Zhong Y, Xu C, Deng J, Zhou YJCB: Synergistic role of Caspase-8 and Caspase-3 expressions: Prognostic and predictive biomarkers in colorectal cancer. Cancer biomarkers: section A of Disease markers, 2018;21(4):899–908.
42.
go back to reference Czabotar PE, Lessene G, Strasser A, Adams JMJNM. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nature reviews. Molecular cell biology, 2014;15(1):49. Czabotar PE, Lessene G, Strasser A, Adams JMJNM. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nature reviews. Molecular cell biology, 2014;15(1):49.
43.
go back to reference Huang Q, Li S, Cheng P, Deng M, He X, Wang Z, Yang C-H, Zhao X-Y, Huang JJW. High expression of anti-apoptotic protein Bcl-2 is a good prognostic factor in colorectal cancer: Result of a meta-analysis. World Journal of Gastroenterology, 2017;23(27):5018. Huang Q, Li S, Cheng P, Deng M, He X, Wang Z, Yang C-H, Zhao X-Y, Huang JJW. High expression of anti-apoptotic protein Bcl-2 is a good prognostic factor in colorectal cancer: Result of a meta-analysis. World Journal of Gastroenterology, 2017;23(27):5018.
44.
go back to reference Liu K, Fan J, Wu JJM. research c: Forkhead box protein J1 (FOXJ1) is overexpressed in colorectal cancer and promotes nuclear translocation of β-catenin in SW620 cells. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 2017;23:856. Liu K, Fan J, Wu JJM. research c: Forkhead box protein J1 (FOXJ1) is overexpressed in colorectal cancer and promotes nuclear translocation of β-catenin in SW620 cells. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 2017;23:856.
45.
go back to reference Fernandes MS, Carneiro F, Oliveira C, Seruca RJI. Colorectal cancer and RASSF family—a special emphasis on RASSF1A. International journal of cancer, 2013;132(2):251–8. Fernandes MS, Carneiro F, Oliveira C, Seruca RJI. Colorectal cancer and RASSF family—a special emphasis on RASSF1A. International journal of cancer, 2013;132(2):251–8.
46.
go back to reference Caiazza F, Ryan EJ, Doherty G, Winter DC, Sheahan KJF. Estrogen receptors and their implications in colorectal carcinogenesis. Frontiers in oncology, 2015;5:19. Caiazza F, Ryan EJ, Doherty G, Winter DC, Sheahan KJF. Estrogen receptors and their implications in colorectal carcinogenesis. Frontiers in oncology, 2015;5:19.
47.
go back to reference Li Y, Jing C, Chen Y, Wang J, Zhou M, Liu X, Sun D, Mu L, Li L, Guo XJM. Expression of tumor necrosis factor α-induced protein 8 is upregulated in human gastric cancer and regulates cell proliferation, invasion and migration. Molecular medicine reports, 2015;12(2):2636–42. Li Y, Jing C, Chen Y, Wang J, Zhou M, Liu X, Sun D, Mu L, Li L, Guo XJM. Expression of tumor necrosis factor α-induced protein 8 is upregulated in human gastric cancer and regulates cell proliferation, invasion and migration. Molecular medicine reports, 2015;12(2):2636–42.
48.
go back to reference Aguirre-Gamboa R, Gomez-Rueda H, Martínez-Ledesma E, Martínez-Torteya A, Chacolla-Huaringa R, Rodriguez-Barrientos A, Tamez-Pena JG. Trevino VJPo: SurvExpress: an online biomarker validation tool and database for cancer gene expression data using survival analysis. PloS one, 2013;8(9):e74250. Aguirre-Gamboa R, Gomez-Rueda H, Martínez-Ledesma E, Martínez-Torteya A, Chacolla-Huaringa R, Rodriguez-Barrientos A, Tamez-Pena JG. Trevino VJPo: SurvExpress: an online biomarker validation tool and database for cancer gene expression data using survival analysis. PloS one, 2013;8(9):e74250.
Metadata
Title
Identification of most influential co-occurring gene suites for gastrointestinal cancer using biomedical literature mining and graph-based influence maximization
Authors
Charles C. N. Wang
Jennifer Jin
Jan-Gowth Chang
Masahiro Hayakawa
Atsushi Kitazawa
Jeffrey J. P. Tsai
Phillip C.-Y. Sheu
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Medical Informatics and Decision Making / Issue 1/2020
Electronic ISSN: 1472-6947
DOI
https://doi.org/10.1186/s12911-020-01227-6

Other articles of this Issue 1/2020

BMC Medical Informatics and Decision Making 1/2020 Go to the issue