Skip to main content
Top
Published in: BMC Medical Informatics and Decision Making 1/2019

Open Access 01-12-2019 | Malaria | Technical advance

Connected diagnostics: linking digital rapid diagnostic tests and mobile health wallets to diagnose and treat brucellosis in Samburu, Kenya

Authors: S. Smith, R. Koech, D. Nzorubara, M. Otieno, L. Wong, G. Bhat, E. van den Bogaart, M. Thuranira, D. Onchonga, T. F. Rinke de Wit

Published in: BMC Medical Informatics and Decision Making | Issue 1/2019

Login to get access

Abstract

Background

Despite WHO guidelines for testing all suspected cases of malaria before initiating treatment, presumptive malaria treatment remains common practice among some clinicians and in certain low-resource settings the capacity for microscopic testing is limited. This can lead to misdiagnosis, resulting in increased morbidity due to lack of treatment for undetected conditions, increased healthcare costs, and potential for drug resistance. This is particularly an issue as multiple conditions share the similar etiologies to malaria, including brucellosis, a rare, under-detected zoonosis. Linking rapid diagnostic tests (RDTs) and digital test readers for the detection of febrile illnesses can mitigate this risk and improve case management of febrile illness.

Methods

This technical advance study examines Connected Diagnostics, an approach that combines the use of point-of-care RDTs for malaria and brucellosis, digitally interpreted by a rapid diagnostic test reader (Deki Reader) and connected to mobile payment mechanisms to facilitate the diagnosis and treatment of febrile illness in nomadic populations in Samburu County, Kenya. Consenting febrile patients were tested with RDTs and patient diagnosis and risk information were uploaded to a cloud database via the Deki Reader. Patients with positive diagnoses were provided digital vouchers for transportation to the clinic and treatment via their health wallet on their mobile phones.

Results

In total, 288 patients were tested during outreach visits, with 9% testing positive for brucellosis and 0.6% testing positive for malaria. All patients, regardless of diagnosis were provided with a mobile health wallet on their cellular phones to facilitate their transport to the clinic, and for patients testing positive for brucellosis or malaria, the wallet funded their treatment. The use of the Deki Reader in addition to quality diagnostics at point of care also facilitated geographic mapping of patient diagnoses in relation to key risk areas for brucellosis transmission.

Conclusions

This study demonstrates that the Connected Dx approach can be effective even when addressing a remote, nomadic population and a rare disease, indicating that this approach to diagnosing, treatment, and payment for healthcare costs is feasible and can be scaled to address more prevalent diseases and conditions in more populous contexts.
Literature
1.
go back to reference Liu L, Johnson HL, Cousens S, Perin J, Scott S, Lawn JE, Rudan I, Campbell H, Cibulskis R, Li M, Mathers C, Black RE, Child Health Epidemiology Reference Group of WHO and UNICEF. Global, regional, and national causes of child mortality: an updated systematic analysis for 2010 with time trends since 2000. Lancet. 2012;379(9832):2151–61. https://doi.org/10.1016/S0140-6736(12)60560-1. CrossRefPubMed Liu L, Johnson HL, Cousens S, Perin J, Scott S, Lawn JE, Rudan I, Campbell H, Cibulskis R, Li M, Mathers C, Black RE, Child Health Epidemiology Reference Group of WHO and UNICEF. Global, regional, and national causes of child mortality: an updated systematic analysis for 2010 with time trends since 2000. Lancet. 2012;379(9832):2151–61. https://​doi.​org/​10.​1016/​S0140-6736(12)60560-1.​ CrossRefPubMed
2.
go back to reference Prasad N, Murdoch DR, Reyburn H, Crump JA. Etiology of severe febrile illness in low-and middle-income countries: a systematic review. PLoS One. 2015;10(6):e0127962.CrossRef Prasad N, Murdoch DR, Reyburn H, Crump JA. Etiology of severe febrile illness in low-and middle-income countries: a systematic review. PLoS One. 2015;10(6):e0127962.CrossRef
3.
go back to reference Feikin DR, Olack B, Bigogo GM, Audi A, Cosmas L, Aura B, Burke H, Njenga MK, Williamson J, Breiman RF. The burden of common infectious disease syndromes at the clinic and household level from population-based surveillance in rural and urban Kenya. PLoS One. 2011;6(1):e16085.CrossRef Feikin DR, Olack B, Bigogo GM, Audi A, Cosmas L, Aura B, Burke H, Njenga MK, Williamson J, Breiman RF. The burden of common infectious disease syndromes at the clinic and household level from population-based surveillance in rural and urban Kenya. PLoS One. 2011;6(1):e16085.CrossRef
4.
go back to reference Gething PW, Kirui VC, Alegana VA, Okiro EA, Noor AM, Snow RW. Estimating the number of paediatric fevers associated with malaria infection presenting to Africa's public health sector in 2007. PLoS Med. 2010;7(7):e1000301.CrossRef Gething PW, Kirui VC, Alegana VA, Okiro EA, Noor AM, Snow RW. Estimating the number of paediatric fevers associated with malaria infection presenting to Africa's public health sector in 2007. PLoS Med. 2010;7(7):e1000301.CrossRef
9.
go back to reference World Health Organization (WHO). Guidelines for the treatment of malaria. 2nd ed. Geneva: World Health Organization; 2010. World Health Organization (WHO). Guidelines for the treatment of malaria. 2nd ed. Geneva: World Health Organization; 2010.
10.
go back to reference Orish VN, Ansong JY, Onyeabor OS, Sanyaolu AO, Oyibo WA, Iriemenam NC. Overdiagnosis and overtreatment of malaria in children in a secondary healthcare Centre in Sekondi-Takoradi, Ghana. Trop Dr. 2016;46(4):191–8. Orish VN, Ansong JY, Onyeabor OS, Sanyaolu AO, Oyibo WA, Iriemenam NC. Overdiagnosis and overtreatment of malaria in children in a secondary healthcare Centre in Sekondi-Takoradi, Ghana. Trop Dr. 2016;46(4):191–8.
13.
go back to reference Reyburn H, Mbatia R, Drakeley C, Carneiro I, Mwakasungula E, Mwerinde O, Saganda K, Shao J, Kitua A, Olomi R, Greenwood BM, Whitty CJ. Overdiagnosis of malaria in patients with severe febrile illness in Tanzania: a prospective study. BMJ. 2004;329(7476):1212.CrossRef Reyburn H, Mbatia R, Drakeley C, Carneiro I, Mwakasungula E, Mwerinde O, Saganda K, Shao J, Kitua A, Olomi R, Greenwood BM, Whitty CJ. Overdiagnosis of malaria in patients with severe febrile illness in Tanzania: a prospective study. BMJ. 2004;329(7476):1212.CrossRef
14.
go back to reference Kassebaum N, Kyu HH, Zoeckler L, Olsen HE, Thomas K, Pinho C, Bhutta ZA, Dandona L, Ferrari A, Ghiwot TT, Hay SI. Child and adolescent health from 1990 to 2015: findings from the global burden of diseases, injuries, and risk factors 2015 study. JAMA pediatrics. 2017;171(6):573-92. Kassebaum N, Kyu HH, Zoeckler L, Olsen HE, Thomas K, Pinho C, Bhutta ZA, Dandona L, Ferrari A, Ghiwot TT, Hay SI. Child and adolescent health from 1990 to 2015: findings from the global burden of diseases, injuries, and risk factors 2015 study. JAMA pediatrics. 2017;171(6):573-92.
16.
go back to reference Muro F, Reyburn R, Reyburn H. Acute respiratory infection and bacteraemia as causes of non-malarial febrile illness in African children: a narrative review. Pneumonia. 2015;6(1):6.CrossRef Muro F, Reyburn R, Reyburn H. Acute respiratory infection and bacteraemia as causes of non-malarial febrile illness in African children: a narrative review. Pneumonia. 2015;6(1):6.CrossRef
20.
go back to reference Crump JA, Morrissey AB, Nicholson WL, Massung RF, Stoddard RA, Galloway RL, Ooi EE, Maro VP, Saganda W, Kinabo GD, Muiruri C. Etiology of severe non-malaria febrile illness in northern Tanzania: a prospective cohort study. PLoS Negl Trop Dis. 2013;7(7):e2324.CrossRef Crump JA, Morrissey AB, Nicholson WL, Massung RF, Stoddard RA, Galloway RL, Ooi EE, Maro VP, Saganda W, Kinabo GD, Muiruri C. Etiology of severe non-malaria febrile illness in northern Tanzania: a prospective cohort study. PLoS Negl Trop Dis. 2013;7(7):e2324.CrossRef
22.
go back to reference Ari MD, Guracha A, Fadeel MA, Njuguna C, Njenga MK, Kalani R, Abdi H, Warfu O, Omballa V, Tetteh C, Breiman RF. Challenges of establishing the correct diagnosis of outbreaks of acute febrile illnesses in Africa: the case of a likely Brucella outbreak among nomadic pastoralists, Northeast Kenya, march–July 2005. Am J Trop Med Hyg. 2011;85(5):909–12.CrossRef Ari MD, Guracha A, Fadeel MA, Njuguna C, Njenga MK, Kalani R, Abdi H, Warfu O, Omballa V, Tetteh C, Breiman RF. Challenges of establishing the correct diagnosis of outbreaks of acute febrile illnesses in Africa: the case of a likely Brucella outbreak among nomadic pastoralists, Northeast Kenya, march–July 2005. Am J Trop Med Hyg. 2011;85(5):909–12.CrossRef
28.
go back to reference Arenas-Gamboa AM, Rossetti CA, Chaki SP, Garcia-Gonzalez DG, Adams LG, Ficht TA. Human brucellosis and adverse pregnancy outcomes. Curr Trop Med Rep. 2016;3(4):164–72.CrossRef Arenas-Gamboa AM, Rossetti CA, Chaki SP, Garcia-Gonzalez DG, Adams LG, Ficht TA. Human brucellosis and adverse pregnancy outcomes. Curr Trop Med Rep. 2016;3(4):164–72.CrossRef
29.
go back to reference Ghanem-Zoubi N, Eljay SP, Anis E, Paul M. Association between human brucellosis and adverse pregnancy outcome: a cross-sectional population-based study. Eur J Clin Microbiol Infect Dis. 2018;37(5):883–8.CrossRef Ghanem-Zoubi N, Eljay SP, Anis E, Paul M. Association between human brucellosis and adverse pregnancy outcome: a cross-sectional population-based study. Eur J Clin Microbiol Infect Dis. 2018;37(5):883–8.CrossRef
30.
go back to reference Doganay M, Aygen B. Human brucellosis: an overview. Int J Infect Dis. 2003 Sep 1;7(3):173–82.CrossRef Doganay M, Aygen B. Human brucellosis: an overview. Int J Infect Dis. 2003 Sep 1;7(3):173–82.CrossRef
32.
go back to reference Franco MP, Mulder M, Gilman RH, Smits HL. Human brucellosis. Lancet Infect Dis. 2007;7(12):775–86.CrossRef Franco MP, Mulder M, Gilman RH, Smits HL. Human brucellosis. Lancet Infect Dis. 2007;7(12):775–86.CrossRef
35.
go back to reference Nakeel J, Arimi S, Kitala P, Wabacha J, Munene N. Sero-prevalence and associated risk factors of Brucellosis and Q-fever in livestock and humans in Kajiado county, Kenya (Doctoral dissertation, MSc thesis, University of Nairobi). 2016. Nakeel J, Arimi S, Kitala P, Wabacha J, Munene N. Sero-prevalence and associated risk factors of Brucellosis and Q-fever in livestock and humans in Kajiado county, Kenya (Doctoral dissertation, MSc thesis, University of Nairobi). 2016.
36.
go back to reference Irmak H, Buzgan T, Evirgen O, Akdeniz H, Demiroz AP, Abdoel TH, Smits HL. Use of the Brucella IgM and IgG flow assays in the serodiagnosis of human brucellosis in an area endemic for brucellosis. Am J Trop Med Hyg. 2004;70(6):688–94.CrossRef Irmak H, Buzgan T, Evirgen O, Akdeniz H, Demiroz AP, Abdoel TH, Smits HL. Use of the Brucella IgM and IgG flow assays in the serodiagnosis of human brucellosis in an area endemic for brucellosis. Am J Trop Med Hyg. 2004;70(6):688–94.CrossRef
37.
go back to reference Smits HL, Abdoel TH, Solera J, Clavijo E, Diaz R. Immunochromatographic Brucella-specific immunoglobulin M and G lateral flow assays for rapid serodiagnosis of human brucellosis. Clin Diagn Lab Immunol. 2003;10(6):1141–6.PubMedPubMedCentral Smits HL, Abdoel TH, Solera J, Clavijo E, Diaz R. Immunochromatographic Brucella-specific immunoglobulin M and G lateral flow assays for rapid serodiagnosis of human brucellosis. Clin Diagn Lab Immunol. 2003;10(6):1141–6.PubMedPubMedCentral
38.
go back to reference Shekalaghe S, Cancino M, Mavere C, Juma O, Mohammed A, Abdulla S, Ferro S. Clinical performance of an automated reader in interpreting malaria rapid diagnostic tests in Tanzania. Malaria J. 2013;12:141–50.CrossRef Shekalaghe S, Cancino M, Mavere C, Juma O, Mohammed A, Abdulla S, Ferro S. Clinical performance of an automated reader in interpreting malaria rapid diagnostic tests in Tanzania. Malaria J. 2013;12:141–50.CrossRef
39.
go back to reference Herrera S, Vallejo A, Quintero J, Arevalo-Herrera M, Cancino M, Ferro S. Field evaluation of an automated RDT reader and data management device for Plasmodium falciparum/Plasmodium vivax malaria in endemic areas of Colombia. Malaria J. 2014;13:87–97.CrossRef Herrera S, Vallejo A, Quintero J, Arevalo-Herrera M, Cancino M, Ferro S. Field evaluation of an automated RDT reader and data management device for Plasmodium falciparum/Plasmodium vivax malaria in endemic areas of Colombia. Malaria J. 2014;13:87–97.CrossRef
40.
go back to reference Soti D, Kinoti SN, Omar AH, Logedi J, Mwendwa TK, Hirji Z, Ferro S. Feasibility of an innovative electronic mobile system to assist health workers to collect accurate, complete and timely data in a malaria control programme in a remote setting in Kenya. Malaria J. 2015;14:430–8.CrossRef Soti D, Kinoti SN, Omar AH, Logedi J, Mwendwa TK, Hirji Z, Ferro S. Feasibility of an innovative electronic mobile system to assist health workers to collect accurate, complete and timely data in a malaria control programme in a remote setting in Kenya. Malaria J. 2015;14:430–8.CrossRef
41.
go back to reference Laktabai J, Platt A, Menya D, Turner EL, Aswa D, Kinoti S, O’Meara WP. A mobile health technology platform for quality assurance and quality improvement of malaria diagnosis by community health workers. PLoS One. 2018;13(2):e0191968.CrossRef Laktabai J, Platt A, Menya D, Turner EL, Aswa D, Kinoti S, O’Meara WP. A mobile health technology platform for quality assurance and quality improvement of malaria diagnosis by community health workers. PLoS One. 2018;13(2):e0191968.CrossRef
44.
go back to reference Kalo T, Novi S, Nushi A, Dedja S. Ciprofloxacin plus doxycycline versus rifampicin plus doxycycline in the treatment of acute brucellosis. Méd Mal Infect. 1996;26(5):587–9.CrossRef Kalo T, Novi S, Nushi A, Dedja S. Ciprofloxacin plus doxycycline versus rifampicin plus doxycycline in the treatment of acute brucellosis. Méd Mal Infect. 1996;26(5):587–9.CrossRef
45.
go back to reference Ariza J, Bosilkovski M, Cascio A, Colmenero JD, Corbel MJ, Falagas ME, Memish ZA, Roushan MR, Rubinstein E, Sipsas NV, Solera J, Young EJ, Pappas G, International Society of Chemotherapy, Institute of Continuing Medical Education of Ioannina. Perspectives for the treatment of brucellosis in the 21st century: the Ioannina recommendations. PLoS Med. 2007;4(12):e317.CrossRef Ariza J, Bosilkovski M, Cascio A, Colmenero JD, Corbel MJ, Falagas ME, Memish ZA, Roushan MR, Rubinstein E, Sipsas NV, Solera J, Young EJ, Pappas G, International Society of Chemotherapy, Institute of Continuing Medical Education of Ioannina. Perspectives for the treatment of brucellosis in the 21st century: the Ioannina recommendations. PLoS Med. 2007;4(12):e317.CrossRef
50.
go back to reference Afrane YA, Zhou G, Githeko AK, Yan G. Utility of health facility-based malaria data for malaria surveillance. PLoS One. 2013;8(2):e54305.CrossRef Afrane YA, Zhou G, Githeko AK, Yan G. Utility of health facility-based malaria data for malaria surveillance. PLoS One. 2013;8(2):e54305.CrossRef
Metadata
Title
Connected diagnostics: linking digital rapid diagnostic tests and mobile health wallets to diagnose and treat brucellosis in Samburu, Kenya
Authors
S. Smith
R. Koech
D. Nzorubara
M. Otieno
L. Wong
G. Bhat
E. van den Bogaart
M. Thuranira
D. Onchonga
T. F. Rinke de Wit
Publication date
01-12-2019
Publisher
BioMed Central
Keyword
Malaria
Published in
BMC Medical Informatics and Decision Making / Issue 1/2019
Electronic ISSN: 1472-6947
DOI
https://doi.org/10.1186/s12911-019-0854-4

Other articles of this Issue 1/2019

BMC Medical Informatics and Decision Making 1/2019 Go to the issue