Skip to main content
Top
Published in: BMC Medical Informatics and Decision Making 1/2019

Open Access 01-12-2019 | Research article

Discovery of under immunized spatial clusters using network scan statistics

Authors: Jose Cadena, David Falcone, Achla Marathe, Anil Vullikanti

Published in: BMC Medical Informatics and Decision Making | Issue 1/2019

Login to get access

Abstract

Background

Clusters of under-vaccinated children are emerging in a number of states in the United States due to rising rates of vaccine hesitancy and refusal. As the measles outbreaks in California and other states in 2015 and in Minnesota in 2017 showed, such clusters can pose a significant public health risk. Prior methods have used publicly-available school immunization data for analysis (except for a few, which use private healthcare patient records). School immunization data has limited demographic information—as a result, such analyses are not able to provide demographic characteristics of significant clusters. Further, the resolution of the clusters identified by prior methods is limited since they are typically restricted to disks or well-rounded shapes.

Methods

We use realistic population models for Minnesota (MN) and Washington (WA) state, which provide a model of activities for all individuals in the population. We combine this with school level immunization data for these two states, to estimate vaccine coverage at the level of census block groups. A scan statistic method defined on networks is used for finding significant clusters of under-immunized block groups, without any restrictions on shape. Further we provide the demographic characteristics of these clusters.

Results

We find 2 significant under-vaccinated clusters in MN and 3 in WA. These are very irregular in shape, in contrast to the circular disks reported in prior work, which rely on the SatScan approach. Some of the clusters found by our method are not contained in those computed using SatScan, a state-of-the-art software tool used in similar studies in other states.

Conclusions

The emergence of under-immunized clusters is a growing concern for public health agencies because they can act as reservoirs of infection and increase the risk of infection into the wider population. Higher resolution clusters computed using our network based approach and population models provide new insights on the structure and characteristics of such clusters and enable targeted interventions.
Appendix
Available only for authorised users
Literature
1.
go back to reference Lieu TA, Ray GT, Klein NP, Chung C, Kulldorff M. Geographic clusters in underimmunization and vaccine refusal. Pediatrics. 2015;135(2):280–9.CrossRef Lieu TA, Ray GT, Klein NP, Chung C, Kulldorff M. Geographic clusters in underimmunization and vaccine refusal. Pediatrics. 2015;135(2):280–9.CrossRef
2.
go back to reference Dayan GH, Ortega-Sánchez IR, LeBaron CW, Quinlisk MP. The cost of containing one case of measles: the economic impact on the public health infrastructure in Iowa, 2004. Pediatrics. 2005;116(1):1–4.CrossRef Dayan GH, Ortega-Sánchez IR, LeBaron CW, Quinlisk MP. The cost of containing one case of measles: the economic impact on the public health infrastructure in Iowa, 2004. Pediatrics. 2005;116(1):1–4.CrossRef
4.
go back to reference Atwell JE, Otterloo JV, Zipprich J, Winter K, Harriman K, Salmon DA, Halsey NA, Omer SB. Nonmedical vaccine exemptions and pertussis in California, 2010. Pediatrics. 2013;132(4):624–30.CrossRef Atwell JE, Otterloo JV, Zipprich J, Winter K, Harriman K, Salmon DA, Halsey NA, Omer SB. Nonmedical vaccine exemptions and pertussis in California, 2010. Pediatrics. 2013;132(4):624–30.CrossRef
5.
go back to reference Kulldorff M. A spatial scan statistic. Communications in Statistics: Theory and Methods. New York: ACM; 1997. Kulldorff M. A spatial scan statistic. Communications in Statistics: Theory and Methods. New York: ACM; 1997.
6.
go back to reference Omer SB, Enger KS, Moulton LH, Halsey NA, Stokley S, Salmon DA. Geographic clustering of nonmedical exemptions to school immunization requirements and associations with geographic clustering of pertussis. Am J Epidemiol. 2008;168:1389–96.CrossRef Omer SB, Enger KS, Moulton LH, Halsey NA, Stokley S, Salmon DA. Geographic clustering of nonmedical exemptions to school immunization requirements and associations with geographic clustering of pertussis. Am J Epidemiol. 2008;168:1389–96.CrossRef
9.
go back to reference Eubank S, Guclu H, Anil Kumar VS, Marathe M, Srinivasan A, Toroczkai Z, Wang N. Modelling disease outbreaks in realistic urban social networks. Nature. 2004;429:180–4.CrossRef Eubank S, Guclu H, Anil Kumar VS, Marathe M, Srinivasan A, Toroczkai Z, Wang N. Modelling disease outbreaks in realistic urban social networks. Nature. 2004;429:180–4.CrossRef
10.
go back to reference Barrett CL, Beckman RJ, Khan M, Anil Kumar VS, Marathe MV, Stretz PE, Dutta T, Lewis B. Generation and analysis of large synthetic social contact networks. In: Winter Simulation Conference; 2009. p. 1003–14. Barrett CL, Beckman RJ, Khan M, Anil Kumar VS, Marathe MV, Stretz PE, Dutta T, Lewis B. Generation and analysis of large synthetic social contact networks. In: Winter Simulation Conference; 2009. p. 1003–14.
11.
go back to reference Barrett C, Bisset K, Leidig J, Marathe A, Marathe M. Economic and social impact of influenza mitigation strategies by demographic class. Epidemics. 2011;3(1):19–31 PMCID: PMC3039122.CrossRef Barrett C, Bisset K, Leidig J, Marathe A, Marathe M. Economic and social impact of influenza mitigation strategies by demographic class. Epidemics. 2011;3(1):19–31 PMCID: PMC3039122.CrossRef
12.
go back to reference Halloran M, Ferguson N, Eubank S, Longini I, Cummings D, Lewis B, Xu S, Fraser C, Vullikanti A, Germann T, Wagener D, Beckman R, Kadau K, Barrett C, Macken C, Burke D, Cooley P. Modeling targeted layered containment of an influenza pandemic in the United States. Proc Natl Acad Sci. 2008;105:4639–44 PMCID:PMC2290797.CrossRef Halloran M, Ferguson N, Eubank S, Longini I, Cummings D, Lewis B, Xu S, Fraser C, Vullikanti A, Germann T, Wagener D, Beckman R, Kadau K, Barrett C, Macken C, Burke D, Cooley P. Modeling targeted layered containment of an influenza pandemic in the United States. Proc Natl Acad Sci. 2008;105:4639–44 PMCID:PMC2290797.CrossRef
13.
go back to reference Bisset K, Marathe M. A cyber-environment to support pandemic planning and response. DOE SciDAC Magazine. 2009;13:36–47. Bisset K, Marathe M. A cyber-environment to support pandemic planning and response. DOE SciDAC Magazine. 2009;13:36–47.
14.
go back to reference Bisset K, Feng X, Marathe M, Yardi S. Modeling interaction between individuals, social networks, and public policy to support public health epidemiology. In: Rossetti M, Hill R, Johansson B, Dunkin A, Ingalls R, editors. Proceedings of the 2009 Winter simulation conference; 2009. p. 2020–31.CrossRef Bisset K, Feng X, Marathe M, Yardi S. Modeling interaction between individuals, social networks, and public policy to support public health epidemiology. In: Rossetti M, Hill R, Johansson B, Dunkin A, Ingalls R, editors. Proceedings of the 2009 Winter simulation conference; 2009. p. 2020–31.CrossRef
15.
go back to reference Barrett CL, Eubank S, Marathe MV. An interaction-based approach to computational epidemiology. In Proceedings of the 23rd national conference on Artificial intelligence, Chicago, Illinois — July 13 - 17, 2008 - Volume 3 (AAAI'08), Anthony Cohn (Ed.), Vol. 3. AAAI Press 1590-1593. Barrett CL, Eubank S, Marathe MV. An interaction-based approach to computational epidemiology. In Proceedings of the 23rd national conference on Artificial intelligence, Chicago, Illinois — July 13 - 17, 2008 - Volume 3 (AAAI'08), Anthony Cohn (Ed.), Vol. 3. AAAI Press 1590-1593.
16.
go back to reference Eubank S, Barrett C, Beckman R, Bisset K, Durbeck L, Kuhlman C, Lewis B, Marathe A, Marathe M, Stretz P. Detail in network models of epidemiology: are we there yet? J Biol Dyn. 2010;4:446–55 PubMed PMID: 20953340; PMCID: PMC2953274.CrossRef Eubank S, Barrett C, Beckman R, Bisset K, Durbeck L, Kuhlman C, Lewis B, Marathe A, Marathe M, Stretz P. Detail in network models of epidemiology: are we there yet? J Biol Dyn. 2010;4:446–55 PubMed PMID: 20953340; PMCID: PMC2953274.CrossRef
17.
go back to reference Marathe A, Lewis B, Barrett C, Chen J, Marathe M, Eubank S, Ma Y. Comparing effectiveness of top-down and bottom-up strategies in containing influenza. PLoS One. 2011;6:25149 PMCID: PMC3178616.CrossRef Marathe A, Lewis B, Barrett C, Chen J, Marathe M, Eubank S, Ma Y. Comparing effectiveness of top-down and bottom-up strategies in containing influenza. PLoS One. 2011;6:25149 PMCID: PMC3178616.CrossRef
18.
go back to reference Rivers C, Lofgren E, Marathe M, Eubank S, Lewis B. Modeling the impact of interventions on an epidemic of Ebola in Sierra Leone and Liberia. PLoS Curr. 2014; PMCID: PMC4399521. Rivers C, Lofgren E, Marathe M, Eubank S, Lewis B. Modeling the impact of interventions on an epidemic of Ebola in Sierra Leone and Liberia. PLoS Curr. 2014; PMCID: PMC4399521.
19.
go back to reference Levenshtein V. Binary codes capable of correcting deletions, insertions and reversals. Soviet Physics Doklady. 1966;10(8):707. Levenshtein V. Binary codes capable of correcting deletions, insertions and reversals. Soviet Physics Doklady. 1966;10(8):707.
20.
go back to reference Neill DB. Fast subset scan for spatial pattern detection. J Royal Stat Soc Ser B (Stat Methodol). 2012;74(2):337–60.CrossRef Neill DB. Fast subset scan for spatial pattern detection. J Royal Stat Soc Ser B (Stat Methodol). 2012;74(2):337–60.CrossRef
21.
go back to reference Jung I, Kulldorff M, Richard OJ. A spatial scan statistic for multinomial data. Stat Med. 2010;29(18):1910–8.CrossRef Jung I, Kulldorff M, Richard OJ. A spatial scan statistic for multinomial data. Stat Med. 2010;29(18):1910–8.CrossRef
22.
go back to reference Duczmal L, Kulldorff M, Huang L. Evaluation of spatial scan statistics for irregularly shaped clusters. J Comput Graph Stat. 2006;15(2):428–42.CrossRef Duczmal L, Kulldorff M, Huang L. Evaluation of spatial scan statistics for irregularly shaped clusters. J Comput Graph Stat. 2006;15(2):428–42.CrossRef
23.
go back to reference Neill DB. An empirical comparison of spatial scan statistics for outbreak detection. Int J Health Geogr. 2009;8(1):20.CrossRef Neill DB. An empirical comparison of spatial scan statistics for outbreak detection. Int J Health Geogr. 2009;8(1):20.CrossRef
24.
go back to reference Oliveira DD, Neill DB, Garrett JH Jr, Soibelman L. Detection of patterns in water distribution pipe breakage using spatial scan statistics for point events in a physical network. J Comput Civ Eng. 2010;25(1):21–30.CrossRef Oliveira DD, Neill DB, Garrett JH Jr, Soibelman L. Detection of patterns in water distribution pipe breakage using spatial scan statistics for point events in a physical network. J Comput Civ Eng. 2010;25(1):21–30.CrossRef
25.
go back to reference Speakman S, McFowland E III, Neill DB. Scalable detection of anomalous patterns with connectivity constraints. J Comp Graphical Stat. 2015;24(4):1014–33.CrossRef Speakman S, McFowland E III, Neill DB. Scalable detection of anomalous patterns with connectivity constraints. J Comp Graphical Stat. 2015;24(4):1014–33.CrossRef
26.
go back to reference Neil J, Hash C, Brugh A, Fisk M, Storlie CB. Scan statistics for the online detection of locally anomalous subgraphs. Technometrics. 2013;55(4):403–14.CrossRef Neil J, Hash C, Brugh A, Fisk M, Storlie CB. Scan statistics for the online detection of locally anomalous subgraphs. Technometrics. 2013;55(4):403–14.CrossRef
27.
go back to reference Chen F, Neill D. Non-parametric scan statistics for event detection and forecasting in heterogeneous social media graphs. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD); 2014. Chen F, Neill D. Non-parametric scan statistics for event detection and forecasting in heterogeneous social media graphs. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD); 2014.
28.
go back to reference Kulldorff M. Satscan-software for the spatial, temporal, and space-time scan statistics. Boston: Harvard Medical School and Harvard Pilgrim Health Care; 2010. Kulldorff M. Satscan-software for the spatial, temporal, and space-time scan statistics. Boston: Harvard Medical School and Harvard Pilgrim Health Care; 2010.
29.
go back to reference Cadena J, Chen F, Vullikanti A. Near-optimal and practical algorithms for graph scan statistics. In: SIAM Data Mining (SDM); 2017. Cadena J, Chen F, Vullikanti A. Near-optimal and practical algorithms for graph scan statistics. In: SIAM Data Mining (SDM); 2017.
30.
go back to reference Duczmal L, Assuncao R. A simulated annealing strategy for the detection of arbitrarily shaped spatial clusters. Comp Stat Data Analys. 2004;45(2):269–86.CrossRef Duczmal L, Assuncao R. A simulated annealing strategy for the detection of arbitrarily shaped spatial clusters. Comp Stat Data Analys. 2004;45(2):269–86.CrossRef
31.
go back to reference Costa MA, Assunção RM, Kulldorff M. Constrained spanning tree algorithms for irregularly-shaped spatial clustering. Comp Stat Data Analys. 2012;56(6):1771–83.CrossRef Costa MA, Assunção RM, Kulldorff M. Constrained spanning tree algorithms for irregularly-shaped spatial clustering. Comp Stat Data Analys. 2012;56(6):1771–83.CrossRef
32.
go back to reference Liu F, Enanoria W, Zipprich J, Blumberg S, Harriman K, Ackley SF, Wheaton WD, Allpress JL, Porco TC. The role of vaccination coverage, individual behaviors, and the public health response in the control of measles epidemics: an agent-based simulation for California. BMC Public Health. 2015;15(1):447.CrossRef Liu F, Enanoria W, Zipprich J, Blumberg S, Harriman K, Ackley SF, Wheaton WD, Allpress JL, Porco TC. The role of vaccination coverage, individual behaviors, and the public health response in the control of measles epidemics: an agent-based simulation for California. BMC Public Health. 2015;15(1):447.CrossRef
Metadata
Title
Discovery of under immunized spatial clusters using network scan statistics
Authors
Jose Cadena
David Falcone
Achla Marathe
Anil Vullikanti
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Medical Informatics and Decision Making / Issue 1/2019
Electronic ISSN: 1472-6947
DOI
https://doi.org/10.1186/s12911-018-0706-7

Other articles of this Issue 1/2019

BMC Medical Informatics and Decision Making 1/2019 Go to the issue