Skip to main content
Top
Published in: BMC Medical Informatics and Decision Making 1/2018

Open Access 01-12-2018 | Research article

Variant information systems for precision oncology

Authors: Johannes Starlinger, Steffen Pallarz, Jurica Ševa, Damian Rieke, Christine Sers, Ulrich Keilholz, Ulf Leser

Published in: BMC Medical Informatics and Decision Making | Issue 1/2018

Login to get access

Abstract

Background

The decreasing cost of obtaining high-quality calls of genomic variants and the increasing availability of clinically relevant data on such variants are important drivers for personalized oncology. To allow rational genome-based decisions in diagnosis and treatment, clinicians need intuitive access to up-to-date and comprehensive variant information, encompassing, for instance, prevalence in populations and diseases, functional impact at the molecular level, associations to druggable targets, or results from clinical trials. In practice, collecting such comprehensive information on genomic variants is difficult since the underlying data is dispersed over a multitude of distributed, heterogeneous, sometimes conflicting, and quickly evolving data sources. To work efficiently, clinicians require powerful Variant Information Systems (VIS) which automatically collect and aggregate available evidences from such data sources without suppressing existing uncertainty.

Methods

We address the most important cornerstones of modeling a VIS: We take from emerging community standards regarding the necessary breadth of variant information and procedures for their clinical assessment, long standing experience in implementing biomedical databases and information systems, our own clinical record of diagnosis and treatment of cancer patients based on molecular profiles, and extensive literature review to derive a set of design principles along which we develop a relational data model for variant level data. In addition, we characterize a number of public variant data sources, and describe a data integration pipeline to integrate their data into a VIS.

Results

We provide a number of contributions that are fundamental to the design and implementation of a comprehensive, operational VIS. In particular, we (a) present a relational data model to accurately reflect data extracted from public databases relevant for clinical variant interpretation, (b) introduce a fault tolerant and performant integration pipeline for public variant data sources, and (c) offer recommendations regarding a number of intricate challenges encountered when integrating variant data for clincal interpretation.

Conclusion

The analysis of requirements for representation of variant level data in an operational data model, together with the implementation-ready relational data model presented here, and the instructional description of methods to acquire comprehensive information to fill it, are an important step towards variant information systems for genomic medicine.
Appendix
Available only for authorised users
Footnotes
1
As opposed to Entity Relationship (ER) diagrams
 
2
By clinical expert we mean any person using a VIS in patient care. Note, however, that such users typically do not directly access a database system but use intermediate applications. These applications may, again, perform certain data filtering or aggregation, implementing, for instance, organization-wide standards.
 
3
We discuss practical consequences of this multiplicity for variant level data integration in the next section.
 
Literature
1.
go back to reference Landrum MJ, Lee JM, Benson M, Brown G, Chao C, Chitipiralla S, Gu B, Hart J, Hoffman D, Hoover J, et al. Clinvar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 2016; 44(D1):862–8.CrossRef Landrum MJ, Lee JM, Benson M, Brown G, Chao C, Chitipiralla S, Gu B, Hart J, Hoffman D, Hoover J, et al. Clinvar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 2016; 44(D1):862–8.CrossRef
2.
go back to reference Griffith M, Spies NC, Krysiak K, McMichael JF, Coffman AC, Danos AM, Ainscough BJ, Ramirez CA, Rieke DT, Kujan L, et al. Civic is a community knowledgebase for expert crowdsourcing the clinical interpretation of variants in cancer. Nat Genet. 2017; 49(2):170–4.CrossRef Griffith M, Spies NC, Krysiak K, McMichael JF, Coffman AC, Danos AM, Ainscough BJ, Ramirez CA, Rieke DT, Kujan L, et al. Civic is a community knowledgebase for expert crowdsourcing the clinical interpretation of variants in cancer. Nat Genet. 2017; 49(2):170–4.CrossRef
3.
go back to reference Forbes SA, Beare D, Gunasekaran P, Leung K, Bindal N, Boutselakis H, Ding M, Bamford S, Cole C, Ward S, et al. Cosmic: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res. 2015; 43(D1):805–11.CrossRef Forbes SA, Beare D, Gunasekaran P, Leung K, Bindal N, Boutselakis H, Ding M, Bamford S, Cole C, Ward S, et al. Cosmic: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res. 2015; 43(D1):805–11.CrossRef
4.
go back to reference Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A, Pon A, Banco K, Mak C, Neveu V, et al. Drugbank 30: a comprehensive resource for ’omics’ research on drugs. Nucleic Acids Res. 2010; 39(suppl_1):1035–41. Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A, Pon A, Banco K, Mak C, Neveu V, et al. Drugbank 30: a comprehensive resource for ’omics’ research on drugs. Nucleic Acids Res. 2010; 39(suppl_1):1035–41.
5.
go back to reference Kanehisa M, Goto S. Kegg: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000; 28(1):27–30.CrossRef Kanehisa M, Goto S. Kegg: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000; 28(1):27–30.CrossRef
6.
go back to reference Good BM, Ainscough BJ, McMichael JF, Su AI, Griffith OL. Organizing knowledge to enable personalization of medicine in cancer. Genome Biol. 2014; 15(8):438.CrossRef Good BM, Ainscough BJ, McMichael JF, Su AI, Griffith OL. Organizing knowledge to enable personalization of medicine in cancer. Genome Biol. 2014; 15(8):438.CrossRef
7.
go back to reference Ritter DI, Roychowdhury S, Roy A, Rao S, Landrum MJ, Sonkin D, Shekar M, Davis CF, Hart RK, Micheel C, et al. Somatic cancer variant curation and harmonization through consensus minimum variant level data. Genome Med. 2016; 8(1):117.CrossRef Ritter DI, Roychowdhury S, Roy A, Rao S, Landrum MJ, Sonkin D, Shekar M, Davis CF, Hart RK, Micheel C, et al. Somatic cancer variant curation and harmonization through consensus minimum variant level data. Genome Med. 2016; 8(1):117.CrossRef
8.
go back to reference Li MM, Datto M, Duncavage EJ, Kulkarni S, Lindeman NI, Roy S, Tsimberidou AM, Vnencak-Jones CL, Wolff DJ, Younes A, et al. Standards and guidelines for the interpretation and reporting of sequence variants in cancer: A joint consensus recommendation of the association for molecular pathology, american society of clinical oncology, and college of american pathologists. J Mol Diagn. 2017; 19(1):4–23.CrossRef Li MM, Datto M, Duncavage EJ, Kulkarni S, Lindeman NI, Roy S, Tsimberidou AM, Vnencak-Jones CL, Wolff DJ, Younes A, et al. Standards and guidelines for the interpretation and reporting of sequence variants in cancer: A joint consensus recommendation of the association for molecular pathology, american society of clinical oncology, and college of american pathologists. J Mol Diagn. 2017; 19(1):4–23.CrossRef
9.
go back to reference Gagan J, Van Allen EM. Next-generation sequencing to guide cancer therapy. Genome Med. 2015; 7(1):80.CrossRef Gagan J, Van Allen EM. Next-generation sequencing to guide cancer therapy. Genome Med. 2015; 7(1):80.CrossRef
10.
go back to reference Matthijs G, Souche E, Alders M, Corveleyn A, Eck S, Feenstra I, Race V, Sistermans E, Sturm M, Weiss M, et al. Guidelines for diagnostic next-generation sequencing. Eur J Hum Genet. 2016; 24(1):2.CrossRef Matthijs G, Souche E, Alders M, Corveleyn A, Eck S, Feenstra I, Race V, Sistermans E, Sturm M, Weiss M, et al. Guidelines for diagnostic next-generation sequencing. Eur J Hum Genet. 2016; 24(1):2.CrossRef
11.
go back to reference MacConaill LE. Existing and emerging technologies for tumor genomic profiling. Am J Clin Oncol. 2013; 31(15):1815–24.CrossRef MacConaill LE. Existing and emerging technologies for tumor genomic profiling. Am J Clin Oncol. 2013; 31(15):1815–24.CrossRef
12.
go back to reference Dienstmann R, Jang IS, Bot B, Friend S, Guinney J. Database of genomic biomarkers for cancer drugs and clinical targetability in solid tumors. Cancer Discov. 2015; 5(2):118–23.CrossRef Dienstmann R, Jang IS, Bot B, Friend S, Guinney J. Database of genomic biomarkers for cancer drugs and clinical targetability in solid tumors. Cancer Discov. 2015; 5(2):118–23.CrossRef
13.
go back to reference Soh D, Dong D, Guo Y, Wong L. Consistency, comprehensiveness, and compatibility of pathway databases. BMC Bioinformatics. 2010; 11(1):449.CrossRef Soh D, Dong D, Guo Y, Wong L. Consistency, comprehensiveness, and compatibility of pathway databases. BMC Bioinformatics. 2010; 11(1):449.CrossRef
14.
go back to reference Childs LH, Mamlouk S, Brandt J, Sers C, Leser U. Sofia: a data integration framework for annotating high-throughput datasets. Bioinformatics. 2016; 32(17):2590–7.CrossRef Childs LH, Mamlouk S, Brandt J, Sers C, Leser U. Sofia: a data integration framework for annotating high-throughput datasets. Bioinformatics. 2016; 32(17):2590–7.CrossRef
15.
go back to reference Zhao H, Sun Z, Wang J, Huang H, Kocher J-P, Wang L. Crossmap: a versatile tool for coordinate conversion between genome assemblies. Bioinformatics. 2014; 30(7):1006–7.CrossRef Zhao H, Sun Z, Wang J, Huang H, Kocher J-P, Wang L. Crossmap: a versatile tool for coordinate conversion between genome assemblies. Bioinformatics. 2014; 30(7):1006–7.CrossRef
16.
go back to reference Madhavan S, Ritter D, Micheel C, Rao S, Roy A, Sonkin D, Mccoy M, Griffith M, Griffith OL, Mcgarvey P, et al. Clingen cancer somatic working group–standardizing and democratizing access to cancer molecular diagnostic data to drive translational research. Pac Symp Biocomput. 2018; 23:247–58.PubMedPubMedCentral Madhavan S, Ritter D, Micheel C, Rao S, Roy A, Sonkin D, Mccoy M, Griffith M, Griffith OL, Mcgarvey P, et al. Clingen cancer somatic working group–standardizing and democratizing access to cancer molecular diagnostic data to drive translational research. Pac Symp Biocomput. 2018; 23:247–58.PubMedPubMedCentral
17.
go back to reference Hughes KS, Ambinder EP, Hess GP, Yu PP, Bernstam EV, Routbort MJ, Clemenceau JR, Hamm JT, Febbo PG, Domchek SM, et al. Identifying health information technology needs of oncologists to facilitate the adoption of genomic medicine: recommendations from the 2016 american society of clinical oncology omics and precision oncology workshop. J Clin Oncol. 2017; 35(27):3153–9.CrossRef Hughes KS, Ambinder EP, Hess GP, Yu PP, Bernstam EV, Routbort MJ, Clemenceau JR, Hamm JT, Febbo PG, Domchek SM, et al. Identifying health information technology needs of oncologists to facilitate the adoption of genomic medicine: recommendations from the 2016 american society of clinical oncology omics and precision oncology workshop. J Clin Oncol. 2017; 35(27):3153–9.CrossRef
18.
go back to reference Gray KA, Yates B, Seal RL, Wright MW, Bruford EA. Genenames org: the hgnc resources in 2015. Nucleic Acids Res. 2014; 43(D1):D1079–85.CrossRef Gray KA, Yates B, Seal RL, Wright MW, Bruford EA. Genenames org: the hgnc resources in 2015. Nucleic Acids Res. 2014; 43(D1):D1079–85.CrossRef
19.
go back to reference Maglott D, Ostell J, Pruitt KD, Tatusova T. Entrez gene: gene-centered information at ncbi. Nucleic Acids Res. 2005; 33(suppl 1):54–8. Maglott D, Ostell J, Pruitt KD, Tatusova T. Entrez gene: gene-centered information at ncbi. Nucleic Acids Res. 2005; 33(suppl 1):54–8.
20.
go back to reference Hubbard T, Barker D, Birney E, Cameron G, Chen Y, Clark L, Cox T, Cuff J, Curwen V, Down T, et al. The ensembl genome database project. Nucleic Acids Res. 2002; 30(1):38–41.CrossRef Hubbard T, Barker D, Birney E, Cameron G, Chen Y, Clark L, Cox T, Cuff J, Curwen V, Down T, et al. The ensembl genome database project. Nucleic Acids Res. 2002; 30(1):38–41.CrossRef
21.
go back to reference Pruitt KD, Tatusova T, Maglott DR. Ncbi reference sequences (refseq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 2007; 35(suppl 1):61–5.CrossRef Pruitt KD, Tatusova T, Maglott DR. Ncbi reference sequences (refseq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 2007; 35(suppl 1):61–5.CrossRef
22.
go back to reference Consortium U, et al. The universal protein resource (uniprot). Nucleic Acids Res. 2008; 36(suppl 1):190–5. Consortium U, et al. The universal protein resource (uniprot). Nucleic Acids Res. 2008; 36(suppl 1):190–5.
23.
go back to reference Donnelly K. Snomed-ct: The advanced terminology and coding system for ehealth. Stud Health Technol Inform. 2006; 121:279.PubMed Donnelly K. Snomed-ct: The advanced terminology and coding system for ehealth. Stud Health Technol Inform. 2006; 121:279.PubMed
24.
go back to reference World Health Organization. International statistical classification of diseases and related health problems, 10th revision. Geneva: World Health Organization; 2016. World Health Organization. International statistical classification of diseases and related health problems, 10th revision. Geneva: World Health Organization; 2016.
25.
go back to reference Robinson PN, Köhler S, Bauer S, Seelow D, Horn D, Mundlos S. The human phenotype ontology: a tool for annotating and analyzing human hereditary disease. Am J Hum Genet. 2008; 83(5):610–5.CrossRef Robinson PN, Köhler S, Bauer S, Seelow D, Horn D, Mundlos S. The human phenotype ontology: a tool for annotating and analyzing human hereditary disease. Am J Hum Genet. 2008; 83(5):610–5.CrossRef
26.
go back to reference Schriml LM, Arze C, Nadendla S, Chang Y-WW, Mazaitis M, Felix V, Feng G, Kibbe WA. Disease ontology: a backbone for disease semantic integration. Nucleic Acids Res. 2012; 40(D1):940–6.CrossRef Schriml LM, Arze C, Nadendla S, Chang Y-WW, Mazaitis M, Felix V, Feng G, Kibbe WA. Disease ontology: a backbone for disease semantic integration. Nucleic Acids Res. 2012; 40(D1):940–6.CrossRef
27.
go back to reference Joshi-Tope G, Gillespie M, Vastrik I, D’Eustachio P, Schmidt E, de Bono B, Jassal B, Gopinath G, Wu G, Matthews L, et al. Reactome: a knowledgebase of biological pathways. Nucleic Acids Res. 2005; 33(suppl 1):428–32. Joshi-Tope G, Gillespie M, Vastrik I, D’Eustachio P, Schmidt E, de Bono B, Jassal B, Gopinath G, Wu G, Matthews L, et al. Reactome: a knowledgebase of biological pathways. Nucleic Acids Res. 2005; 33(suppl 1):428–32.
28.
go back to reference Yates A, Akanni W, Amode MR, Barrell D, Billis K, Carvalho-Silva D, Cummins C, Clapham P, Fitzgerald S, Gil L, et al. Ensembl 2016. Nucleic Acids Res. 2016; 44(D1):710–6.CrossRef Yates A, Akanni W, Amode MR, Barrell D, Billis K, Carvalho-Silva D, Cummins C, Clapham P, Fitzgerald S, Gil L, et al. Ensembl 2016. Nucleic Acids Res. 2016; 44(D1):710–6.CrossRef
29.
go back to reference Bodenreider O. The unified medical language system (umls): integrating biomedical terminology. Nucleic acids research. 2004; 32(suppl 1):267–70.CrossRef Bodenreider O. The unified medical language system (umls): integrating biomedical terminology. Nucleic acids research. 2004; 32(suppl 1):267–70.CrossRef
30.
go back to reference Davidson SB, Crabtree J, Brunk BP, Schug J, Tannen V, Overton GC, Stoeckert CJ. K2/kleisli and gus: Experiments in integrated access to genomic data sources. IBM Syst J. 2001; 40(2):512–31.CrossRef Davidson SB, Crabtree J, Brunk BP, Schug J, Tannen V, Overton GC, Stoeckert CJ. K2/kleisli and gus: Experiments in integrated access to genomic data sources. IBM Syst J. 2001; 40(2):512–31.CrossRef
31.
go back to reference Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, Bignell GR, Bolli N, Borg A, Børresen-Dale A-L, et al. Signatures of mutational processes in human cancer. Nature. 2013; 500(7463):415–21.CrossRef Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, Bignell GR, Bolli N, Borg A, Børresen-Dale A-L, et al. Signatures of mutational processes in human cancer. Nature. 2013; 500(7463):415–21.CrossRef
32.
go back to reference Trissl S, Rother K, Müller H, Steinke T, Koch I, Preissner R, Frömmel C, Leser U. Columba: an integrated database of proteins, structures, and annotations. BMC Bioinformatics. 2005; 6(1):81.CrossRef Trissl S, Rother K, Müller H, Steinke T, Koch I, Preissner R, Frömmel C, Leser U. Columba: an integrated database of proteins, structures, and annotations. BMC Bioinformatics. 2005; 6(1):81.CrossRef
33.
go back to reference Plake C, Schiemann T, Pankalla M, Hakenberg J, Leser U. Alibaba: Pubmed as a graph. Bioinformatics. 2006; 22(19):2444–5.CrossRef Plake C, Schiemann T, Pankalla M, Hakenberg J, Leser U. Alibaba: Pubmed as a graph. Bioinformatics. 2006; 22(19):2444–5.CrossRef
34.
go back to reference Thomas P, Starlinger J, Vowinkel A, Arzt S, Leser U. Geneview: a comprehensive semantic search engine for pubmed. Nucleic Acids Res. 2012; 40(W1):585–91.CrossRef Thomas P, Starlinger J, Vowinkel A, Arzt S, Leser U. Geneview: a comprehensive semantic search engine for pubmed. Nucleic Acids Res. 2012; 40(W1):585–91.CrossRef
35.
go back to reference Stoltmann T, Zimmermann K, Koschmieder A, Leser U. OmixAnalyzer - a web-based system for management and analysis of high-throughput omics data sets. In: International Conference on Data Integration in the Life Sciences. Berlin: Springer: 2013. p. 46–53. Stoltmann T, Zimmermann K, Koschmieder A, Leser U. OmixAnalyzer - a web-based system for management and analysis of high-throughput omics data sets. In: International Conference on Data Integration in the Life Sciences. Berlin: Springer: 2013. p. 46–53.
36.
go back to reference Chakravarty D, Gao J, Phillips S, Kundra R, Zhang H, Wang J, Rudolph JE, Yaeger R, Soumerai T, Nissan MH, Chang MT, Chandarlapaty S, Traina TA, Paik PK, Ho AL, Hantash FM, Grupe A, Baxi SS, Callahan MK, Snyder A, Chi P, Danila DC, Gounder M, Harding JJ, Hellmann MD, Iyer G, Janjigian YY, Kaley T, Levine DA, Lowery M, Omuro A, Postow MA, Rathkopf D, Shoushtari AN, Shukla N, Voss MH, Paraiso E, Zehir A, Berger MF, Taylor BS, Saltz LB, Riely GJ, Ladanyi M, Hyman DM, Baselga J, Sabbatini P, Solit DB, Schultz N. Oncokb: A precision oncology knowledge base. JCO Precis Oncol. 2017; 1:1–16. Chakravarty D, Gao J, Phillips S, Kundra R, Zhang H, Wang J, Rudolph JE, Yaeger R, Soumerai T, Nissan MH, Chang MT, Chandarlapaty S, Traina TA, Paik PK, Ho AL, Hantash FM, Grupe A, Baxi SS, Callahan MK, Snyder A, Chi P, Danila DC, Gounder M, Harding JJ, Hellmann MD, Iyer G, Janjigian YY, Kaley T, Levine DA, Lowery M, Omuro A, Postow MA, Rathkopf D, Shoushtari AN, Shukla N, Voss MH, Paraiso E, Zehir A, Berger MF, Taylor BS, Saltz LB, Riely GJ, Ladanyi M, Hyman DM, Baselga J, Sabbatini P, Solit DB, Schultz N. Oncokb: A precision oncology knowledge base. JCO Precis Oncol. 2017; 1:1–16.
37.
go back to reference Meric-Bernstam F, Johnson A, Holla V, Bailey AM, Brusco L, Chen K, Routbort M, Patel KP, Zeng J, Kopetz S, et al. A decision support framework for genomically informed investigational cancer therapy. J Natl Cancer Inst. 2015; 107(7):098.CrossRef Meric-Bernstam F, Johnson A, Holla V, Bailey AM, Brusco L, Chen K, Routbort M, Patel KP, Zeng J, Kopetz S, et al. A decision support framework for genomically informed investigational cancer therapy. J Natl Cancer Inst. 2015; 107(7):098.CrossRef
38.
go back to reference Andre F, Mardis E, Salm M, Soria J-C, Siu LL, Swanton C. Prioritizing targets for precision cancer medicine. Ann Oncol. 2014; 25(12):2295–303.CrossRef Andre F, Mardis E, Salm M, Soria J-C, Siu LL, Swanton C. Prioritizing targets for precision cancer medicine. Ann Oncol. 2014; 25(12):2295–303.CrossRef
39.
go back to reference Leser U, Naumann F. Informationsintegration: architekturen und methoden zur integration verteilter und heterogener datenquellen. Heidelberg: dpunkt Verla; 2017. Leser U, Naumann F. Informationsintegration: architekturen und methoden zur integration verteilter und heterogener datenquellen. Heidelberg: dpunkt Verla; 2017.
40.
go back to reference Weinstein JN, Collisson EA, Mills GB, Shaw KRM, Ozenberger BA, Ellrott K, Shmulevich I, Sander C, Stuart JM, Network CGAR, et al. The cancer genome atlas pan-cancer analysis project. Nat Genet. 2013; 45(10):1113–20.CrossRef Weinstein JN, Collisson EA, Mills GB, Shaw KRM, Ozenberger BA, Ellrott K, Shmulevich I, Sander C, Stuart JM, Network CGAR, et al. The cancer genome atlas pan-cancer analysis project. Nat Genet. 2013; 45(10):1113–20.CrossRef
41.
go back to reference Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, O’Donnell-Luria AH, Ware JS, Hill AJ, Cummings BB, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016; 536(7616):285–91.CrossRef Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, O’Donnell-Luria AH, Ware JS, Hill AJ, Cummings BB, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016; 536(7616):285–91.CrossRef
42.
go back to reference Hyman DM, Puzanov I, Subbiah V, Faris JE, Chau I, Blay J-Y, Wolf J, Raje NS, Diamond EL, Hollebecque A, et al. Vemurafenib in multiple nonmelanoma cancers with braf v600 mutations. N Engl J Med. 2015; 373(8):726–36.CrossRef Hyman DM, Puzanov I, Subbiah V, Faris JE, Chau I, Blay J-Y, Wolf J, Raje NS, Diamond EL, Hollebecque A, et al. Vemurafenib in multiple nonmelanoma cancers with braf v600 mutations. N Engl J Med. 2015; 373(8):726–36.CrossRef
43.
44.
go back to reference Consortium GP, et al. A map of human genome variation from population-scale sequencing. Nature. 2010; 467(7319):1061–73.CrossRef Consortium GP, et al. A map of human genome variation from population-scale sequencing. Nature. 2010; 467(7319):1061–73.CrossRef
45.
go back to reference Goble C, Stevens R. State of the nation in data integration for bioinformatics. J Biomed Inform. 2008; 41(5):687–93.CrossRef Goble C, Stevens R. State of the nation in data integration for bioinformatics. J Biomed Inform. 2008; 41(5):687–93.CrossRef
46.
go back to reference Cohen-Boulakia S, Leser U. Next generation data integration for life sciences. In: 27th IEEE International Conference On Data Engineering (ICDE). Hannover: IEEE: 2011. p. 1366–9. Cohen-Boulakia S, Leser U. Next generation data integration for life sciences. In: 27th IEEE International Conference On Data Engineering (ICDE). Hannover: IEEE: 2011. p. 1366–9.
47.
go back to reference den Dunnen JT, Dalgleish R, Maglott DR, Hart RK, Greenblatt MS, McGowan-Jordan J, Roux A-F, Smith T, Antonarakis SE, Taschner PE. Hgvs recommendations for the description of sequence variants: 2016 update. Hum Mutat. 2016; 37(6):564–9.CrossRef den Dunnen JT, Dalgleish R, Maglott DR, Hart RK, Greenblatt MS, McGowan-Jordan J, Roux A-F, Smith T, Antonarakis SE, Taschner PE. Hgvs recommendations for the description of sequence variants: 2016 update. Hum Mutat. 2016; 37(6):564–9.CrossRef
48.
go back to reference Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the sift algorithm. Nat Protoc. 2009; 4(7):1073–81.CrossRef Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the sift algorithm. Nat Protoc. 2009; 4(7):1073–81.CrossRef
49.
go back to reference Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR. A method and server for predicting damaging missense mutations. Nat Methods. 2010; 7(4):248–9.CrossRef Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR. A method and server for predicting damaging missense mutations. Nat Methods. 2010; 7(4):248–9.CrossRef
50.
go back to reference Patel RY, Shah N, Jackson AR, Ghosh R, Pawliczek P, Paithankar S, Baker A, Riehle K, Chen H, Milosavljevic S, et al. Clingen pathogenicity calculator: a configurable system for assessing pathogenicity of genetic variants. Genome Med. 2017; 9(1):3.CrossRef Patel RY, Shah N, Jackson AR, Ghosh R, Pawliczek P, Paithankar S, Baker A, Riehle K, Chen H, Milosavljevic S, et al. Clingen pathogenicity calculator: a configurable system for assessing pathogenicity of genetic variants. Genome Med. 2017; 9(1):3.CrossRef
51.
go back to reference Zhou G, Hull R, King R, Franchitti J-C. Using object matching and materialization to integrate heterogeneous databases. In: Materialized views. Cambridge: MIT Press: 1999. p. 59–76. Zhou G, Hull R, King R, Franchitti J-C. Using object matching and materialization to integrate heterogeneous databases. In: Materialized views. Cambridge: MIT Press: 1999. p. 59–76.
52.
go back to reference Madhavaram M, Ali DL, Zhou M. Integrating heterogeneous distributed database system. Comput Ind Eng. 1996; 31(1-2):315–8.CrossRef Madhavaram M, Ali DL, Zhou M. Integrating heterogeneous distributed database system. Comput Ind Eng. 1996; 31(1-2):315–8.CrossRef
53.
go back to reference Liekens AM, De Knijf J, Daelemans W, Goethals B, De Rijk P, Del-Favero J. Biograph: unsupervised biomedical knowledge discovery via automated hypothesis generation. Genome Biol. 2011; 12(6):57.CrossRef Liekens AM, De Knijf J, Daelemans W, Goethals B, De Rijk P, Del-Favero J. Biograph: unsupervised biomedical knowledge discovery via automated hypothesis generation. Genome Biol. 2011; 12(6):57.CrossRef
54.
go back to reference Rahm E. The case for holistic data integration. In: East European Conference on Advances in Databases and Information Systems. Cham: Springer: 2016. p. 11–27. Rahm E. The case for holistic data integration. In: East European Conference on Advances in Databases and Information Systems. Cham: Springer: 2016. p. 11–27.
Metadata
Title
Variant information systems for precision oncology
Authors
Johannes Starlinger
Steffen Pallarz
Jurica Ševa
Damian Rieke
Christine Sers
Ulrich Keilholz
Ulf Leser
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Medical Informatics and Decision Making / Issue 1/2018
Electronic ISSN: 1472-6947
DOI
https://doi.org/10.1186/s12911-018-0665-z

Other articles of this Issue 1/2018

BMC Medical Informatics and Decision Making 1/2018 Go to the issue