Skip to main content
Top
Published in: BMC Medical Informatics and Decision Making 2/2018

Open Access 01-07-2018 | Research

Extracting psychiatric stressors for suicide from social media using deep learning

Authors: Jingcheng Du, Yaoyun Zhang, Jianhong Luo, Yuxi Jia, Qiang Wei, Cui Tao, Hua Xu

Published in: BMC Medical Informatics and Decision Making | Special Issue 2/2018

Login to get access

Abstract

Background

Suicide has been one of the leading causes of deaths in the United States. One major cause of suicide is psychiatric stressors. The detection of psychiatric stressors in an at risk population will facilitate the early prevention of suicidal behaviors and suicide. In recent years, the widespread popularity and real-time information sharing flow of social media allow potential early intervention in a large-scale population. However, few automated approaches have been proposed to extract psychiatric stressors from Twitter. The goal of this study was to investigate techniques for recognizing suicide related psychiatric stressors from Twitter using deep learning based methods and transfer learning strategy which leverages an existing annotation dataset from clinical text.

Methods

First, a dataset of suicide-related tweets was collected from Twitter streaming data with a multiple-step pipeline including keyword-based retrieving, filtering and further refining using an automated binary classifier. Specifically, a convolutional neural networks (CNN) based algorithm was used to build the binary classifier. Next, psychiatric stressors were annotated in the suicide-related tweets. The stressor recognition problem is conceptualized as a typical named entity recognition (NER) task and tackled using recurrent neural networks (RNN) based methods. Moreover, to reduce the annotation cost and improve the performance, transfer learning strategy was adopted by leveraging existing annotation from clinical text.

Results & conclusions

To our best knowledge, this is the first effort to extract psychiatric stressors from Twitter data using deep learning based approaches. Comparison to traditional machine learning algorithms shows the superiority of deep learning based approaches. CNN is leading the performance at identifying suicide-related tweets with a precision of 78% and an F-1 measure of 83%, outperforming Support Vector Machine (SVM), Extra Trees (ET), etc. RNN based psychiatric stressors recognition obtains the best F-1 measure of 53.25% by exact match and 67.94% by inexact match, outperforming Conditional Random Fields (CRF). Moreover, transfer learning from clinical notes for the Twitter corpus outperforms the training with Twitter corpus only with an F-1 measure of 54.9% by exact match. The results indicate the advantages of deep learning based methods for the automated stressors recognition from social media.
Literature
1.
go back to reference Wasserman D. Suicide: an unnecessary death. Oxford: Oxford University Press; 2016. Wasserman D. Suicide: an unnecessary death. Oxford: Oxford University Press; 2016.
3.
go back to reference Shepard DS, Gurewich D, Lwin AK, Reed GA, Silverman MM. Suicide and suicidal attempts in the United States: costs and policy implications. Suicide life-threatening Behav Wiley Online Library. 2016;46:352–62.CrossRef Shepard DS, Gurewich D, Lwin AK, Reed GA, Silverman MM. Suicide and suicidal attempts in the United States: costs and policy implications. Suicide life-threatening Behav Wiley Online Library. 2016;46:352–62.CrossRef
5.
go back to reference Jashinsky J, Burton SH, Hanson CL, West J, Giraud-Carrier C, Barnes MD, et al. Tracking suicide risk factors through twitter in the US. Crisis Hogrefe Publishing. 2014;35:51.CrossRefPubMed Jashinsky J, Burton SH, Hanson CL, West J, Giraud-Carrier C, Barnes MD, et al. Tracking suicide risk factors through twitter in the US. Crisis Hogrefe Publishing. 2014;35:51.CrossRefPubMed
6.
go back to reference Homan CM, Johar R, Liu T, Lytle M, Silenzio V, Alm CO. Toward macro-insights for suicide prevention: analyzing fine-grained distress at scale. Acl. 2014;2014:107. Homan CM, Johar R, Liu T, Lytle M, Silenzio V, Alm CO. Toward macro-insights for suicide prevention: analyzing fine-grained distress at scale. Acl. 2014;2014:107.
7.
go back to reference Mann JJ, Apter A, Bertolote J, Beautrais A, Currier D, Haas A, et al. Suicide prevention strategies: a systematic review. Jama. American Medical Association. 2005;294:2064–74.CrossRefPubMed Mann JJ, Apter A, Bertolote J, Beautrais A, Currier D, Haas A, et al. Suicide prevention strategies: a systematic review. Jama. American Medical Association. 2005;294:2064–74.CrossRefPubMed
8.
go back to reference Zhang OR, Zhang Y, Xu J, Roberts K, Zhang XY, Xu H. Interweaving Domain Knowledge and unsupervised learning for psychiatric stressor extraction from clinical notes. Int. Conf. Ind. Eng. Other Appl. Appl. Intell. Syst 2017. p. 396–406. Zhang OR, Zhang Y, Xu J, Roberts K, Zhang XY, Xu H. Interweaving Domain Knowledge and unsupervised learning for psychiatric stressor extraction from clinical notes. Int. Conf. Ind. Eng. Other Appl. Appl. Intell. Syst 2017. p. 396–406.
9.
go back to reference Feinberg T. Bullying prevention and intervention. Princ Leadersh Mag. 2003;4:10–4. Feinberg T. Bullying prevention and intervention. Princ Leadersh Mag. 2003;4:10–4.
10.
go back to reference Zhang Y, Zhang O, Wu Y, Lee H-J, Xu J, Xu H, et al. Psychiatric symptom recognition without labeled data using distributional representations of phrases and on-line knowledge. J. Biomed. Inform. Elsevier. 2017; Zhang Y, Zhang O, Wu Y, Lee H-J, Xu J, Xu H, et al. Psychiatric symptom recognition without labeled data using distributional representations of phrases and on-line knowledge. J. Biomed. Inform. Elsevier. 2017;
11.
go back to reference Moorhead SA, Hazlett DE, Harrison L, Carroll JK, Irwin A, Hoving C. A new dimension of health care: systematic review of the uses, benefits, and limitations of social media for health communication, J Med Internet Res, vol. 15. Toronto, Canada: JMIR Publications Inc; 2013. p. 1–16. Moorhead SA, Hazlett DE, Harrison L, Carroll JK, Irwin A, Hoving C. A new dimension of health care: systematic review of the uses, benefits, and limitations of social media for health communication, J Med Internet Res, vol. 15. Toronto, Canada: JMIR Publications Inc; 2013. p. 1–16.
12.
go back to reference Luxton DD, June JD, Fairall JM. Social media and suicide: a public health perspective. Am J Public Health American Public Health Association. 2012;102:S195–200.CrossRef Luxton DD, June JD, Fairall JM. Social media and suicide: a public health perspective. Am J Public Health American Public Health Association. 2012;102:S195–200.CrossRef
13.
go back to reference Wongkoblap A, Vadillo MA, Curcin V. Researching mental health disorders in the era of social media: systematic review. J Med Internet Res JMIR Publications Inc. 2017;19 Wongkoblap A, Vadillo MA, Curcin V. Researching mental health disorders in the era of social media: systematic review. J Med Internet Res JMIR Publications Inc. 2017;19
14.
go back to reference Lv M, Li A, Liu T, Zhu T. Creating a Chinese suicide dictionary for identifying suicide risk on social media. PeerJ PeerJ Inc. 2015;e1455:3. Lv M, Li A, Liu T, Zhu T. Creating a Chinese suicide dictionary for identifying suicide risk on social media. PeerJ PeerJ Inc. 2015;e1455:3.
15.
go back to reference Coppersmith G. Wood a. Exploratory analysis of social media prior to a suicide attempt. In: Proc. 3rd work. Comput. Linguist. Clin. Psychol. From linguist. Signal to Clin. Real; 2016. p. 106–17. Coppersmith G. Wood a. Exploratory analysis of social media prior to a suicide attempt. In: Proc. 3rd work. Comput. Linguist. Clin. Psychol. From linguist. Signal to Clin. Real; 2016. p. 106–17.
16.
go back to reference Huang X, Zhang L, Chiu D, Liu T, Li X, Zhu T. Detecting suicidal ideation in Chinese microblogs with psychological lexicons. In: Proc - 2014 IEEE Int. Conf. Ubiquitous Intell. Comput. 2014 IEEE Int. Conf. Auton. Trust. Comput. 2014 IEEE Int. Conf. Scalable Comput. Commun. Assoc. Sy; 2014. p. 844–9. Huang X, Zhang L, Chiu D, Liu T, Li X, Zhu T. Detecting suicidal ideation in Chinese microblogs with psychological lexicons. In: Proc - 2014 IEEE Int. Conf. Ubiquitous Intell. Comput. 2014 IEEE Int. Conf. Auton. Trust. Comput. 2014 IEEE Int. Conf. Scalable Comput. Commun. Assoc. Sy; 2014. p. 844–9.
17.
go back to reference Cheng Q, Li TMH, Kwok C-L, Zhu T, Yip PSF. Assessing suicide risk and emotional distress in Chinese social media: A text mining and machine learning study. J Med Internet Res JMIR Publications Inc. 2017;19:e243.CrossRefPubMedPubMedCentral Cheng Q, Li TMH, Kwok C-L, Zhu T, Yip PSF. Assessing suicide risk and emotional distress in Chinese social media: A text mining and machine learning study. J Med Internet Res JMIR Publications Inc. 2017;19:e243.CrossRefPubMedPubMedCentral
18.
go back to reference Zhang L, Huang X, Liu T, Chen Z, Zhu T, Li A, et al. Using linguistic features to estimate suicide probability of Chinese microblog users. Int Conf Hum Centered Comput 2014;1–11. Zhang L, Huang X, Liu T, Chen Z, Zhu T, Li A, et al. Using linguistic features to estimate suicide probability of Chinese microblog users. Int Conf Hum Centered Comput 2014;1–11.
19.
go back to reference Smith RJ, Crutchley P, Schwartz HA, Ungar L, Shofer F, Padrez KA, et al. Variations in facebook posting patterns across validated patient health conditions:a prospective cohort study. J Med Internet Res. 2017;19:1–11.CrossRef Smith RJ, Crutchley P, Schwartz HA, Ungar L, Shofer F, Padrez KA, et al. Variations in facebook posting patterns across validated patient health conditions:a prospective cohort study. J Med Internet Res. 2017;19:1–11.CrossRef
20.
go back to reference O’Dea B, Wan S, Batterham PJ, Calear AL, Paris C, Christensen H. Detecting suicidality on twitter. Internet Interv Elsevier. 2015;2:183–8.CrossRef O’Dea B, Wan S, Batterham PJ, Calear AL, Paris C, Christensen H. Detecting suicidality on twitter. Internet Interv Elsevier. 2015;2:183–8.CrossRef
21.
go back to reference Abboute A, Boudjeriou Y, Entringer G, Azé J, Bringay S, Poncelet P. Mining twitter for suicide prevention. In: Int Conf Appl Nat Lang to Data Bases/Information Syst; 2014. p. 250–3. Abboute A, Boudjeriou Y, Entringer G, Azé J, Bringay S, Poncelet P. Mining twitter for suicide prevention. In: Int Conf Appl Nat Lang to Data Bases/Information Syst; 2014. p. 250–3.
22.
go back to reference Burnap P, Colombo G, Amery R, Hodorog A, Scourfield J. Multi-class machine classification of suicide-related communication on twitter. Online Soc. Netw Media. Elsevier. 2017;2:32–44.CrossRefPubMedPubMedCentral Burnap P, Colombo G, Amery R, Hodorog A, Scourfield J. Multi-class machine classification of suicide-related communication on twitter. Online Soc. Netw Media. Elsevier. 2017;2:32–44.CrossRefPubMedPubMedCentral
23.
go back to reference Du J, Zhang Y, Tao C, Xu H. A pilot study of mining association between psychiatric stressors and symptoms in tweets. IEEE Int Conf Bioinforma Biomed. 2017;2017:1254–7. Du J, Zhang Y, Tao C, Xu H. A pilot study of mining association between psychiatric stressors and symptoms in tweets. IEEE Int Conf Bioinforma Biomed. 2017;2017:1254–7.
24.
go back to reference Soysal E, Wang J, Jiang M, Wu Y, Pakhomov S, Liu H, et al. CLAMP--a toolkit for efficiently building customized clinical natural language processing pipelines. J. Am. Med. In: Informatics Assoc; 2017. Soysal E, Wang J, Jiang M, Wu Y, Pakhomov S, Liu H, et al. CLAMP--a toolkit for efficiently building customized clinical natural language processing pipelines. J. Am. Med. In: Informatics Assoc; 2017.
25.
go back to reference LeCun Y, Kavukcuoglu K, Farabet C. Convolutional networks and applications in vision. Circuits Syst. In: (ISCAS), Proc. 2010 IEEE Int Symp, vol. 2010. p. 253–6. LeCun Y, Kavukcuoglu K, Farabet C. Convolutional networks and applications in vision. Circuits Syst. In: (ISCAS), Proc. 2010 IEEE Int Symp, vol. 2010. p. 253–6.
26.
go back to reference Kim Y. Convolutional neural networks for sentence classification. arXiv Prepr. arXiv1408.5882. 2014;CrossRef Kim Y. Convolutional neural networks for sentence classification. arXiv Prepr. arXiv1408.5882. 2014;CrossRef
27.
go back to reference Dos Santos CN, Gatti M. Deep convolutional neural networks for sentiment analysis of short texts. In: COLING; 2014. p. 69–78. Dos Santos CN, Gatti M. Deep convolutional neural networks for sentiment analysis of short texts. In: COLING; 2014. p. 69–78.
28.
go back to reference Nakov P, Ritter A, Rosenthal S, Sebastiani F, Stoyanov V. SemEval-2016 task 4: sentiment analysis in twitter. In: Proc SemEval; 2016. p. 1–18. Nakov P, Ritter A, Rosenthal S, Sebastiani F, Stoyanov V. SemEval-2016 task 4: sentiment analysis in twitter. In: Proc SemEval; 2016. p. 1–18.
29.
go back to reference Conneau A, Schwenk H, Le Cun Y, Barrault L Very Deep Convolutional Networks for Text Classification arXiv Prepr arXiv160601781. 2016; Conneau A, Schwenk H, Le Cun Y, Barrault L Very Deep Convolutional Networks for Text Classification arXiv Prepr arXiv160601781. 2016;
31.
go back to reference Dernoncourt F, Lee JY, Szolovits P NeuroNER: an easy-to-use program for named-entity recognition based on neural networks arXiv Prepr arXiv1705.05487. 2017; Dernoncourt F, Lee JY, Szolovits P NeuroNER: an easy-to-use program for named-entity recognition based on neural networks arXiv Prepr arXiv1705.05487. 2017;
32.
go back to reference Dernoncourt F, Lee JY, Uzuner O, Szolovits P. De-identification of patient notes with recurrent neural networks. J Am Med Informatics Assoc The Oxford University Press. 2016:ocw156. Dernoncourt F, Lee JY, Uzuner O, Szolovits P. De-identification of patient notes with recurrent neural networks. J Am Med Informatics Assoc The Oxford University Press. 2016:ocw156.
33.
go back to reference Kermany DS, Goldbaum M, Cai W, Lewis MA, Valentim CCS, Liang H, et al. Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning. Cell Elsevier. 2018;172:1122–1131.e9.CrossRefPubMed Kermany DS, Goldbaum M, Cai W, Lewis MA, Valentim CCS, Liang H, et al. Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning. Cell Elsevier. 2018;172:1122–1131.e9.CrossRefPubMed
34.
go back to reference Lee JY, Szolovits P, Dernoncourt F, Szolovits P Transfer Learning for Named-Entity Recognition with Neural Networks arXiv Prepr arXiv1705.06273. 2017; Lee JY, Szolovits P, Dernoncourt F, Szolovits P Transfer Learning for Named-Entity Recognition with Neural Networks arXiv Prepr arXiv1705.06273. 2017;
35.
go back to reference Stubbs A, Filannino M, Uzuner Ö. De-identification of psychiatric intake records: overview of 2016 CEGS N-GRID shared tasks track 1. J. Biomed. Inform. Elsevier. 2017;75:S4–S18.CrossRef Stubbs A, Filannino M, Uzuner Ö. De-identification of psychiatric intake records: overview of 2016 CEGS N-GRID shared tasks track 1. J. Biomed. Inform. Elsevier. 2017;75:S4–S18.CrossRef
36.
go back to reference Du J, Xu J, Song H, Liu X, Tao C. Optimization on machine learning based approaches for sentiment analysis on HPV vaccines related tweets. J Biomed Semantics. 2017;8:9.CrossRefPubMedPubMedCentral Du J, Xu J, Song H, Liu X, Tao C. Optimization on machine learning based approaches for sentiment analysis on HPV vaccines related tweets. J Biomed Semantics. 2017;8:9.CrossRefPubMedPubMedCentral
37.
go back to reference Derczynski L, Nichols E, van Erp M, Limsopatham N. Results of the WNUT2017 shared task on novel and emerging entity recognition. In: Proc. 3rd work. Noisy user-generated Text; 2017. p. 140–7.CrossRef Derczynski L, Nichols E, van Erp M, Limsopatham N. Results of the WNUT2017 shared task on novel and emerging entity recognition. In: Proc. 3rd work. Noisy user-generated Text; 2017. p. 140–7.CrossRef
38.
go back to reference Lopez C, Partalas I, Balikas G, Derbas N, Martin A, Reutenauer C, et al. CAp 2017 challenge: Twitter Named Entity Recognition. arXiv Prepr. arXiv1707.07568. 2017. Lopez C, Partalas I, Balikas G, Derbas N, Martin A, Reutenauer C, et al. CAp 2017 challenge: Twitter Named Entity Recognition. arXiv Prepr. arXiv1707.07568. 2017.
Metadata
Title
Extracting psychiatric stressors for suicide from social media using deep learning
Authors
Jingcheng Du
Yaoyun Zhang
Jianhong Luo
Yuxi Jia
Qiang Wei
Cui Tao
Hua Xu
Publication date
01-07-2018
Publisher
BioMed Central
DOI
https://doi.org/10.1186/s12911-018-0632-8

Other articles of this Special Issue 2/2018

BMC Medical Informatics and Decision Making 2/2018 Go to the issue