Skip to main content
Top
Published in: BMC Medical Informatics and Decision Making 2/2018

Open Access 01-07-2018 | Research

Automatic extraction of protein-protein interactions using grammatical relationship graph

Authors: Kaixian Yu, Pei-Yau Lung, Tingting Zhao, Peixiang Zhao, Yan-Yuan Tseng, Jinfeng Zhang

Published in: BMC Medical Informatics and Decision Making | Special Issue 2/2018

Login to get access

Abstract

Background

Relationships between bio-entities (genes, proteins, diseases, etc.) constitute a significant part of our knowledge. Most of this information is documented as unstructured text in different forms, such as books, articles and on-line pages. Automatic extraction of such information and storing it in structured form could help researchers more easily access such information and also make it possible to incorporate it in advanced integrative analysis. In this study, we developed a novel approach to extract bio-entity relationships information using Nature Language Processing (NLP) and a graph-theoretic algorithm.

Methods

Our method, called GRGT (Grammatical Relationship Graph for Triplets), not only extracts the pairs of terms that have certain relationships, but also extracts the type of relationship (the word describing the relationships). In addition, the directionality of the relationship can also be extracted. Our method is based on the assumption that a triplet exists for a pair of interactions. A triplet is defined as two terms (entities) and an interaction word describing the relationship of the two terms in a sentence. We first use a sentence parsing tool to obtain the sentence structure represented as a dependency graph where words are nodes and edges are typed dependencies. The shortest paths among the pairs of words in the triplet are then extracted, which form the basis for our information extraction method. Flexible pattern matching scheme was then used to match a triplet graph with unknown relationship to those triplet graphs with labels (True or False) in the database.

Results

We applied the method on three benchmark datasets to extract the protein-protein-interactions (PPIs), and obtained better precision than the top performing methods in literature.

Conclusions

We have developed a method to extract the protein-protein interactions from biomedical literature. PPIs extracted by our method have higher precision among other methods, suggesting that our method can be used to effectively extract PPIs and deposit them into databases. Beyond extracting PPIs, our method could be easily extended to extracting relationship information between other bio-entities.
Literature
1.
go back to reference Kann MG. Protein interactions and disease: computational approaches to uncover the etiology of diseases. Brief Bioinform. 2007;8:333–46.CrossRefPubMed Kann MG. Protein interactions and disease: computational approaches to uncover the etiology of diseases. Brief Bioinform. 2007;8:333–46.CrossRefPubMed
2.
go back to reference Alfarano C, Andrade CE, Anthony K, Bahroos N, Bajec M, Bantoft K, Betel D, Bobechko B, Boutilier K, Burgess E, et al. The biomolecular interaction network database and related tools 2005 update. Nucleic Acids Res. 2005;33:D418–24.CrossRefPubMed Alfarano C, Andrade CE, Anthony K, Bahroos N, Bajec M, Bantoft K, Betel D, Bobechko B, Boutilier K, Burgess E, et al. The biomolecular interaction network database and related tools 2005 update. Nucleic Acids Res. 2005;33:D418–24.CrossRefPubMed
3.
go back to reference Aranda B, Achuthan P, Alam-Faruque Y, Armean I, Bridge A, Derow C, Feuermann M, Ghanbarian AT, Kerrien S, Khadake J, et al. The IntAct molecular interaction database in 2010. Nucleic Acids Res. 2010;38:D525–31.CrossRefPubMed Aranda B, Achuthan P, Alam-Faruque Y, Armean I, Bridge A, Derow C, Feuermann M, Ghanbarian AT, Kerrien S, Khadake J, et al. The IntAct molecular interaction database in 2010. Nucleic Acids Res. 2010;38:D525–31.CrossRefPubMed
4.
go back to reference Beuming T, Skrabanek L, Niv MY, Mukherjee P, Weinstein H. PDZBase: a protein-protein interaction database for PDZ-domains. Bioinformatics (Oxford, England). 2005;21:827–8.CrossRef Beuming T, Skrabanek L, Niv MY, Mukherjee P, Weinstein H. PDZBase: a protein-protein interaction database for PDZ-domains. Bioinformatics (Oxford, England). 2005;21:827–8.CrossRef
5.
go back to reference Chatr-Aryamontri A, Breitkreutz B-J, Heinicke S, Boucher L, Winter A, Stark C, Nixon J, Ramage L, Kolas N, O'Donnell L, et al. The BioGRID interaction database: 2013 update. Nucleic Acids Res. 2013;41:D816–23.CrossRefPubMed Chatr-Aryamontri A, Breitkreutz B-J, Heinicke S, Boucher L, Winter A, Stark C, Nixon J, Ramage L, Kolas N, O'Donnell L, et al. The BioGRID interaction database: 2013 update. Nucleic Acids Res. 2013;41:D816–23.CrossRefPubMed
6.
go back to reference Chatr-aryamontri A, Ceol A, Palazzi LM, Nardelli G, Schneider MV, Castagnoli L, Cesareni G. MINT: the molecular INTeraction database. Nucleic Acids Res. 2007;35:D572–4.CrossRefPubMed Chatr-aryamontri A, Ceol A, Palazzi LM, Nardelli G, Schneider MV, Castagnoli L, Cesareni G. MINT: the molecular INTeraction database. Nucleic Acids Res. 2007;35:D572–4.CrossRefPubMed
7.
go back to reference Gama-Castro S, Jiménez-Jacinto V, Peralta-Gil M, Santos-Zavaleta A, Peñaloza-Spinola MI, Contreras-Moreira B, Segura-Salazar J, Muñiz-Rascado L, Martínez-Flores I, Salgado H, et al. RegulonDB (version 6.0): gene regulation model of Escherichia coli K-12 beyond transcription, active (experimental) annotated promoters and Textpresso navigation. Nucleic Acids Res. 2008;36:D120–4.CrossRefPubMed Gama-Castro S, Jiménez-Jacinto V, Peralta-Gil M, Santos-Zavaleta A, Peñaloza-Spinola MI, Contreras-Moreira B, Segura-Salazar J, Muñiz-Rascado L, Martínez-Flores I, Salgado H, et al. RegulonDB (version 6.0): gene regulation model of Escherichia coli K-12 beyond transcription, active (experimental) annotated promoters and Textpresso navigation. Nucleic Acids Res. 2008;36:D120–4.CrossRefPubMed
8.
go back to reference Griffith OL, Montgomery SB, Bernier B, Chu B, Kasaian K, Aerts S, Mahony S, Sleumer MC, Bilenky M, Haeussler M, et al. ORegAnno: an open-access community-driven resource for regulatory annotation. Nucleic Acids Res. 2008;36:D107–13.CrossRefPubMed Griffith OL, Montgomery SB, Bernier B, Chu B, Kasaian K, Aerts S, Mahony S, Sleumer MC, Bilenky M, Haeussler M, et al. ORegAnno: an open-access community-driven resource for regulatory annotation. Nucleic Acids Res. 2008;36:D107–13.CrossRefPubMed
9.
go back to reference Grote A, Klein J, Retter I, Haddad I, Behling S, Bunk B, Biegler I, Yarmolinetz S, Jahn D, Münch R. PRODORIC (release 2009): a database and tool platform for the analysis of gene regulation in prokaryotes. Nucleic Acids Res. 2009;37:D61–5.CrossRefPubMed Grote A, Klein J, Retter I, Haddad I, Behling S, Bunk B, Biegler I, Yarmolinetz S, Jahn D, Münch R. PRODORIC (release 2009): a database and tool platform for the analysis of gene regulation in prokaryotes. Nucleic Acids Res. 2009;37:D61–5.CrossRefPubMed
10.
go back to reference Han K, Park B, Kim H, Hong J, Park J. HPID: the human protein interaction database. Bioinformatics (Oxford, England). 2004;20:2466–70.CrossRef Han K, Park B, Kim H, Hong J, Park J. HPID: the human protein interaction database. Bioinformatics (Oxford, England). 2004;20:2466–70.CrossRef
11.
go back to reference Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A, et al. Human protein reference database--2009 update. Nucleic Acids Res. 2009;37:D767–72.CrossRefPubMed Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A, et al. Human protein reference database--2009 update. Nucleic Acids Res. 2009;37:D767–72.CrossRefPubMed
12.
go back to reference Kuhn M, von Mering C, Campillos M, Jensen LJ, Bork P. STITCH: interaction networks of chemicals and proteins. Nucleic Acids Res. 2008;36:D684–8.CrossRefPubMed Kuhn M, von Mering C, Campillos M, Jensen LJ, Bork P. STITCH: interaction networks of chemicals and proteins. Nucleic Acids Res. 2008;36:D684–8.CrossRefPubMed
13.
go back to reference Mathivanan S, Periaswamy B, Gandhi TKB, Kandasamy K, Suresh S, Mohmood R, Ramachandra YL, Pandey A. An evaluation of human protein-protein interaction data in the public domain. BMC bioinformatics. 2006;7(Suppl 5):S19.CrossRefPubMedPubMedCentral Mathivanan S, Periaswamy B, Gandhi TKB, Kandasamy K, Suresh S, Mohmood R, Ramachandra YL, Pandey A. An evaluation of human protein-protein interaction data in the public domain. BMC bioinformatics. 2006;7(Suppl 5):S19.CrossRefPubMedPubMedCentral
14.
go back to reference Matys V, Fricke E, Geffers R, Gössling E, Haubrock M, Hehl R, Hornischer K, Karas D, Kel AE, Kel-Margoulis OV, et al. TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res. 2003;31:374–8.CrossRefPubMedPubMedCentral Matys V, Fricke E, Geffers R, Gössling E, Haubrock M, Hehl R, Hornischer K, Karas D, Kel AE, Kel-Margoulis OV, et al. TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res. 2003;31:374–8.CrossRefPubMedPubMedCentral
15.
go back to reference Mishra GR, Suresh M, Kumaran K, Kannabiran N, Suresh S, Bala P, Shivakumar K, Anuradha N, Reddy R, Raghavan TM, et al. Human protein reference database--2006 update. Nucleic Acids Res. 2006;34:D411–4.CrossRefPubMed Mishra GR, Suresh M, Kumaran K, Kannabiran N, Suresh S, Bala P, Shivakumar K, Anuradha N, Reddy R, Raghavan TM, et al. Human protein reference database--2006 update. Nucleic Acids Res. 2006;34:D411–4.CrossRefPubMed
16.
go back to reference Pagel P, Kovac S, Oesterheld M, Brauner B, Dunger-Kaltenbach I, Frishman G, Montrone C, Mark P, Stümpflen V, Mewes H-W, et al. The MIPS mammalian protein-protein interaction database. Bioinformatics (Oxford, England). 2005;21:832–4.CrossRef Pagel P, Kovac S, Oesterheld M, Brauner B, Dunger-Kaltenbach I, Frishman G, Montrone C, Mark P, Stümpflen V, Mewes H-W, et al. The MIPS mammalian protein-protein interaction database. Bioinformatics (Oxford, England). 2005;21:832–4.CrossRef
17.
go back to reference Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, Eisenberg D. The database of interacting proteins: 2004 update. Nucleic Acids Res. 2004;32:D449–51.CrossRefPubMedPubMedCentral Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, Eisenberg D. The database of interacting proteins: 2004 update. Nucleic Acids Res. 2004;32:D449–51.CrossRefPubMedPubMedCentral
18.
go back to reference Shahi P, Loukianiouk S, Bohne-Lang A, Kenzelmann M, Küffer S, Maertens S, Eils R, Gröne H-J, Gretz N, Brors B. Argonaute--a database for gene regulation by mammalian microRNAs. Nucleic Acids Res. 2006;34:D115–8.CrossRefPubMed Shahi P, Loukianiouk S, Bohne-Lang A, Kenzelmann M, Küffer S, Maertens S, Eils R, Gröne H-J, Gretz N, Brors B. Argonaute--a database for gene regulation by mammalian microRNAs. Nucleic Acids Res. 2006;34:D115–8.CrossRefPubMed
19.
go back to reference Sierro N, Kusakabe T, Park K-J, Yamashita R, Kinoshita K, Nakai K. DBTGR: a database of tunicate promoters and their regulatory elements. Nucleic Acids Res. 2006;34:D552–5.CrossRefPubMed Sierro N, Kusakabe T, Park K-J, Yamashita R, Kinoshita K, Nakai K. DBTGR: a database of tunicate promoters and their regulatory elements. Nucleic Acids Res. 2006;34:D552–5.CrossRefPubMed
20.
go back to reference Stark C, Breitkreutz B-J, Chatr-Aryamontri A, Boucher L, Oughtred R, Livstone MS, Nixon J, Van Auken K, Wang X, Shi X, et al. The BioGRID interaction database: 2011 update. Nucleic Acids Res. 2011;39:D698–704.CrossRefPubMed Stark C, Breitkreutz B-J, Chatr-Aryamontri A, Boucher L, Oughtred R, Livstone MS, Nixon J, Van Auken K, Wang X, Shi X, et al. The BioGRID interaction database: 2011 update. Nucleic Acids Res. 2011;39:D698–704.CrossRefPubMed
21.
go back to reference Stark C, Breitkreutz B-J, Reguly T, Boucher L, Breitkreutz A, Tyers M. BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 2006;34:D535–9.CrossRefPubMed Stark C, Breitkreutz B-J, Reguly T, Boucher L, Breitkreutz A, Tyers M. BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 2006;34:D535–9.CrossRefPubMed
22.
go back to reference Barrell D, Dimmer E, Huntley RP, Binns D, O'Donovan C, Apweiler R. The GOA database in 2009--an integrated gene ontology annotation resource. Nucleic Acids Res. 2009;37:D396–403.CrossRefPubMed Barrell D, Dimmer E, Huntley RP, Binns D, O'Donovan C, Apweiler R. The GOA database in 2009--an integrated gene ontology annotation resource. Nucleic Acids Res. 2009;37:D396–403.CrossRefPubMed
23.
go back to reference Bui Q-C, Katrenko S, Sloot PMA. A hybrid approach to extract protein-protein interactions. Bioinformatics (Oxford, England). 2011;27:259–65.CrossRef Bui Q-C, Katrenko S, Sloot PMA. A hybrid approach to extract protein-protein interactions. Bioinformatics (Oxford, England). 2011;27:259–65.CrossRef
24.
25.
go back to reference Ceol A, Chatr Aryamontri A, Licata L, Peluso D, Briganti L, Perfetto L, Castagnoli L, Cesareni G. MINT, the molecular interaction database: 2009 update. Nucleic Acids Res. 2010;38:D532–9.CrossRefPubMed Ceol A, Chatr Aryamontri A, Licata L, Peluso D, Briganti L, Perfetto L, Castagnoli L, Cesareni G. MINT, the molecular interaction database: 2009 update. Nucleic Acids Res. 2010;38:D532–9.CrossRefPubMed
26.
go back to reference Ceol A, Chatr-Aryamontri A, Licata L, Cesareni G. Linking entries in protein interaction database to structured text: the FEBS letters experiment. FEBS Lett. 2008;582:1171–7.CrossRefPubMed Ceol A, Chatr-Aryamontri A, Licata L, Cesareni G. Linking entries in protein interaction database to structured text: the FEBS letters experiment. FEBS Lett. 2008;582:1171–7.CrossRefPubMed
27.
go back to reference Chowdhary R, Zhang J, Liu JS. Bayesian inference of protein-protein interactions from biological literature. Bioinformatics (Oxford, England). 2009;25:1536–42.CrossRef Chowdhary R, Zhang J, Liu JS. Bayesian inference of protein-protein interactions from biological literature. Bioinformatics (Oxford, England). 2009;25:1536–42.CrossRef
29.
go back to reference Gonzalez G, Uribe JC, Tari L, Brophy C, Baral C. Mining gene-disease relationships from biomedical literature: weighting protein-protein interactions and connectivity measures. Pac Symp Biocomput. 2007:28–39. Gonzalez G, Uribe JC, Tari L, Brophy C, Baral C. Mining gene-disease relationships from biomedical literature: weighting protein-protein interactions and connectivity measures. Pac Symp Biocomput. 2007:28–39.
30.
go back to reference Hu X, Wu DD. Data mining and predictive modeling of biomolecular network from biomedical literature databases. IEEE/ACM Trans Comput Biol Bioinform. 2007;4:251–63.CrossRefPubMed Hu X, Wu DD. Data mining and predictive modeling of biomolecular network from biomedical literature databases. IEEE/ACM Trans Comput Biol Bioinform. 2007;4:251–63.CrossRefPubMed
31.
go back to reference Hu X, Zhang X, Yoo I, Wang X, Feng J. Mining hidden connections among biomedical concepts from disjoint biomedical literature sets through semantic-based association rule. Int J Intell Syst. 2010;25:207–23. Hu X, Zhang X, Yoo I, Wang X, Feng J. Mining hidden connections among biomedical concepts from disjoint biomedical literature sets through semantic-based association rule. Int J Intell Syst. 2010;25:207–23.
33.
go back to reference Iossifov I, Rodriguez-Esteban R, Mayzus I, Millen KJ, Rzhetsky A. Looking at cerebellar malformations through text-mined interactomes of mice and humans. PLoS Comput Biol. 2009;5:e1000559.CrossRefPubMedPubMedCentral Iossifov I, Rodriguez-Esteban R, Mayzus I, Millen KJ, Rzhetsky A. Looking at cerebellar malformations through text-mined interactomes of mice and humans. PLoS Comput Biol. 2009;5:e1000559.CrossRefPubMedPubMedCentral
34.
go back to reference Jensen LJ, Saric J, Bork P. Literature mining for the biologist: from information retrieval to biological discovery. Nat Rev Genet. 2006;7:119–29.CrossRefPubMed Jensen LJ, Saric J, Bork P. Literature mining for the biologist: from information retrieval to biological discovery. Nat Rev Genet. 2006;7:119–29.CrossRefPubMed
35.
go back to reference Kano Y, Nguyen N, Saetre R, Yoshida K, Miyao Y, Tsuruoka Y, Matsubayashi Y, Ananiadou S, Tsujii J: Filling the gaps between tools and users: a tool comparator, using protein-protein interaction as an example. Pac Symp Biocomput 2008:616–627. Kano Y, Nguyen N, Saetre R, Yoshida K, Miyao Y, Tsuruoka Y, Matsubayashi Y, Ananiadou S, Tsujii J: Filling the gaps between tools and users: a tool comparator, using protein-protein interaction as an example. Pac Symp Biocomput 2008:616–627.
36.
go back to reference Koike A, Niwa Y, Takagi T. Automatic extraction of gene/protein biological functions from biomedical text. Bioinformatics (Oxford, England). 2005;21:1227–36.CrossRef Koike A, Niwa Y, Takagi T. Automatic extraction of gene/protein biological functions from biomedical text. Bioinformatics (Oxford, England). 2005;21:1227–36.CrossRef
37.
go back to reference Korbel JO, Doerks T, Jensen LJ, Perez-Iratxeta C, Kaczanowski S, Hooper SD, Andrade MA, Bork P. Systematic association of genes to phenotypes by genome and literature mining. PLoS Biol. 2005;3:e134.CrossRefPubMedPubMedCentral Korbel JO, Doerks T, Jensen LJ, Perez-Iratxeta C, Kaczanowski S, Hooper SD, Andrade MA, Bork P. Systematic association of genes to phenotypes by genome and literature mining. PLoS Biol. 2005;3:e134.CrossRefPubMedPubMedCentral
38.
go back to reference Krallinger M, Leitner F, Rodriguez-Penagos C, Valencia A. Overview of the protein-protein interaction annotation extraction task of BioCreative II. Genome Biol. 2008;9(Suppl 2):S4.CrossRefPubMedPubMedCentral Krallinger M, Leitner F, Rodriguez-Penagos C, Valencia A. Overview of the protein-protein interaction annotation extraction task of BioCreative II. Genome Biol. 2008;9(Suppl 2):S4.CrossRefPubMedPubMedCentral
39.
go back to reference Krallinger M, Leitner F, Valencia A: Assessment of the {S}econd {B}io{C}reative {PPI} task: {a}utomatic extraction of protein-protein interactions. In: Proceedings of the Second BioCreative Challenge Evaluation Workshop: 2007 2007; 2007. Krallinger M, Leitner F, Valencia A: Assessment of the {S}econd {B}io{C}reative {PPI} task: {a}utomatic extraction of protein-protein interactions. In: Proceedings of the Second BioCreative Challenge Evaluation Workshop: 2007 2007; 2007.
40.
41.
go back to reference Pyysalo S, Airola A, Heimonen J, Björne J, Ginter F, Salakoski T. Comparative analysis of five protein-protein interaction corpora. BMC Bioinformatics. 2008;9(Suppl 3):S6.CrossRefPubMedPubMedCentral Pyysalo S, Airola A, Heimonen J, Björne J, Ginter F, Salakoski T. Comparative analysis of five protein-protein interaction corpora. BMC Bioinformatics. 2008;9(Suppl 3):S6.CrossRefPubMedPubMedCentral
43.
go back to reference Tikk D, Thomas P, Palaga P, Hakenberg J, Leser U. A comprehensive benchmark of kernel methods to extract protein-protein interactions from literature. PLoS Comput Biol. 2010;6(7):e1000837.CrossRefPubMedPubMedCentral Tikk D, Thomas P, Palaga P, Hakenberg J, Leser U. A comprehensive benchmark of kernel methods to extract protein-protein interactions from literature. PLoS Comput Biol. 2010;6(7):e1000837.CrossRefPubMedPubMedCentral
44.
go back to reference Wong L, Liu G. Protein Interactome analysis for countering pathogen drug resistance. J Comput Sci Technol. 2010;25:124–30.CrossRef Wong L, Liu G. Protein Interactome analysis for countering pathogen drug resistance. J Comput Sci Technol. 2010;25:124–30.CrossRef
45.
46.
go back to reference Airola A, Pyysalo S, Björne J, Pahikkala T, Ginter F, Salakoski T. All-paths graph kernel for protein-protein interaction extraction with evaluation of cross-corpus learning. BMC bioinformatics. 2008;9(11):S2.CrossRefPubMedPubMedCentral Airola A, Pyysalo S, Björne J, Pahikkala T, Ginter F, Salakoski T. All-paths graph kernel for protein-protein interaction extraction with evaluation of cross-corpus learning. BMC bioinformatics. 2008;9(11):S2.CrossRefPubMedPubMedCentral
47.
go back to reference Chang Y-C, Chu C-H, Su Y-C, Chen CC, Hsu W-L. PIPE: a protein–protein interaction passage extraction module for BioCreative challenge. Database. 2016:2016. Chang Y-C, Chu C-H, Su Y-C, Chen CC, Hsu W-L. PIPE: a protein–protein interaction passage extraction module for BioCreative challenge. Database. 2016:2016.
48.
go back to reference Miwa M, Sætre R, Miyao Y, Tsujii J. Protein–protein interaction extraction by leveraging multiple kernels and parsers. Int J Med Inform. 2009;78(12):e39–46.CrossRefPubMed Miwa M, Sætre R, Miyao Y, Tsujii J. Protein–protein interaction extraction by leveraging multiple kernels and parsers. Int J Med Inform. 2009;78(12):e39–46.CrossRefPubMed
49.
go back to reference Skusa A, Rüegg A, Köhler J. Extraction of biological interaction networks from scientific literature. Brief Bioinform. 2005;6:263–76.CrossRefPubMed Skusa A, Rüegg A, Köhler J. Extraction of biological interaction networks from scientific literature. Brief Bioinform. 2005;6:263–76.CrossRefPubMed
50.
go back to reference Blaschke C, Andrade MA, Ouzounis C, Valencia A. Automatic extraction of biological information from scientific text: protein-protein interactions. Proc Int Conf Intell Syst Mol Biol. 1999:60–7. Blaschke C, Andrade MA, Ouzounis C, Valencia A. Automatic extraction of biological information from scientific text: protein-protein interactions. Proc Int Conf Intell Syst Mol Biol. 1999:60–7.
51.
go back to reference Ng, Wong: Toward routine automatic pathway discovery from on-line scientific text abstracts. Genome Inform Ser Workshop Genome Informa 1999, 10:104–112. Ng, Wong: Toward routine automatic pathway discovery from on-line scientific text abstracts. Genome Inform Ser Workshop Genome Informa 1999, 10:104–112.
52.
go back to reference Thomas J, Milward D, Ouzounis C, Pulman S, Carroll M. Automatic extraction of protein interactions from scientific abstracts. Pac Symp Biocomput. 2000:541–52. Thomas J, Milward D, Ouzounis C, Pulman S, Carroll M. Automatic extraction of protein interactions from scientific abstracts. Pac Symp Biocomput. 2000:541–52.
53.
go back to reference Friedman C, Kra P, Yu H, Krauthammer M, Rzhetsky A. GENIES: a natural-language processing system for the extraction of molecular pathways from journal articles. Bioinformatics (Oxford, England). 2001;17(Suppl 1):S74–82.CrossRef Friedman C, Kra P, Yu H, Krauthammer M, Rzhetsky A. GENIES: a natural-language processing system for the extraction of molecular pathways from journal articles. Bioinformatics (Oxford, England). 2001;17(Suppl 1):S74–82.CrossRef
54.
go back to reference Ono T, Hishigaki H, Tanigami A, Takagi T. Automated extraction of information on protein-protein interactions from the biological literature. Bioinformatics (Oxford, England). 2001;17:155–61.CrossRef Ono T, Hishigaki H, Tanigami A, Takagi T. Automated extraction of information on protein-protein interactions from the biological literature. Bioinformatics (Oxford, England). 2001;17:155–61.CrossRef
55.
go back to reference Park JC, Kim HS, Kim JJ. Bidirectional incremental parsing for automatic pathway identification with combinatory categorial grammar. Pac Symp Biocomput. 2001:396–407. Park JC, Kim HS, Kim JJ. Bidirectional incremental parsing for automatic pathway identification with combinatory categorial grammar. Pac Symp Biocomput. 2001:396–407.
56.
go back to reference Wong L. PIES, a protein interaction extraction system. Pac Symp Biocomput. 2001:520–31. Wong L. PIES, a protein interaction extraction system. Pac Symp Biocomput. 2001:520–31.
57.
go back to reference Yakushiji A, Tateisi Y, Miyao Y, Tsujii J. Event extraction from biomedical papers using a full parser. Pac Symp Biocomput. 2001:408–19. Yakushiji A, Tateisi Y, Miyao Y, Tsujii J. Event extraction from biomedical papers using a full parser. Pac Symp Biocomput. 2001:408–19.
58.
go back to reference Leroy G, Chen H. Filling preposition-based templates to capture information from medical abstracts. Pac Symp Biocomput. 2002:350–61. Leroy G, Chen H. Filling preposition-based templates to capture information from medical abstracts. Pac Symp Biocomput. 2002:350–61.
59.
go back to reference Pustejovsky J, Castaño J, Zhang J, Kotecki M, Cochran B. Robust relational parsing over biomedical literature: extracting inhibit relations. Pac Symp Biocomput. 2002:362–73. Pustejovsky J, Castaño J, Zhang J, Kotecki M, Cochran B. Robust relational parsing over biomedical literature: extracting inhibit relations. Pac Symp Biocomput. 2002:362–73.
60.
go back to reference Temkin JM, Gilder MR. Extraction of protein interaction information from unstructured text using a context-free grammar. Bioinformatics (Oxford, England). 2003;19:2046–53.CrossRef Temkin JM, Gilder MR. Extraction of protein interaction information from unstructured text using a context-free grammar. Bioinformatics (Oxford, England). 2003;19:2046–53.CrossRef
61.
go back to reference Narayanaswamy M, Ravikumar KE, Vijay-Shanker K. Beyond the clause: extraction of phosphorylation information from medline abstracts. Bioinformatics (Oxford, England). 2005;21(Suppl 1):i319–27.CrossRef Narayanaswamy M, Ravikumar KE, Vijay-Shanker K. Beyond the clause: extraction of phosphorylation information from medline abstracts. Bioinformatics (Oxford, England). 2005;21(Suppl 1):i319–27.CrossRef
62.
go back to reference Saric J, Jensen LJ, Ouzounova R, Rojas I, Bork P. Extraction of regulatory gene/protein networks from Medline. Bioinformatics (Oxford, England). 2006;22:645–50.CrossRef Saric J, Jensen LJ, Ouzounova R, Rojas I, Bork P. Extraction of regulatory gene/protein networks from Medline. Bioinformatics (Oxford, England). 2006;22:645–50.CrossRef
63.
go back to reference Miyao Y, Sagae K, Saetre R, Matsuzaki T, Tsujii J. Evaluating contributions of natural language parsers to protein-protein interaction extraction. Bioinformatics. 2009;25(3):394–400.CrossRefPubMed Miyao Y, Sagae K, Saetre R, Matsuzaki T, Tsujii J. Evaluating contributions of natural language parsers to protein-protein interaction extraction. Bioinformatics. 2009;25(3):394–400.CrossRefPubMed
64.
go back to reference Zhang HT, Huang ML, Zhu XY. A unified active learning framework for biomedical relation extraction. J Comput Sci Technol. 2012;27(6):1302–13.CrossRef Zhang HT, Huang ML, Zhu XY. A unified active learning framework for biomedical relation extraction. J Comput Sci Technol. 2012;27(6):1302–13.CrossRef
65.
go back to reference Lee J, Kim S, Lee S, Lee K, Kang J. On the efficacy of per-relation basis performance evaluation for PPI extraction and a high-precision rule-based approachBMC Med Inform Decis Mak. 13;2013(Suppl 1):S7. Lee J, Kim S, Lee S, Lee K, Kang J. On the efficacy of per-relation basis performance evaluation for PPI extraction and a high-precision rule-based approachBMC Med Inform Decis Mak. 13;2013(Suppl 1):S7.
66.
go back to reference Raja K, Subramani S, Natarajan J. PPInterFinder--a mining tool for extracting causal relations on human proteins from literature. Database. 2013;2013:bas052.CrossRefPubMedPubMedCentral Raja K, Subramani S, Natarajan J. PPInterFinder--a mining tool for extracting causal relations on human proteins from literature. Database. 2013;2013:bas052.CrossRefPubMedPubMedCentral
67.
go back to reference Huang M, Zhu X, Hao Y, Payan DG, Qu K, Li M. Discovering patterns to extract protein-protein interactions from full texts. Bioinformatics (Oxford, England). 2004;20:3604–12.CrossRef Huang M, Zhu X, Hao Y, Payan DG, Qu K, Li M. Discovering patterns to extract protein-protein interactions from full texts. Bioinformatics (Oxford, England). 2004;20:3604–12.CrossRef
68.
go back to reference Malik R, Franke L, Siebes A. Combination of text-mining algorithms increases the performance. Bioinformatics (Oxford, England). 2006;22:2151–7.CrossRef Malik R, Franke L, Siebes A. Combination of text-mining algorithms increases the performance. Bioinformatics (Oxford, England). 2006;22:2151–7.CrossRef
69.
go back to reference Kim S, Yoon J, Yang J. Kernel approaches for genic interaction extraction. Bioinformatics (Oxford, England). 2008;24:118–26.CrossRef Kim S, Yoon J, Yang J. Kernel approaches for genic interaction extraction. Bioinformatics (Oxford, England). 2008;24:118–26.CrossRef
70.
go back to reference Stapley BJ, Benoit G. Biobibliometrics: information retrieval and visualization from co-occurrences of gene names in Medline abstracts. Pac Symp Biocomp. 2000:529–40. Stapley BJ, Benoit G. Biobibliometrics: information retrieval and visualization from co-occurrences of gene names in Medline abstracts. Pac Symp Biocomp. 2000:529–40.
71.
go back to reference Jenssen TK, Laegreid A, Komorowski J, Hovig E. A literature network of human genes for high-throughput analysis of gene expression. Nat Genet. 2001;28:21–8. Jenssen TK, Laegreid A, Komorowski J, Hovig E. A literature network of human genes for high-throughput analysis of gene expression. Nat Genet. 2001;28:21–8.
72.
go back to reference Murugesan G, Abdulkadhar S, Natarajan J. Distributed smoothed tree kernel for protein-protein interaction extraction from the biomedical literature. PLoS One. 2017;12(11):e0187379.CrossRefPubMedPubMedCentral Murugesan G, Abdulkadhar S, Natarajan J. Distributed smoothed tree kernel for protein-protein interaction extraction from the biomedical literature. PLoS One. 2017;12(11):e0187379.CrossRefPubMedPubMedCentral
73.
74.
go back to reference Kim S, Shin S-Y, Lee I-H, Kim S-J, Sriram R, Zhang B-T. PIE: an online prediction system for protein-protein interactions from text. Nucleic Acids Res. 2008;36:W411–5.CrossRefPubMedPubMedCentral Kim S, Shin S-Y, Lee I-H, Kim S-J, Sriram R, Zhang B-T. PIE: an online prediction system for protein-protein interactions from text. Nucleic Acids Res. 2008;36:W411–5.CrossRefPubMedPubMedCentral
75.
go back to reference Krallinger M, Morgan A, Smith L, Leitner F, Tanabe L, Wilbur J, Hirschman L, Valencia A. Evaluation of text-mining systems for biology: overview of the second BioCreative community challenge. Genome Biol. 2008;9(Suppl 2):S1.CrossRefPubMedPubMedCentral Krallinger M, Morgan A, Smith L, Leitner F, Tanabe L, Wilbur J, Hirschman L, Valencia A. Evaluation of text-mining systems for biology: overview of the second BioCreative community challenge. Genome Biol. 2008;9(Suppl 2):S1.CrossRefPubMedPubMedCentral
76.
go back to reference Bell L, Zhang J, Niu X. Mixture of logistic models and an ensemble approach for extracting protein-protein interactions. ACM-BCB. 2011:371–5. Bell L, Zhang J, Niu X. Mixture of logistic models and an ensemble approach for extracting protein-protein interactions. ACM-BCB. 2011:371–5.
77.
go back to reference Hatzivassiloglou V, Weng W. Learning anchor verbs for biological interaction patterns from published text articles. Int J Med Inform. 2002;67:19–32.CrossRefPubMed Hatzivassiloglou V, Weng W. Learning anchor verbs for biological interaction patterns from published text articles. Int J Med Inform. 2002;67:19–32.CrossRefPubMed
78.
go back to reference Bui QC, Katrenko S, Sloot PM. A hybrid approach to extract protein-protein interactions. Bioinformatics. 2011;27(2):259–65.CrossRefPubMed Bui QC, Katrenko S, Sloot PM. A hybrid approach to extract protein-protein interactions. Bioinformatics. 2011;27(2):259–65.CrossRefPubMed
79.
go back to reference Marneffe M-Cd, MacCartney B, Manning CD: Generating typed dependency parses from phrase structure parses. In: LREC: 2006; 2006. Marneffe M-Cd, MacCartney B, Manning CD: Generating typed dependency parses from phrase structure parses. In: LREC: 2006; 2006.
80.
go back to reference Hsieh Y-L, Chang Y-C, Chang N-W, Hsu W-L. Identifying protein-protein interactions in biomedical literature using recurrent neural networks with long short-term memory. In: Proceedings of the eighth international joint conference on natural language processing (volume 2: short papers), vol. 2017; 2017. p. 240–5. Hsieh Y-L, Chang Y-C, Chang N-W, Hsu W-L. Identifying protein-protein interactions in biomedical literature using recurrent neural networks with long short-term memory. In: Proceedings of the eighth international joint conference on natural language processing (volume 2: short papers), vol. 2017; 2017. p. 240–5.
81.
go back to reference Peng Y, Lu Z: Deep learning for extracting protein-protein interactions from biomedical literature. arXiv preprint arXiv:170601556 2017. Peng Y, Lu Z: Deep learning for extracting protein-protein interactions from biomedical literature. arXiv preprint arXiv:170601556 2017.
82.
go back to reference Sun T, Zhou B, Lai L, Pei J. Sequence-based prediction of protein protein interaction using a deep-learning algorithm. BMC bioinformatics. 2017;18(1):277.CrossRefPubMedPubMedCentral Sun T, Zhou B, Lai L, Pei J. Sequence-based prediction of protein protein interaction using a deep-learning algorithm. BMC bioinformatics. 2017;18(1):277.CrossRefPubMedPubMedCentral
83.
go back to reference Zhao Z, Yang Z, Lin H, Wang J, Gao S. A protein-protein interaction extraction approach based on deep neural network. Int J Data Min Bioinform. 2016;15(2):145–64.CrossRef Zhao Z, Yang Z, Lin H, Wang J, Gao S. A protein-protein interaction extraction approach based on deep neural network. Int J Data Min Bioinform. 2016;15(2):145–64.CrossRef
84.
go back to reference Peng Y, Rios A, Kavuluru R, Lu Z: Chemical-protein relation extraction with ensembles of SVM, CNN, and RNN models. arXiv preprint arXiv:180201255 2018. Peng Y, Rios A, Kavuluru R, Lu Z: Chemical-protein relation extraction with ensembles of SVM, CNN, and RNN models. arXiv preprint arXiv:180201255 2018.
Metadata
Title
Automatic extraction of protein-protein interactions using grammatical relationship graph
Authors
Kaixian Yu
Pei-Yau Lung
Tingting Zhao
Peixiang Zhao
Yan-Yuan Tseng
Jinfeng Zhang
Publication date
01-07-2018
Publisher
BioMed Central
DOI
https://doi.org/10.1186/s12911-018-0628-4

Other articles of this Special Issue 2/2018

BMC Medical Informatics and Decision Making 2/2018 Go to the issue