Skip to main content
Top
Published in: BMC Medical Informatics and Decision Making 1/2018

Open Access 01-12-2018 | Research article

Combining EEG signal processing with supervised methods for Alzheimer’s patients classification

Authors: Giulia Fiscon, Emanuel Weitschek, Alessio Cialini, Giovanni Felici, Paola Bertolazzi, Simona De Salvo, Alessia Bramanti, Placido Bramanti, Maria Cristina De Cola

Published in: BMC Medical Informatics and Decision Making | Issue 1/2018

Login to get access

Abstract

Background

Alzheimer’s Disease (AD) is a neurodegenaritive disorder characterized by a progressive dementia, for which actually no cure is known. An early detection of patients affected by AD can be obtained by analyzing their electroencephalography (EEG) signals, which show a reduction of the complexity, a perturbation of the synchrony, and a slowing down of the rhythms.

Methods

In this work, we apply a procedure that exploits feature extraction and classification techniques to EEG signals, whose aim is to distinguish patient affected by AD from the ones affected by Mild Cognitive Impairment (MCI) and healthy control (HC) samples. Specifically, we perform a time-frequency analysis by applying both the Fourier and Wavelet Transforms on 109 samples belonging to AD, MCI, and HC classes. The classification procedure is designed with the following steps: (i) preprocessing of EEG signals; (ii) feature extraction by means of the Discrete Fourier and Wavelet Transforms; and (iii) classification with tree-based supervised methods.

Results

By applying our procedure, we are able to extract reliable human-interpretable classification models that allow to automatically assign the patients into their belonging class. In particular, by exploiting a Wavelet feature extraction we achieve 83%, 92%, and 79% of accuracy when dealing with HC vs AD, HC vs MCI, and MCI vs AD classification problems, respectively.

Conclusions

Finally, by comparing the classification performances with both feature extraction methods, we find out that Wavelets analysis outperforms Fourier. Hence, we suggest it in combination with supervised methods for automatic patients classification based on their EEG signals for aiding the medical diagnosis of dementia.
Literature
1.
go back to reference Prince M, Wimo A, Guerchet M, Ali G, Wu Y, Prina M. World Alzheimer Report 2015. The global impact of dementia. An analysis of prevalence, incidence, cost & trends; Alzheimer’s Disease International: London. London: Alzheimer’s Disease International (ADI); 2015. Prince M, Wimo A, Guerchet M, Ali G, Wu Y, Prina M. World Alzheimer Report 2015. The global impact of dementia. An analysis of prevalence, incidence, cost & trends; Alzheimer’s Disease International: London. London: Alzheimer’s Disease International (ADI); 2015.
2.
go back to reference Winblad B, Amouyel P, Andrieu S, Ballard C, Brayne C, Brodaty H, Cedazo-Minguez A, Dubois B, Edvardsson D, Feldman H, et al. Defeating alzheimer’s disease and other dementias: a priority for european science and society. Lancet Neurol. 2016; 15(5):455.CrossRefPubMed Winblad B, Amouyel P, Andrieu S, Ballard C, Brayne C, Brodaty H, Cedazo-Minguez A, Dubois B, Edvardsson D, Feldman H, et al. Defeating alzheimer’s disease and other dementias: a priority for european science and society. Lancet Neurol. 2016; 15(5):455.CrossRefPubMed
3.
go back to reference Grundman M, Petersen RC, Ferris SH, Thomas RG, Aisen PS, Bennett DA, Foster NL, Jack Jr CR, Galasko DR, Doody R, et al. Mild cognitive impairment can be distinguished from alzheimer disease and normal aging for clinical trials. Arch Neurol. 2004; 61(1):59–66.CrossRefPubMed Grundman M, Petersen RC, Ferris SH, Thomas RG, Aisen PS, Bennett DA, Foster NL, Jack Jr CR, Galasko DR, Doody R, et al. Mild cognitive impairment can be distinguished from alzheimer disease and normal aging for clinical trials. Arch Neurol. 2004; 61(1):59–66.CrossRefPubMed
4.
go back to reference Brooker D, Fontaine JL, Evans S, Bray J, Saad K. Public health guidance to facilitate timely diagnosis of dementia: Alzheimer’s cooperative valuation in europe recommendations. Int J Geriatr Psychiatr. 2014; 29(7):682–93.CrossRef Brooker D, Fontaine JL, Evans S, Bray J, Saad K. Public health guidance to facilitate timely diagnosis of dementia: Alzheimer’s cooperative valuation in europe recommendations. Int J Geriatr Psychiatr. 2014; 29(7):682–93.CrossRef
5.
go back to reference Cedazo-Minguez A, Winblad B. Biomarkers for alzheimer’s disease and other forms of dementia: clinical needs, limitations and future aspects. Exp Gerontol. 2010; 45(1):5–14.CrossRefPubMed Cedazo-Minguez A, Winblad B. Biomarkers for alzheimer’s disease and other forms of dementia: clinical needs, limitations and future aspects. Exp Gerontol. 2010; 45(1):5–14.CrossRefPubMed
6.
go back to reference Hampel H, Frank R, Broich K, Teipel SJ, Katz RG, Hardy J, Herholz K, Bokde AL, Jessen F, Hoessler YC, et al. Biomarkers for alzheimer’s disease: academic, industry and regulatory perspectives. Nat Rev Drug Discov. 2010; 9(7):560.CrossRefPubMed Hampel H, Frank R, Broich K, Teipel SJ, Katz RG, Hardy J, Herholz K, Bokde AL, Jessen F, Hoessler YC, et al. Biomarkers for alzheimer’s disease: academic, industry and regulatory perspectives. Nat Rev Drug Discov. 2010; 9(7):560.CrossRefPubMed
7.
go back to reference DeKosky ST, Marek K. Looking backward to move forward: early detection of neurodegenerative disorders. Science. 2003; 302(5646):830–4.CrossRefPubMed DeKosky ST, Marek K. Looking backward to move forward: early detection of neurodegenerative disorders. Science. 2003; 302(5646):830–4.CrossRefPubMed
8.
go back to reference Jackson CE, Snyder PJ. Electroencephalography and event-related potentials as biomarkers of mild cognitive impairment and mild Alzheimer’s disease. Cambridge: Elsevier; 2008. Jackson CE, Snyder PJ. Electroencephalography and event-related potentials as biomarkers of mild cognitive impairment and mild Alzheimer’s disease. Cambridge: Elsevier; 2008.
9.
go back to reference Poil S-S, De Haan W, van der Flier WM, Mansvelder HD, Scheltens P, Linkenkaer-Hansen K. Integrative eeg biomarkers predict progression to alzheimer’s disease at the mci stage. Front Aging Neurosci. 2013; 5:58.CrossRefPubMedPubMedCentral Poil S-S, De Haan W, van der Flier WM, Mansvelder HD, Scheltens P, Linkenkaer-Hansen K. Integrative eeg biomarkers predict progression to alzheimer’s disease at the mci stage. Front Aging Neurosci. 2013; 5:58.CrossRefPubMedPubMedCentral
10.
go back to reference Jasper HH. The ten twenty electrode system of the international federation. Electroencephalogr Clin Neurophysiol. 1958; 10:371–5. Jasper HH. The ten twenty electrode system of the international federation. Electroencephalogr Clin Neurophysiol. 1958; 10:371–5.
11.
go back to reference Elbert T, Lutzenberger W, Rockstroh B, Berg P, Cohen R. Physical aspects of the eeg in schizophrenics. Biol Psychiatry. 1992; 32(7):595–606.CrossRefPubMed Elbert T, Lutzenberger W, Rockstroh B, Berg P, Cohen R. Physical aspects of the eeg in schizophrenics. Biol Psychiatry. 1992; 32(7):595–606.CrossRefPubMed
12.
go back to reference Davidson PR, Jones RD, Peiris MT. Eeg-based lapse detection with high temporal resolution. IEEE Trans Biomed Eng. 2007; 54(5):832–9.CrossRefPubMed Davidson PR, Jones RD, Peiris MT. Eeg-based lapse detection with high temporal resolution. IEEE Trans Biomed Eng. 2007; 54(5):832–9.CrossRefPubMed
13.
go back to reference DeKosky ST, Marek K. Looking backward to move forward: early detection of neurodegenerative disorders. Science. 2003; 302(5646):830–4.CrossRefPubMed DeKosky ST, Marek K. Looking backward to move forward: early detection of neurodegenerative disorders. Science. 2003; 302(5646):830–4.CrossRefPubMed
14.
go back to reference Snyder SM, Hall JR, Cornwell SL, Falk JD. Addition of eeg improves accuracy of a logistic model that uses neuropsychological and cardiovascular factors to identify dementia and mci. Psychiatry Res. 2011; 186(1):97–102.CrossRefPubMed Snyder SM, Hall JR, Cornwell SL, Falk JD. Addition of eeg improves accuracy of a logistic model that uses neuropsychological and cardiovascular factors to identify dementia and mci. Psychiatry Res. 2011; 186(1):97–102.CrossRefPubMed
15.
go back to reference Hampel H, Lista S, Teipel SJ, Garaci F, Nisticò R, Blennow K, Zetterberg H, Bertram L, Duyckaerts C, Bakardjian H, et al. Perspective on future role of biological markers in clinical therapy trials of alzheimer’s disease: a long-range point of view beyond 2020. Biochem Pharmacol. 2014; 88(4):426–49.CrossRefPubMed Hampel H, Lista S, Teipel SJ, Garaci F, Nisticò R, Blennow K, Zetterberg H, Bertram L, Duyckaerts C, Bakardjian H, et al. Perspective on future role of biological markers in clinical therapy trials of alzheimer’s disease: a long-range point of view beyond 2020. Biochem Pharmacol. 2014; 88(4):426–49.CrossRefPubMed
16.
go back to reference Rossini PM, Rossi S, Babiloni C, Polich J. Clinical neurophysiology of aging brain: from normal aging to neurodegeneration. Prog Neurobiol. 2007; 83(6):375–400.CrossRefPubMed Rossini PM, Rossi S, Babiloni C, Polich J. Clinical neurophysiology of aging brain: from normal aging to neurodegeneration. Prog Neurobiol. 2007; 83(6):375–400.CrossRefPubMed
17.
go back to reference Jeong J. Eeg dynamics in patients with alzheimer’s disease. Clin Neurophysiol. 2004; 115(7):1490–505.CrossRefPubMed Jeong J. Eeg dynamics in patients with alzheimer’s disease. Clin Neurophysiol. 2004; 115(7):1490–505.CrossRefPubMed
18.
go back to reference Falk TH, Fraga FJ, Trambaiolli L, Anghinah R. Eeg amplitude modulation analysis for semi-automated diagnosis of alzheimer’s disease. EURASIP J Adv Signal Proc. 2012; 2012(1):1–9.CrossRef Falk TH, Fraga FJ, Trambaiolli L, Anghinah R. Eeg amplitude modulation analysis for semi-automated diagnosis of alzheimer’s disease. EURASIP J Adv Signal Proc. 2012; 2012(1):1–9.CrossRef
19.
go back to reference Dauwels J, Vialatte F, Cichocki A. Diagnosis of alzheimers disease from eeg signals: Where are we standing?. Curr Alzheimer Res. 2010; 7(6):487–505.CrossRefPubMed Dauwels J, Vialatte F, Cichocki A. Diagnosis of alzheimers disease from eeg signals: Where are we standing?. Curr Alzheimer Res. 2010; 7(6):487–505.CrossRefPubMed
20.
go back to reference Lehmann C, Koenig T, Jelic V, Prichep L, John RE, Wahlund L-O, Dodge Y, Dierks T. Application and comparison of classification algorithms for recognition of alzheimer’s disease in electrical brain activity (eeg). J Neurosci Methods. 2007; 161(2):342–50.CrossRefPubMed Lehmann C, Koenig T, Jelic V, Prichep L, John RE, Wahlund L-O, Dodge Y, Dierks T. Application and comparison of classification algorithms for recognition of alzheimer’s disease in electrical brain activity (eeg). J Neurosci Methods. 2007; 161(2):342–50.CrossRefPubMed
21.
go back to reference Dunkin JJ, Leuchter AF, Newton TF, Cook IA. Reduced eeg coherence in dementia: state or trait marker?. Biol Psychiatry. 1994; 35(11):870–9.CrossRefPubMed Dunkin JJ, Leuchter AF, Newton TF, Cook IA. Reduced eeg coherence in dementia: state or trait marker?. Biol Psychiatry. 1994; 35(11):870–9.CrossRefPubMed
22.
go back to reference Giaquinto S, Nolfe G, Vitali S. Eeg changes induced by oxiracetam on diazepam-medicated volunteers. Clin Neuropharmacol. 1986; 9:79.CrossRef Giaquinto S, Nolfe G, Vitali S. Eeg changes induced by oxiracetam on diazepam-medicated volunteers. Clin Neuropharmacol. 1986; 9:79.CrossRef
23.
go back to reference Cibils D. Dementia and qeeg (alzheimer’s disease). Suppl Clin Neurophysiol. 2002; 54:289–94.CrossRef Cibils D. Dementia and qeeg (alzheimer’s disease). Suppl Clin Neurophysiol. 2002; 54:289–94.CrossRef
24.
go back to reference Kowalski JW, Gawel M, Pfeffer A, Barcikowska M. The diagnostic value of eeg in alzheimer disease: correlation with the severity of mental impairment. J Clin Neurophysiol. 2001; 18(6):570–5.CrossRefPubMed Kowalski JW, Gawel M, Pfeffer A, Barcikowska M. The diagnostic value of eeg in alzheimer disease: correlation with the severity of mental impairment. J Clin Neurophysiol. 2001; 18(6):570–5.CrossRefPubMed
25.
go back to reference Arenas A, Brenner R, Reynolds CF. Temporal slowing in the elderly revisited. Am J EEG Technol. 1986; 26:105–14.CrossRef Arenas A, Brenner R, Reynolds CF. Temporal slowing in the elderly revisited. Am J EEG Technol. 1986; 26:105–14.CrossRef
26.
go back to reference Coben LA, Danziger WL, Berg L. Frequency analysis of the resting awake eeg in mild senile dementia of alzheimer type. Electroencephalogr Clin Neurophysiol. 1983; 55(4):372–80.CrossRefPubMed Coben LA, Danziger WL, Berg L. Frequency analysis of the resting awake eeg in mild senile dementia of alzheimer type. Electroencephalogr Clin Neurophysiol. 1983; 55(4):372–80.CrossRefPubMed
27.
go back to reference Locatelli T, Cursi M, Liberati D, Franceschi M, Comi G. Eeg coherence in alzheimer’s disease. Electroencephalogr Clin Neurophysiol. 1998; 106(3):229–37.CrossRefPubMed Locatelli T, Cursi M, Liberati D, Franceschi M, Comi G. Eeg coherence in alzheimer’s disease. Electroencephalogr Clin Neurophysiol. 1998; 106(3):229–37.CrossRefPubMed
28.
go back to reference Besthorn C, Förstl H, Geiger-Kabisch C, Sattel H, Gasser T, Schreiter-Gasser U. Eeg coherence in alzheimer disease. Electroencephalogr Clin Neurophysiol. 1994; 90(3):242–5.CrossRefPubMed Besthorn C, Förstl H, Geiger-Kabisch C, Sattel H, Gasser T, Schreiter-Gasser U. Eeg coherence in alzheimer disease. Electroencephalogr Clin Neurophysiol. 1994; 90(3):242–5.CrossRefPubMed
29.
go back to reference Dauwels J, Srinivasan K, Ramasubba Reddy M, Musha T, Vialatte F-B, Latchoumane C, Jeong J, Cichocki A. Slowing and loss of complexity in alzheimer’s eeg: two sides of the same coin?. Int J Alzheimer’s Dis. 2011; 2011. Dauwels J, Srinivasan K, Ramasubba Reddy M, Musha T, Vialatte F-B, Latchoumane C, Jeong J, Cichocki A. Slowing and loss of complexity in alzheimer’s eeg: two sides of the same coin?. Int J Alzheimer’s Dis. 2011; 2011.
30.
go back to reference Polat K, Güneş S. Classification of epileptiform eeg using a hybrid system based on decision tree classifier and fast fourier transform. Appl Math Comput. 2007; 187(2):1017–26. Polat K, Güneş S. Classification of epileptiform eeg using a hybrid system based on decision tree classifier and fast fourier transform. Appl Math Comput. 2007; 187(2):1017–26.
31.
go back to reference Akrami A, Solhjoo S, Motie-Nasrabadi A, Hashemi-Golpayegani M-R. Eeg-based mental task classification: linear and nonlinear classification of movement imagery. In: Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005. 27th Annual International Conference of The. Shanghai: IEEE: 2006. p. 4626–9. Akrami A, Solhjoo S, Motie-Nasrabadi A, Hashemi-Golpayegani M-R. Eeg-based mental task classification: linear and nonlinear classification of movement imagery. In: Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005. 27th Annual International Conference of The. Shanghai: IEEE: 2006. p. 4626–9.
32.
go back to reference Huang C, Wahlund L-O, Dierks T, Julin P, Winblad B, Jelic V. Discrimination of alzheimer’s disease and mild cognitive impairment by equivalent eeg sources: a cross-sectional and longitudinal study. Clin Neurophysiol. 2000; 111(11):1961–7.CrossRefPubMed Huang C, Wahlund L-O, Dierks T, Julin P, Winblad B, Jelic V. Discrimination of alzheimer’s disease and mild cognitive impairment by equivalent eeg sources: a cross-sectional and longitudinal study. Clin Neurophysiol. 2000; 111(11):1961–7.CrossRefPubMed
33.
go back to reference Mohammadi M, Al-Azab F, Raahemi B, Richards G, Jaworska N, Smith D, de la Salle S, Blier P, Knott V. Data mining eeg signals in depression for their diagnostic value. BMC Med Inform Decis Mak. 2015; 15(1):108.CrossRefPubMedPubMedCentral Mohammadi M, Al-Azab F, Raahemi B, Richards G, Jaworska N, Smith D, de la Salle S, Blier P, Knott V. Data mining eeg signals in depression for their diagnostic value. BMC Med Inform Decis Mak. 2015; 15(1):108.CrossRefPubMedPubMedCentral
34.
go back to reference Fiscon G, Weitschek E, Felici G, Bertolazzi P, De Salvo S, Bramanti P, De Cola MC. Alzheimer’s disease patients classification through eeg signals processing. In: Computational Intelligence and Data Mining (CIDM), 2014 IEEE Symposium On. Orlando: IEEE: 2014. p. 105–12. Fiscon G, Weitschek E, Felici G, Bertolazzi P, De Salvo S, Bramanti P, De Cola MC. Alzheimer’s disease patients classification through eeg signals processing. In: Computational Intelligence and Data Mining (CIDM), 2014 IEEE Symposium On. Orlando: IEEE: 2014. p. 105–12.
35.
go back to reference Homan RW, Herman J, Purdy P. Cerebral location of international 10–20 system electrode placement. Electroencephalogr Clin Neurophysiol. 1987; 66(4):376–82.CrossRefPubMed Homan RW, Herman J, Purdy P. Cerebral location of international 10–20 system electrode placement. Electroencephalogr Clin Neurophysiol. 1987; 66(4):376–82.CrossRefPubMed
36.
go back to reference Adeli H, Zhou Z, Dadmehr N. Analysis of eeg records in an epileptic patient using wavelet transform. J Neurosci Methods. 2003; 123(1):69–87.CrossRefPubMed Adeli H, Zhou Z, Dadmehr N. Analysis of eeg records in an epileptic patient using wavelet transform. J Neurosci Methods. 2003; 123(1):69–87.CrossRefPubMed
37.
go back to reference Powell G, Percival I. A spectral entropy method for distinguishing regular and irregular motion of hamiltonian systems. J Phys A Math Gen. 1979; 12(11):2053.CrossRef Powell G, Percival I. A spectral entropy method for distinguishing regular and irregular motion of hamiltonian systems. J Phys A Math Gen. 1979; 12(11):2053.CrossRef
38.
go back to reference MATLAB: Version 7.10.0 (R2010a). Natick: The MathWorks Inc.; 2010. MATLAB: Version 7.10.0 (R2010a). Natick: The MathWorks Inc.; 2010.
39.
go back to reference Tumari SM, Sudirman R, Ahmad A. Selection of a suitable wavelet for cognitive memory using electroencephalograph signal. California: Scientific Research Publishing. Engineering. 2013; 5(05):15.CrossRef Tumari SM, Sudirman R, Ahmad A. Selection of a suitable wavelet for cognitive memory using electroencephalograph signal. California: Scientific Research Publishing. Engineering. 2013; 5(05):15.CrossRef
40.
go back to reference Rosso O, Martin M, Figliola A, Keller K, Plastino A. Eeg analysis using wavelet-based information tools. J Neurosci Methods. 2006; 153(2):163–82.CrossRefPubMed Rosso O, Martin M, Figliola A, Keller K, Plastino A. Eeg analysis using wavelet-based information tools. J Neurosci Methods. 2006; 153(2):163–82.CrossRefPubMed
41.
go back to reference Hazarika N, Chen JZ, Tsoi AC, Sergejew A. Classification of eeg signals using the wavelet transform. In: Digital Signal Processing Proceedings, 1997. DSP 97., 1997 13th International Conference On, vol. 1. Santorini: IEEE: 1997. p. 89–92. Hazarika N, Chen JZ, Tsoi AC, Sergejew A. Classification of eeg signals using the wavelet transform. In: Digital Signal Processing Proceedings, 1997. DSP 97., 1997 13th International Conference On, vol. 1. Santorini: IEEE: 1997. p. 89–92.
42.
go back to reference Sanei S, Chambers JA. EEG Signal Processing. River Street, Hoboken: John Wiley & Sons; 2013.CrossRef Sanei S, Chambers JA. EEG Signal Processing. River Street, Hoboken: John Wiley & Sons; 2013.CrossRef
43.
go back to reference Subha DP, Joseph PK, Acharya R, Lim CM. Eeg signal analysis: a survey. J Med Syst. 2010; 34(2):195–212.CrossRefPubMed Subha DP, Joseph PK, Acharya R, Lim CM. Eeg signal analysis: a survey. J Med Syst. 2010; 34(2):195–212.CrossRefPubMed
44.
go back to reference Kumar PS, Arumuganathan R, Sivakumar K, Vimal C. Removal of ocular artifacts in the eeg through wavelet transform without using an eog reference channel. Int J Open Problems Compt Math. 2008; 1(3):188–200. Kumar PS, Arumuganathan R, Sivakumar K, Vimal C. Removal of ocular artifacts in the eeg through wavelet transform without using an eog reference channel. Int J Open Problems Compt Math. 2008; 1(3):188–200.
45.
go back to reference Daubechies I, et al. Ten Lectures on Wavelets vol. 61. Portland: SIAM, Society for Industrial & Applied Mathematics; 1992.CrossRef Daubechies I, et al. Ten Lectures on Wavelets vol. 61. Portland: SIAM, Society for Industrial & Applied Mathematics; 1992.CrossRef
46.
go back to reference Swee E, Elangovan M. Applications of symlets for denoising and load forecasting. In: Higher-Order Statistics, 1999. Proceedings of the IEEE Signal Processing Workshop On. Caesarea: IEEE: 1999. p. 165–169. Swee E, Elangovan M. Applications of symlets for denoising and load forecasting. In: Higher-Order Statistics, 1999. Proceedings of the IEEE Signal Processing Workshop On. Caesarea: IEEE: 1999. p. 165–169.
47.
go back to reference Subasi A. Eeg signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst Appl. 2007; 32(4):1084–93.CrossRef Subasi A. Eeg signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst Appl. 2007; 32(4):1084–93.CrossRef
48.
go back to reference Tan P, Steinbach M, Kumar V. Introduction to Data Mining. Boston: Addison Wesley; 2005. Tan P, Steinbach M, Kumar V. Introduction to Data Mining. Boston: Addison Wesley; 2005.
50.
go back to reference Quinlan JR. Improved use of continuous attributes in c4. 5. Journal of artificial intelligence research. 1996; 4:77–90. Quinlan JR. Improved use of continuous attributes in c4. 5. Journal of artificial intelligence research. 1996; 4:77–90.
52.
go back to reference Bertolazzi P, Felici G, Festa P, Fiscon G, Weitschek E. Integer programming models for feature selection: New extensions and a randomized solution algorithm. Eur J Oper Res. 2016; 250(2):389–99.CrossRef Bertolazzi P, Felici G, Festa P, Fiscon G, Weitschek E. Integer programming models for feature selection: New extensions and a randomized solution algorithm. Eur J Oper Res. 2016; 250(2):389–99.CrossRef
53.
go back to reference Hall MA, Smith LA. Practical feature subset selection for machine learning. In: In Proceedings of the 21st Australian Computer Science Conference. New York: Springer: 1998. p. 181–91. Hall MA, Smith LA. Practical feature subset selection for machine learning. In: In Proceedings of the 21st Australian Computer Science Conference. New York: Springer: 1998. p. 181–91.
54.
go back to reference Cohen WW. Fast effective rule induction. In: In Proceedings of the Twelfth International Conference on Machine Learning. Burlington: Morgan Kaufmann: 1995. p. 115–23. Cohen WW. Fast effective rule induction. In: In Proceedings of the Twelfth International Conference on Machine Learning. Burlington: Morgan Kaufmann: 1995. p. 115–23.
55.
go back to reference Cristianini N, Shawe-Taylor J. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge: Cambridge University Press; 2000.CrossRef Cristianini N, Shawe-Taylor J. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge: Cambridge University Press; 2000.CrossRef
56.
go back to reference Bishop CM. Neural Networks for Pattern Recognition. Oxford: Oxford University Press; 1995. Bishop CM. Neural Networks for Pattern Recognition. Oxford: Oxford University Press; 1995.
57.
go back to reference Trzepacz PT, Yu P, Sun J, Schuh K, Case M, Witte MM, Hochstetler H, Hake A, Initiative ADN, et al. Comparison of neuroimaging modalities for the prediction of conversion from mild cognitive impairment to alzheimer’s dementia. Neurobiol Aging. 2014; 35(1):143–51.CrossRefPubMed Trzepacz PT, Yu P, Sun J, Schuh K, Case M, Witte MM, Hochstetler H, Hake A, Initiative ADN, et al. Comparison of neuroimaging modalities for the prediction of conversion from mild cognitive impairment to alzheimer’s dementia. Neurobiol Aging. 2014; 35(1):143–51.CrossRefPubMed
58.
go back to reference Previtali F, Bertolazzi P, Felici G, Weitschek E. A novel method and software for automatically classifying alzheimer’s disease patients by magnetic resonance imaging analysis. Comput Methods Prog Biomed. 2017; 143:89–95.CrossRef Previtali F, Bertolazzi P, Felici G, Weitschek E. A novel method and software for automatically classifying alzheimer’s disease patients by magnetic resonance imaging analysis. Comput Methods Prog Biomed. 2017; 143:89–95.CrossRef
59.
go back to reference Jackson CE, Snyder PJ. Electroencephalography and event-related potentials as biomarkers of mild cognitive impairment and mild alzheimer’s disease. Alzheimer’s and Dementia. 2008; 4(1):137–43.CrossRef Jackson CE, Snyder PJ. Electroencephalography and event-related potentials as biomarkers of mild cognitive impairment and mild alzheimer’s disease. Alzheimer’s and Dementia. 2008; 4(1):137–43.CrossRef
60.
go back to reference Hampel H, Lista S, Teipel SJ, Garaci F, Nisticò R, Blennow K, Zetterberg H, Bertram L, Duyckaerts C, Bakardjian H, et al. Perspective on future role of biological markers in clinical therapy trials of alzheimer’s disease: a long-range point of view beyond 2020. Biochem Pharmacol. 2014; 88(4):426–49.CrossRefPubMed Hampel H, Lista S, Teipel SJ, Garaci F, Nisticò R, Blennow K, Zetterberg H, Bertram L, Duyckaerts C, Bakardjian H, et al. Perspective on future role of biological markers in clinical therapy trials of alzheimer’s disease: a long-range point of view beyond 2020. Biochem Pharmacol. 2014; 88(4):426–49.CrossRefPubMed
61.
go back to reference Petrosian A, Prokhorov D, Lajara-Nanson W, Schiffer R. Recurrent neural network-based approach for early recognition of alzheimer’s disease in eeg. Clin Neurophysiol. 2001; 112(8):1378–87.CrossRefPubMed Petrosian A, Prokhorov D, Lajara-Nanson W, Schiffer R. Recurrent neural network-based approach for early recognition of alzheimer’s disease in eeg. Clin Neurophysiol. 2001; 112(8):1378–87.CrossRefPubMed
62.
go back to reference Chowdhury RH, Reaz MB, Ali MABM, Bakar AA, Chellappan K, Chang TG. Surface electromyography signal processing and classification techniques. Sensors. 2013; 13(9):12431–12466.CrossRefPubMedPubMedCentral Chowdhury RH, Reaz MB, Ali MABM, Bakar AA, Chellappan K, Chang TG. Surface electromyography signal processing and classification techniques. Sensors. 2013; 13(9):12431–12466.CrossRefPubMedPubMedCentral
63.
go back to reference Al-Timemy AH, Bugmann G, Escudero J, Outram N. Classification of finger movements for the dexterous hand prosthesis control with surface electromyography. IEEE J Biomed Health Inform. 2013; 17(3):608–18.CrossRefPubMed Al-Timemy AH, Bugmann G, Escudero J, Outram N. Classification of finger movements for the dexterous hand prosthesis control with surface electromyography. IEEE J Biomed Health Inform. 2013; 17(3):608–18.CrossRefPubMed
64.
go back to reference Mahajan K, Rajput SM. A comparative study of ann and svm for eeg classification. Int J Eng Res Technol. 2012; 1:1–6.CrossRef Mahajan K, Rajput SM. A comparative study of ann and svm for eeg classification. Int J Eng Res Technol. 2012; 1:1–6.CrossRef
65.
go back to reference Costantini G, Casali D, Todisco M. An svm based classification method for eeg signals. In: Proceedings of the 14th WSEAS International Conference on Circuits, Corfu Island, Greece, vol. 2224. New York: WSEAS World Scientific and Engineering Academy: 2010. Costantini G, Casali D, Todisco M. An svm based classification method for eeg signals. In: Proceedings of the 14th WSEAS International Conference on Circuits, Corfu Island, Greece, vol. 2224. New York: WSEAS World Scientific and Engineering Academy: 2010.
66.
go back to reference Wu T, Yang B, Sun H. Eeg classification based on artificial neural network in brain computer interface. In: Life System Modeling and Intelligent Computing. New York: Springer: 2010. p. 154–62. Wu T, Yang B, Sun H. Eeg classification based on artificial neural network in brain computer interface. In: Life System Modeling and Intelligent Computing. New York: Springer: 2010. p. 154–62.
67.
go back to reference Jeong J. Eeg dynamics in patients with alzheimer’s disease. Clin Neurophysiol. 2004; 115(7):1490–505.CrossRefPubMed Jeong J. Eeg dynamics in patients with alzheimer’s disease. Clin Neurophysiol. 2004; 115(7):1490–505.CrossRefPubMed
68.
go back to reference Pizzagalli DA. Electroencephalography and high-density electrophysiological source localization. Handb Psychophysiology. 2007; 3:56–84.CrossRef Pizzagalli DA. Electroencephalography and high-density electrophysiological source localization. Handb Psychophysiology. 2007; 3:56–84.CrossRef
69.
go back to reference Chen X, Liu A, Chen Q, Liu Y, Zou L, McKeown MJ. Simultaneous ocular and muscle artifact removal from eeg data by exploiting diverse statistics. Comput Biol Med. 2017. Chen X, Liu A, Chen Q, Liu Y, Zou L, McKeown MJ. Simultaneous ocular and muscle artifact removal from eeg data by exploiting diverse statistics. Comput Biol Med. 2017.
Metadata
Title
Combining EEG signal processing with supervised methods for Alzheimer’s patients classification
Authors
Giulia Fiscon
Emanuel Weitschek
Alessio Cialini
Giovanni Felici
Paola Bertolazzi
Simona De Salvo
Alessia Bramanti
Placido Bramanti
Maria Cristina De Cola
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Medical Informatics and Decision Making / Issue 1/2018
Electronic ISSN: 1472-6947
DOI
https://doi.org/10.1186/s12911-018-0613-y

Other articles of this Issue 1/2018

BMC Medical Informatics and Decision Making 1/2018 Go to the issue