Skip to main content
Top
Published in: BMC Medical Informatics and Decision Making 1/2018

Open Access 01-12-2018 | Research article

Predicting 7-day, 30-day and 60-day all-cause unplanned readmission: a case study of a Sydney hospital

Authors: Yashar Maali, Oscar Perez-Concha, Enrico Coiera, David Roffe, Richard O. Day, Blanca Gallego

Published in: BMC Medical Informatics and Decision Making | Issue 1/2018

Login to get access

Abstract

Background

The identification of patients at high risk of unplanned readmission is an important component of discharge planning strategies aimed at preventing unwanted returns to hospital. The aim of this study was to investigate the factors associated with unplanned readmission in a Sydney hospital. We developed and compared validated readmission risk scores using routinely collected hospital data to predict 7-day, 30-day and 60-day all-cause unplanned readmission.

Methods

A combination of gradient boosted tree algorithms for variable selection and logistic regression models was used to build and validate readmission risk scores using medical records from 62,235 live discharges from a metropolitan hospital in Sydney, Australia.

Results

The scores had good calibration and fair discriminative performance with c-statistic of 0.71 for 7-day and for 30-day readmission, and 0.74 for 60-day. Previous history of healthcare utilization, urgency of the index admission, old age, comorbidities related to cancer, psychosis, and drug-abuse, abnormal pathology results at discharge, and being unmarried and a public patient were found to be important predictors in all models. Unplanned readmissions beyond 7 days were more strongly associated with longer hospital stays and older patients with higher number of comorbidities and higher use of acute care in the past year.

Conclusions

This study demonstrates similar predictors and performance to previous risk scores of 30-day unplanned readmission. Shorter-term readmissions may have different causal pathways than 30-day readmission, and may, therefore, require different screening tools and interventions. This study also re-iterates the need to include more informative data elements to ensure the appropriateness of these risk scores in clinical practice.
Appendix
Available only for authorised users
Literature
1.
go back to reference Zhou H, Della PR, Roberts P, Goh L, Dhaliwal SS. Utility of models to predict 28-day or 30-day unplanned hospital readmissions: an updated systematic review. BMJ Open. 2016;6(6):e011060.CrossRefPubMedPubMedCentral Zhou H, Della PR, Roberts P, Goh L, Dhaliwal SS. Utility of models to predict 28-day or 30-day unplanned hospital readmissions: an updated systematic review. BMJ Open. 2016;6(6):e011060.CrossRefPubMedPubMedCentral
2.
4.
go back to reference Spotlight on measurement: return to acute care following hospitalisation. Spotlight on readmissions. Sydney, NSW: BHI. July 2009 – June 2012. Spotlight on measurement: return to acute care following hospitalisation. Spotlight on readmissions. Sydney, NSW: BHI. July 2009 – June 2012.
5.
go back to reference Joynt KE, Jha AK. Thirty-day readmissions — truth and consequences. N Engl J Med. 2012;366(15):1366–9.CrossRefPubMed Joynt KE, Jha AK. Thirty-day readmissions — truth and consequences. N Engl J Med. 2012;366(15):1366–9.CrossRefPubMed
6.
go back to reference Blunt I, Bardsley M, Grove A, Clarke, A. Classifying emergency 30-day readmissions in England using routine hospital data 2004–2010: what is the scope for reduction?. Emerg Med J. 2015;32(1):44–50. Published online 2014 Mar 25. doi:https://doi.org/10.1136/emermed-2013-202531. ​Blunt I, Bardsley M, Grove A, Clarke, A. Classifying emergency 30-day readmissions in England using routine hospital data 2004–2010: what is the scope for reduction?. Emerg Med J. 2015;32(1):44–50. Published online 2014 Mar 25. doi:https://​doi.​org/​10.​1136/​emermed-2013-202531.
7.
go back to reference Canadian Institute for Health Information, All-Cause Readmission to Acute Care and Return to the Emergency Department (Ottawa, Ont.: CIHI, 2012). Canadian Institute for Health Information, All-Cause Readmission to Acute Care and Return to the Emergency Department (Ottawa, Ont.: CIHI, 2012).
8.
go back to reference Silverstein MD, Qin H, Mercer SQ, Fong J, Haydar Z, editors. Risk factors for 30-day hospital readmission in patients? 65 years of age. Baylor University Medical Center Proceedings; 2008: Baylor University Medical Center. Silverstein MD, Qin H, Mercer SQ, Fong J, Haydar Z, editors. Risk factors for 30-day hospital readmission in patients? 65 years of age. Baylor University Medical Center Proceedings; 2008: Baylor University Medical Center.
9.
go back to reference Kansagara D, Englander H, Salanitro A, Kagen D, Theobald C, Freeman M, et al. Risk prediction models for hospital readmission: a systematic review. JAMA. 2011;306(15):1688–98.CrossRefPubMedPubMedCentral Kansagara D, Englander H, Salanitro A, Kagen D, Theobald C, Freeman M, et al. Risk prediction models for hospital readmission: a systematic review. JAMA. 2011;306(15):1688–98.CrossRefPubMedPubMedCentral
10.
go back to reference García-Pérez L, Linertová R, Lorenzo-Riera A, Vázquez-Díaz J, Duque-González B, Sarría-Santamera A. Risk factors for hospital readmissions in elderly patients: a systematic review. QJM. 2011;104(8):639–51.CrossRefPubMed García-Pérez L, Linertová R, Lorenzo-Riera A, Vázquez-Díaz J, Duque-González B, Sarría-Santamera A. Risk factors for hospital readmissions in elderly patients: a systematic review. QJM. 2011;104(8):639–51.CrossRefPubMed
11.
go back to reference Nolte E, Roland MO, Guthrie S, Brereton L, Europe R. Preventing emergency readmissions to hospital: a scoping review. 2010. Nolte E, Roland MO, Guthrie S, Brereton L, Europe R. Preventing emergency readmissions to hospital: a scoping review. 2010.
12.
go back to reference Hoyer EH, Needham DM, Miller J, Deutschendorf A, Friedman M, Brotman DJ. Functional status impairment is associated with unplanned readmissions. Arch Phys Med Rehabil. 2013;94(10):1951–8.CrossRefPubMed Hoyer EH, Needham DM, Miller J, Deutschendorf A, Friedman M, Brotman DJ. Functional status impairment is associated with unplanned readmissions. Arch Phys Med Rehabil. 2013;94(10):1951–8.CrossRefPubMed
13.
go back to reference Shulan M, Gao K, Moore CD. Predicting 30-day all-cause hospital readmissions. Health Care Manag Sci. 2013;16(2):167–75.CrossRefPubMed Shulan M, Gao K, Moore CD. Predicting 30-day all-cause hospital readmissions. Health Care Manag Sci. 2013;16(2):167–75.CrossRefPubMed
14.
go back to reference Hu J, Gonsahn MD, Nerenz DR. Socioeconomic status and readmissions: evidence from an urban teaching hospital. Health Aff. 2014;33(5):778–85.CrossRef Hu J, Gonsahn MD, Nerenz DR. Socioeconomic status and readmissions: evidence from an urban teaching hospital. Health Aff. 2014;33(5):778–85.CrossRef
15.
go back to reference Glance LG, Kellermann AL, Osler TM, Li Y, Mukamel DB, Lustik SJ, et al. Hospital readmission after noncardiac surgery: the role of major complications. JAMA Surg. 2014;149(5):439–45.CrossRefPubMed Glance LG, Kellermann AL, Osler TM, Li Y, Mukamel DB, Lustik SJ, et al. Hospital readmission after noncardiac surgery: the role of major complications. JAMA Surg. 2014;149(5):439–45.CrossRefPubMed
16.
go back to reference Leppin AL, Gionfriddo MR, Kessler M, Brito JP, Mair FS, Gallacher K, et al. Preventing 30-day hospital readmissions: a systematic review and meta-analysis of randomized trials. JAMA Intern Med. 2014;174(7):1095–107.CrossRefPubMedPubMedCentral Leppin AL, Gionfriddo MR, Kessler M, Brito JP, Mair FS, Gallacher K, et al. Preventing 30-day hospital readmissions: a systematic review and meta-analysis of randomized trials. JAMA Intern Med. 2014;174(7):1095–107.CrossRefPubMedPubMedCentral
17.
go back to reference Bradley EH, Sipsma H, Horwitz LI, Curry L, Krumholz HM. Contemporary data about hospital strategies to reduce unplanned readmissions: what has changed? JAMA Intern Med. 2014;174(1):154–6.CrossRefPubMedPubMedCentral Bradley EH, Sipsma H, Horwitz LI, Curry L, Krumholz HM. Contemporary data about hospital strategies to reduce unplanned readmissions: what has changed? JAMA Intern Med. 2014;174(1):154–6.CrossRefPubMedPubMedCentral
18.
go back to reference van Walraven C, Jennings A, Taljaard M, Dhalla I, English S, Mulpuru S, et al. Incidence of potentially avoidable urgent readmissions and their relation to all-cause urgent readmissions. Can Med Assoc J. 2011;183(14):E1067–E72.CrossRef van Walraven C, Jennings A, Taljaard M, Dhalla I, English S, Mulpuru S, et al. Incidence of potentially avoidable urgent readmissions and their relation to all-cause urgent readmissions. Can Med Assoc J. 2011;183(14):E1067–E72.CrossRef
20.
go back to reference van Walraven C, Dhalla IA, Bell C, Etchells E, Stiell IG, Zarnke K, et al. Derivation and validation of an index to predict early death or unplanned readmission after discharge from hospital to the community. Can Med Assoc J. 2010;182(6):551–7.CrossRef van Walraven C, Dhalla IA, Bell C, Etchells E, Stiell IG, Zarnke K, et al. Derivation and validation of an index to predict early death or unplanned readmission after discharge from hospital to the community. Can Med Assoc J. 2010;182(6):551–7.CrossRef
21.
go back to reference van Walraven C, Wong J, Forster A. LACE+ index: extension of a validated index to predict early death or urgent readmission after hospital discharge using administrative data. Open Med. 2012;6(3):80–9. van Walraven C, Wong J, Forster A. LACE+ index: extension of a validated index to predict early death or urgent readmission after hospital discharge using administrative data. Open Med. 2012;6(3):80–9.
22.
23.
go back to reference Donzé J, Aujesky D, Williams D, Schnipper JL. Potentially avoidable 30-day hospital readmissions in medical patients: derivation and validation of a prediction model. JAMA Intern Med. 2013;173(8):632–8.CrossRefPubMed Donzé J, Aujesky D, Williams D, Schnipper JL. Potentially avoidable 30-day hospital readmissions in medical patients: derivation and validation of a prediction model. JAMA Intern Med. 2013;173(8):632–8.CrossRefPubMed
24.
go back to reference Billings J, Blunt I, Steventon A, Georghiou T, Lewis G, Bardsley M. Development of a predictive model to identify inpatients at risk of re-admission within 30 days of discharge (PARR-30). BMJ Open. 2012;2(4):e001667.CrossRefPubMedPubMedCentral Billings J, Blunt I, Steventon A, Georghiou T, Lewis G, Bardsley M. Development of a predictive model to identify inpatients at risk of re-admission within 30 days of discharge (PARR-30). BMJ Open. 2012;2(4):e001667.CrossRefPubMedPubMedCentral
25.
go back to reference Shadmi E, Flaks-Manov N, Hoshen M, Goldman O, Bitterman H, Balicer RD, et al. Predicting 30-day readmissions with preadmission electronic health record data. Med Care. 2015;53(3):283–9.CrossRefPubMed Shadmi E, Flaks-Manov N, Hoshen M, Goldman O, Bitterman H, Balicer RD, et al. Predicting 30-day readmissions with preadmission electronic health record data. Med Care. 2015;53(3):283–9.CrossRefPubMed
26.
go back to reference Cai X, Perez-Concha O, Coiera E, Martin-Sanchez F, Day R, Roffe D, Gallego B. Real-time prediction of mortality, readmission, and length of stay using electronic health record data. Journal of the American Medical Informatics Association. 2015;23(3):553-61. Cai X, Perez-Concha O, Coiera E, Martin-Sanchez F, Day R, Roffe D, Gallego B. Real-time prediction of mortality, readmission, and length of stay using electronic health record data. Journal of the American Medical Informatics Association. 2015;23(3):553-61.
27.
go back to reference Tabak YP, Sun X, Nunez CM, Johannes RS. Using electronic health record data to develop inpatient mortality predictive model: acute laboratory risk of mortality score (ALaRMS). J Am Med Inform Assoc. 2014;21(3):455–63.CrossRefPubMed Tabak YP, Sun X, Nunez CM, Johannes RS. Using electronic health record data to develop inpatient mortality predictive model: acute laboratory risk of mortality score (ALaRMS). J Am Med Inform Assoc. 2014;21(3):455–63.CrossRefPubMed
29.
go back to reference Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2015;29(5):1189-1232. Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2015;29(5):1189-1232.
30.
go back to reference Caruana R, Niculescu-Mizil A. An empirical comparison of supervised learning algorithms. Proceeding ICML '06 Proceedings of the 23rd international conference on Machine learning. Pages 161–168 2006. Caruana R, Niculescu-Mizil A. An empirical comparison of supervised learning algorithms. Proceeding ICML '06 Proceedings of the 23rd international conference on Machine learning. Pages 161–168 2006.
31.
go back to reference Lawrence G, Dinh I, Taylor L. The Centre for Health Record Linkage: a new resource for health services research and evaluation. Health Info Manag J. 2008;37(2):60. Lawrence G, Dinh I, Taylor L. The Centre for Health Record Linkage: a new resource for health services research and evaluation. Health Info Manag J. 2008;37(2):60.
32.
go back to reference Elixhauser A, Steiner C, Harris DR, Coffey RM. Comorbidity measures for use with administrative data. Med Care. 1998;36(1):8–27.CrossRefPubMed Elixhauser A, Steiner C, Harris DR, Coffey RM. Comorbidity measures for use with administrative data. Med Care. 1998;36(1):8–27.CrossRefPubMed
33.
go back to reference Chen T, He T. xgboost: eXtreme Gradient Boosting. R package version 04–2. 2015. Chen T, He T. xgboost: eXtreme Gradient Boosting. R package version 04–2. 2015.
34.
go back to reference Gruneir A, Dhalla IA, van Walraven C, Fischer HD, Camacho X, Rochon P. Unplanned readmissions after hospital discharge among patients identified as being at high risk for readmission using a validated predictive algorithm. Open Med. 2011;5(2):104–11. Gruneir A, Dhalla IA, van Walraven C, Fischer HD, Camacho X, Rochon P. Unplanned readmissions after hospital discharge among patients identified as being at high risk for readmission using a validated predictive algorithm. Open Med. 2011;5(2):104–11.
35.
go back to reference Swain MJ, Kharrazi H. Feasibility of 30-day hospital readmission prediction modeling based on health information exchange data. Int J Med Inform. 2015;84(12):1048–56.CrossRefPubMed Swain MJ, Kharrazi H. Feasibility of 30-day hospital readmission prediction modeling based on health information exchange data. Int J Med Inform. 2015;84(12):1048–56.CrossRefPubMed
36.
go back to reference Saunders ND, Nichols SD, Antiporda MA, Johnson K, Walker K, Nilsson R, et al. Examination of unplanned 30-day readmissions to a comprehensive cancer hospital. J Oncol Pract. 2015;11(2):e177–e81.CrossRefPubMed Saunders ND, Nichols SD, Antiporda MA, Johnson K, Walker K, Nilsson R, et al. Examination of unplanned 30-day readmissions to a comprehensive cancer hospital. J Oncol Pract. 2015;11(2):e177–e81.CrossRefPubMed
37.
go back to reference Manzano J-GM, Gadiraju S, Hiremath A, Lin HY, Farroni J, Halm J. Unplanned 30-day readmissions in a general internal medicine hospitalist Service at a Comprehensive Cancer Center. J Oncol Pract. 2015;11(5):410–5.CrossRefPubMedPubMedCentral Manzano J-GM, Gadiraju S, Hiremath A, Lin HY, Farroni J, Halm J. Unplanned 30-day readmissions in a general internal medicine hospitalist Service at a Comprehensive Cancer Center. J Oncol Pract. 2015;11(5):410–5.CrossRefPubMedPubMedCentral
38.
go back to reference Ji H, Abushomar H, Chen X, Qian C, Gerson D. All-cause readmission to acute care for cancer patients. Healthc Q (Toronto, Ont). 2011;15(3):14–6.CrossRef Ji H, Abushomar H, Chen X, Qian C, Gerson D. All-cause readmission to acute care for cancer patients. Healthc Q (Toronto, Ont). 2011;15(3):14–6.CrossRef
39.
go back to reference Perez-Concha O, Gallego B, Hillman K, Delaney GP, Coiera E. Do variations in hospital mortality patterns after weekend admission reflect reduced quality of care or different patient cohorts? A population-based study. BMJ Qual Saf. 2014;23(3):215–22. Perez-Concha O, Gallego B, Hillman K, Delaney GP, Coiera E. Do variations in hospital mortality patterns after weekend admission reflect reduced quality of care or different patient cohorts? A population-based study. BMJ Qual Saf. 2014;23(3):215–22.
40.
go back to reference Halfon P, Eggli Y, Prêtre-Rohrbach I, Meylan D, Marazzi A, Burnand B. Validation of the potentially avoidable hospital readmission rate as a routine indicator of the quality of hospital care. Med Care. 2006;44(11):972–81.CrossRefPubMed Halfon P, Eggli Y, Prêtre-Rohrbach I, Meylan D, Marazzi A, Burnand B. Validation of the potentially avoidable hospital readmission rate as a routine indicator of the quality of hospital care. Med Care. 2006;44(11):972–81.CrossRefPubMed
41.
go back to reference Halfon P, Eggli Y, van Melle G, Chevalier J, Wasserfallen J-B, Burnand B. Measuring potentially avoidable hospital readmissions. J Clin Epidemiol. 2002;55(6):573–87.CrossRefPubMed Halfon P, Eggli Y, van Melle G, Chevalier J, Wasserfallen J-B, Burnand B. Measuring potentially avoidable hospital readmissions. J Clin Epidemiol. 2002;55(6):573–87.CrossRefPubMed
Metadata
Title
Predicting 7-day, 30-day and 60-day all-cause unplanned readmission: a case study of a Sydney hospital
Authors
Yashar Maali
Oscar Perez-Concha
Enrico Coiera
David Roffe
Richard O. Day
Blanca Gallego
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Medical Informatics and Decision Making / Issue 1/2018
Electronic ISSN: 1472-6947
DOI
https://doi.org/10.1186/s12911-017-0580-8

Other articles of this Issue 1/2018

BMC Medical Informatics and Decision Making 1/2018 Go to the issue