Skip to main content
Top
Published in: BMC Medical Informatics and Decision Making 1/2015

Open Access 01-12-2015 | Research Article

Surveillance of dengue vectors using spatio-temporal Bayesian modeling

Authors: Ana Carolina C. Costa, Cláudia T. Codeço, Nildimar A. Honório, Gláucio R. Pereira, Carmen Fátima N. Pinheiro, Aline A. Nobre

Published in: BMC Medical Informatics and Decision Making | Issue 1/2015

Login to get access

Abstract

Background

At present, dengue control focuses on reducing the density of the primary vector for the disease, Aedes aegypti, which is the only vulnerable link in the chain of transmission. The use of new approaches for dengue entomological surveillance is extremely important, since present methods are inefficient. With this in mind, the present study seeks to analyze the spatio-temporal dynamics of A. aegypti infestation with oviposition traps, using efficient computational methods. These methods will allow for the implementation of the proposed model and methodology into surveillance and monitoring systems.

Methods

The study area includes a region in the municipality of Rio de Janeiro, characterized by high population density, precarious domicile construction, and a general lack of infrastructure around it. Two hundred and forty traps were distributed in eight different sentinel areas, in order to continually monitor immature Aedes aegypti and Aedes albopictus mosquitoes. Collections were done weekly between November 2010 and August 2012. The relationship between egg number and climate and environmental variables was considered and evaluated through Bayesian zero-inflated spatio-temporal models. Parametric inference was performed using the Integrated Nested Laplace Approximation (INLA) method.

Results

Infestation indexes indicated that ovipositing occurred during the entirety of the study period. The distance between each trap and the nearest boundary of the study area, minimum temperature and accumulated rainfall were all significantly related to the number of eggs present in the traps. Adjusting for the interaction between temperature and rainfall led to a more informative surveillance model, as such thresholds offer empirical information about the favorable climatic conditions for vector reproduction. Data were characterized by moderate time (0.29 – 0.43) and spatial (21.23 – 34.19 m) dependencies. The models also identified spatial patterns consistent with human population density in all sentinel areas. The results suggest the need for weekly surveillance in the study area, using traps allocated between 18 and 24 m, in order to understand the dengue vector dynamics.

Conclusions

Aedes aegypti, due to it short generation time and strong response to climate triggers, tend to show an eruptive dynamics that is difficult to predict and understand through just temporal or spatial models. The proposed methodology allowed for the rapid and efficient implementation of spatio-temporal models that considered zero-inflation and the interaction between climate variables and patterns in oviposition, in such a way that the final model parameters contribute to the identification of priority areas for entomological surveillance.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ministério da Saúde. Secretaria de vigilância em Saúde. Diretoria Técnica de Gestão: Levantamento Rápido de índices Para Aedes Aegypti - LIRAa - Para Vigilância Entomológica do Aedes Aegypti No Brasil: Metodologia Para Avaliação Dos índices de Breteau e Predial e Tipo de Recipientes. Brasil; 2013. Ministério da Saúde. Secretaria de vigilância em Saúde. Diretoria Técnica de Gestão. Ministério da Saúde. Secretaria de vigilância em Saúde. Diretoria Técnica de Gestão: Levantamento Rápido de índices Para Aedes Aegypti - LIRAa - Para Vigilância Entomológica do Aedes Aegypti No Brasil: Metodologia Para Avaliação Dos índices de Breteau e Predial e Tipo de Recipientes. Brasil; 2013. Ministério da Saúde. Secretaria de vigilância em Saúde. Diretoria Técnica de Gestão.
2.
go back to reference Braga IA, Valle D. Aedes aegypti: vigilância, monitoramento da resistência e alternativas de controle no brasil. Epidemiologia e Serviços de Saúde. 2007; 16(4):295–302. Braga IA, Valle D. Aedes aegypti: vigilância, monitoramento da resistência e alternativas de controle no brasil. Epidemiologia e Serviços de Saúde. 2007; 16(4):295–302.
3.
go back to reference Teixeira MG, Barreto ML, Costa MCN, Ferreira LDA, Vasconcelos PFC. Avaliação de impacto de ações de combate ao Aedes aegypti na cidade de Salvador, Bahia. Rev Bras Epidemiol. 2002; 5:108–15.CrossRef Teixeira MG, Barreto ML, Costa MCN, Ferreira LDA, Vasconcelos PFC. Avaliação de impacto de ações de combate ao Aedes aegypti na cidade de Salvador, Bahia. Rev Bras Epidemiol. 2002; 5:108–15.CrossRef
4.
go back to reference Gomes AC. Medidas dos níveis de infestação urbana para aedes (stegomyia) aegypti e aedes (stegomyia) albopictus em programa de vigilância entomológica. Informativo Epidemiológico do SUS. 1998; 5:49–57.CrossRef Gomes AC. Medidas dos níveis de infestação urbana para aedes (stegomyia) aegypti e aedes (stegomyia) albopictus em programa de vigilância entomológica. Informativo Epidemiológico do SUS. 1998; 5:49–57.CrossRef
5.
go back to reference Fay RW, Eliason DA. A preferred oviposition site as a surveillance method for aedes aegypti. Mosq News. 1966; 26:531–5. Fay RW, Eliason DA. A preferred oviposition site as a surveillance method for aedes aegypti. Mosq News. 1966; 26:531–5.
6.
go back to reference Westaway EG, Blok J. Taxonomy and evolutionary relationships of flaviviruses In: Gubler DJ, Kuno G, editors. Dengue and Dengue Hemorrhagic Fever. Wallingford, UK: CAB International: 1997. p. 147–174. Westaway EG, Blok J. Taxonomy and evolutionary relationships of flaviviruses In: Gubler DJ, Kuno G, editors. Dengue and Dengue Hemorrhagic Fever. Wallingford, UK: CAB International: 1997. p. 147–174.
7.
go back to reference Codeço CT, Lima AWS, Araújo SC, Lima JBP, Maciel-de-Freitas R, Honório NA, et al. Surveillance of Aedes aegypti: Comparison of house index with four alternative traps. PLoS Neglected Tropical Diseases. 2015; 9(2):e0003475. Public Library of Science.CrossRefPubMedPubMedCentral Codeço CT, Lima AWS, Araújo SC, Lima JBP, Maciel-de-Freitas R, Honório NA, et al. Surveillance of Aedes aegypti: Comparison of house index with four alternative traps. PLoS Neglected Tropical Diseases. 2015; 9(2):e0003475. Public Library of Science.CrossRefPubMedPubMedCentral
8.
go back to reference Honório NA, Castro MG, Barros FS, Magalhães MA, Sabroza PC. The spatial distribution of Aedes aegypti and Aedes albopictus in a transition zone, Rio de Janeiro, Brazil. Cad Saude Publica. 2008; 25(6):1203–14.CrossRef Honório NA, Castro MG, Barros FS, Magalhães MA, Sabroza PC. The spatial distribution of Aedes aegypti and Aedes albopictus in a transition zone, Rio de Janeiro, Brazil. Cad Saude Publica. 2008; 25(6):1203–14.CrossRef
10.
go back to reference Zuur AF. Zero Inflated Models and Generalized Linear Mixed Models with R. United Kingdom: Highland Statistics Limited; 2012. Zuur AF. Zero Inflated Models and Generalized Linear Mixed Models with R. United Kingdom: Highland Statistics Limited; 2012.
11.
go back to reference Cressie NAC. Statistics for Spatial Data. Revised Edition. Hoboken, NJ, USA: John Wiley & Sons, Inc; 1993. Cressie NAC. Statistics for Spatial Data. Revised Edition. Hoboken, NJ, USA: John Wiley & Sons, Inc; 1993.
12.
go back to reference Lindgren F, Rue H, Lindström J. An explicit link between gaussian fields and gaussian markov random fields: the stochastic partial differential equation approach. J R Stat Soc Ser B (Stat Methodol). 2011; 73(4):423–98.CrossRef Lindgren F, Rue H, Lindström J. An explicit link between gaussian fields and gaussian markov random fields: the stochastic partial differential equation approach. J R Stat Soc Ser B (Stat Methodol). 2011; 73(4):423–98.CrossRef
15.
go back to reference Cameletti M, Lindgren F, Simpson D, Rue H. Spatio-temporal modeling of particulate matter concentration through the spde approach. Adv Stat Anal. 2013; 97(2):109–31.CrossRef Cameletti M, Lindgren F, Simpson D, Rue H. Spatio-temporal modeling of particulate matter concentration through the spde approach. Adv Stat Anal. 2013; 97(2):109–31.CrossRef
16.
go back to reference Rue H, Held L, Vol. 104. Gaussian Markov Random Fields: Theory and Applications. Monographs on Statistics and Applied Probability. London: Chapman & Hall; 2005.CrossRef Rue H, Held L, Vol. 104. Gaussian Markov Random Fields: Theory and Applications. Monographs on Statistics and Applied Probability. London: Chapman & Hall; 2005.CrossRef
17.
go back to reference Gamerman D, Lopes HF. Monte Carlo Markov Chain: Stochastic Simulation for Bayesian Inference. London, UK: Chapman & Hall; 2006. Gamerman D, Lopes HF. Monte Carlo Markov Chain: Stochastic Simulation for Bayesian Inference. London, UK: Chapman & Hall; 2006.
18.
go back to reference Rue H, Martino S, Chopin N. Approximate bayesian inference for latent gaussian models by using integrated nested laplace approximations. J R Stat Soc Ser B (Stat Methodol). 2009; 71(2):319–92.CrossRef Rue H, Martino S, Chopin N. Approximate bayesian inference for latent gaussian models by using integrated nested laplace approximations. J R Stat Soc Ser B (Stat Methodol). 2009; 71(2):319–92.CrossRef
19.
go back to reference Rue H, Martino S. Approximate Bayesian inference for hierarchical Gaussian Markov random field models. Journal of Statistical Planning and Inference. 2007; 137(10):3177–3192.CrossRef Rue H, Martino S. Approximate Bayesian inference for hierarchical Gaussian Markov random field models. Journal of Statistical Planning and Inference. 2007; 137(10):3177–3192.CrossRef
20.
go back to reference R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2013. Foundation for Statistical Computing, http://www.R-project.org/. R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2013. Foundation for Statistical Computing, http://​www.​R-project.​org/​.
21.
go back to reference Rue H, Martino S. INLA: Functions Which Allow to Perform a Full Bayesian Analysis of Structured Additive Models Using Integrated Nested Laplace Approximation. 2009. http://www.r-inla.org/. Rue H, Martino S. INLA: Functions Which Allow to Perform a Full Bayesian Analysis of Structured Additive Models Using Integrated Nested Laplace Approximation. 2009. http://​www.​r-inla.​org/​.
22.
go back to reference Minh An DT, Rocklöv J. Epidemiology of dengue fever in hanoi from 2002 to 2010 and its meteorological determinants. Global Health Action. 2014; 7:23074.CrossRef Minh An DT, Rocklöv J. Epidemiology of dengue fever in hanoi from 2002 to 2010 and its meteorological determinants. Global Health Action. 2014; 7:23074.CrossRef
23.
24.
go back to reference Alto BW, Juliano SA. Precipitation and temperature effects on populations of aedes albopictus (diptera: Culicidae): implications for range expansion. J Med Entomol. 2001; 38(5):646–56.CrossRefPubMedPubMedCentral Alto BW, Juliano SA. Precipitation and temperature effects on populations of aedes albopictus (diptera: Culicidae): implications for range expansion. J Med Entomol. 2001; 38(5):646–56.CrossRefPubMedPubMedCentral
25.
go back to reference Focks DA, Haile DG, Daniels E, Mount GA. Dynamic life table model for aedes aegypti (diptera: Culicidae): simulation results and validation. J Med Entomol. 1993; 30:1018–28.CrossRefPubMed Focks DA, Haile DG, Daniels E, Mount GA. Dynamic life table model for aedes aegypti (diptera: Culicidae): simulation results and validation. J Med Entomol. 1993; 30:1018–28.CrossRefPubMed
26.
go back to reference Jansen CC, Beebe NW. The dengue vector aedes aegypti: what comes next. Microbes Infect. 2010; 12:272–9.CrossRefPubMed Jansen CC, Beebe NW. The dengue vector aedes aegypti: what comes next. Microbes Infect. 2010; 12:272–9.CrossRefPubMed
27.
go back to reference Honório NA, Codeço CT, Alves FC, Magalhães MA, Lourenço-D-Oliveira R. Temporal distribution of aedes aegypti in different districts of rio de janeiro, brazil, measured by two types of traps. J Med Entomol. 2009; 46(5):1001–1014.CrossRefPubMed Honório NA, Codeço CT, Alves FC, Magalhães MA, Lourenço-D-Oliveira R. Temporal distribution of aedes aegypti in different districts of rio de janeiro, brazil, measured by two types of traps. J Med Entomol. 2009; 46(5):1001–1014.CrossRefPubMed
28.
go back to reference Duncombe J, Clements A, Davis J, Hu W, Weinstein P, Ritchie S. Spatiotemporal patterns of aedes aegypti populations in cairns, Australia: assessing drivers of dengue transmission. Tropical Med Int Health. 2013; 18(7):839–49.CrossRef Duncombe J, Clements A, Davis J, Hu W, Weinstein P, Ritchie S. Spatiotemporal patterns of aedes aegypti populations in cairns, Australia: assessing drivers of dengue transmission. Tropical Med Int Health. 2013; 18(7):839–49.CrossRef
29.
go back to reference Padmanabha H, Durham D, Correa F, Diuk-Wasser M, Galvani A. The interactive roles of aedes aegypti super-production and human density in dengue transmission. PLoS Negl Trop Dis. 2012; 6(8):1799.CrossRef Padmanabha H, Durham D, Correa F, Diuk-Wasser M, Galvani A. The interactive roles of aedes aegypti super-production and human density in dengue transmission. PLoS Negl Trop Dis. 2012; 6(8):1799.CrossRef
Metadata
Title
Surveillance of dengue vectors using spatio-temporal Bayesian modeling
Authors
Ana Carolina C. Costa
Cláudia T. Codeço
Nildimar A. Honório
Gláucio R. Pereira
Carmen Fátima N. Pinheiro
Aline A. Nobre
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Medical Informatics and Decision Making / Issue 1/2015
Electronic ISSN: 1472-6947
DOI
https://doi.org/10.1186/s12911-015-0219-6

Other articles of this Issue 1/2015

BMC Medical Informatics and Decision Making 1/2015 Go to the issue