Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2018

Open Access 01-12-2018 | Research article

Antioxidant and skin-whitening effects of aerial part of Euphorbia supina Raf. Extract

Authors: Sa-Haeng Kang, Yong-Deok Jeon, Ji-Yoon Cha, Sung-Woo Hwang, Hoon-Yeon Lee, Min Park, Bo-Ri Lee, Min-Kyoung Shin, Su-Jeong Kim, Sang-Min Shin, Dae-Ki Kim, Jong-Sik Jin, Young-Mi Lee

Published in: BMC Complementary Medicine and Therapies | Issue 1/2018

Login to get access

Abstract

Background

Euphorbia supina (ES) has been widely used in folk medicine owing to its antibacterial, hemostatic, and anti-inflammatory properties. The aim of this study was to evaluate the antioxidant and skin-whitening effects of a 70% ethanol extract of ES.

Methods

The aerial parts of ES plant were extracted with 70% ethanol. The viability of B16F10 cells was evaluated by MTT assay to determine the non-toxic doses for further experiments. The tyrosinase and cellular tyrosinase activities were then measured using an enzyme-substrate assay. In addition, the expression of whitening-related proteins was measured using western blot.

Results

The antioxidant activity of the ES samples increased in a dose-dependent manner, as confirmed by their radical scavenging activities in the 2,2-diphenyl-1-1-picrylhydrazyl and 2,2-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) assays. The ES extract significantly reduced tyrosinase activity and melanin content in a dose-dependent manner. Furthermore, it decreased α-melanocyte stimulating hormone (MSH)-induced protein expression of tyrosinase and microphthalmia-associated transcription factor (MITF).

Conclusions

Our results indicate that the ES extract attenuated α-MSH-stimulated melanin synthesis by modulating tyrosinase and MITF expression. Therefore, the ES extract could be a promising therapeutic agent to treat hyperpigmentation and as an ingredient for skin-whitening cosmetics.
Literature
1.
go back to reference Baumann L. Cosmetic dermatology. New York: McGraw-Hill; 2001. p. 98. Baumann L. Cosmetic dermatology. New York: McGraw-Hill; 2001. p. 98.
2.
go back to reference Iwata M, Corn T, Iwata S, et al. The relationship between tyrosinase activity and skin color in human foreskins. J Invest Dermatol. 1990;95:9–15.CrossRef Iwata M, Corn T, Iwata S, et al. The relationship between tyrosinase activity and skin color in human foreskins. J Invest Dermatol. 1990;95:9–15.CrossRef
3.
go back to reference Cabanes J, Chazarra S, Garcia-Carmona F. Kojic acid, a cosmetic skin whitening agent, is a slow-binding inhibitor of catecholase activity of tyrosinase. J Pharm Pharmacol. 1994;46:982–5.CrossRef Cabanes J, Chazarra S, Garcia-Carmona F. Kojic acid, a cosmetic skin whitening agent, is a slow-binding inhibitor of catecholase activity of tyrosinase. J Pharm Pharmacol. 1994;46:982–5.CrossRef
4.
go back to reference Kim YJ, Uyama H. Tyrosinase inhibitors from natural and synthetic sources: structure, inhibition mechanism and perspective for the future. Cell Mol Life Sci. 2005;62:1707–23.CrossRef Kim YJ, Uyama H. Tyrosinase inhibitors from natural and synthetic sources: structure, inhibition mechanism and perspective for the future. Cell Mol Life Sci. 2005;62:1707–23.CrossRef
5.
go back to reference Jimenez Cervantes C, Garcia Borron JC, Valverde P, et al. Tyrosinase isoenzymes in mammalian melanocytes. 1. Biochemical characterization of two melanosomal tyrosinases from B16 mouse melanoma. Eur J Biochem. 1993;271:549–56.CrossRef Jimenez Cervantes C, Garcia Borron JC, Valverde P, et al. Tyrosinase isoenzymes in mammalian melanocytes. 1. Biochemical characterization of two melanosomal tyrosinases from B16 mouse melanoma. Eur J Biochem. 1993;271:549–56.CrossRef
6.
go back to reference Ye Y, Chou GX, Wang H, et al. Flavonoids, apigenin and icariin exert potent melanogenic activities in murine B16 melanoma cells. Phytomedicine. 2010;18:32–5.CrossRef Ye Y, Chou GX, Wang H, et al. Flavonoids, apigenin and icariin exert potent melanogenic activities in murine B16 melanoma cells. Phytomedicine. 2010;18:32–5.CrossRef
7.
go back to reference Yamakoshi J, Otsuka F, Sano A, et al. Lightening effect on ultraviolet-induced pigmentation of Guinea pig skin by oral administration of a proanthocyanidin-rich extract from grape seeds. Pigment Cell Res. 2003;16:629–38.CrossRef Yamakoshi J, Otsuka F, Sano A, et al. Lightening effect on ultraviolet-induced pigmentation of Guinea pig skin by oral administration of a proanthocyanidin-rich extract from grape seeds. Pigment Cell Res. 2003;16:629–38.CrossRef
8.
go back to reference Choi JG. The medicine of grasses, flowers and trees. Hanmunhwa, Seoul, Korea; 2004. p. 193–201. Choi JG. The medicine of grasses, flowers and trees. Hanmunhwa, Seoul, Korea; 2004. p. 193–201.
9.
go back to reference National China Medical Administration. China medical herbs. Shanghai science technology publisher, Shanghai, China; 1999. p. 789–792. National China Medical Administration. China medical herbs. Shanghai science technology publisher, Shanghai, China; 1999. p. 789–792.
10.
go back to reference Lee SH, Tanaka T, Nonaka G, et al. Tannins and related compounds. CV. Monomeric and dimeric hydrolysable tannins having a dehydrohexahydroxydiphenoyl group, supinanin, euphorscopin, euphorhelin and jolkianin, from Euphorbia species. Chem Pharm Bull. 1991;39:630–8.CrossRef Lee SH, Tanaka T, Nonaka G, et al. Tannins and related compounds. CV. Monomeric and dimeric hydrolysable tannins having a dehydrohexahydroxydiphenoyl group, supinanin, euphorscopin, euphorhelin and jolkianin, from Euphorbia species. Chem Pharm Bull. 1991;39:630–8.CrossRef
11.
go back to reference Agata I, Hatano T, Nakaya Y, et al. Tannins and related polyphenols of euphorbiaceous plants. VII. Eumaculin a and eusupinin a, and accompanying polyphenols from Euphorbia maculate L. and E. supina Rafin. Chem Pharm Bull. 1991;39:881–3.CrossRef Agata I, Hatano T, Nakaya Y, et al. Tannins and related polyphenols of euphorbiaceous plants. VII. Eumaculin a and eusupinin a, and accompanying polyphenols from Euphorbia maculate L. and E. supina Rafin. Chem Pharm Bull. 1991;39:881–3.CrossRef
12.
go back to reference Fang Z, Zeng X, Zhang Y, et al. Chemical constituents of spottedleaf euphorbia (Euphorbia supina). Zhongcayao. 1993;24:230–3. Fang Z, Zeng X, Zhang Y, et al. Chemical constituents of spottedleaf euphorbia (Euphorbia supina). Zhongcayao. 1993;24:230–3.
13.
go back to reference An RB, Kwon JW, Kwon TO, et al. Chemical constituents from the whole plants of Euphorbia supina Rafin. Kor J Pharmacogn. 2007;38:291–5. An RB, Kwon JW, Kwon TO, et al. Chemical constituents from the whole plants of Euphorbia supina Rafin. Kor J Pharmacogn. 2007;38:291–5.
14.
go back to reference Tanaka R, Matsunaga S. Terpenoids and steroids from several Euphorbiaceae and Pinaceae plants. Yakugaku Zasshi. 1999;119:319–39.CrossRef Tanaka R, Matsunaga S. Terpenoids and steroids from several Euphorbiaceae and Pinaceae plants. Yakugaku Zasshi. 1999;119:319–39.CrossRef
15.
go back to reference Chung BS, Kim HG. Studies on the terpenoid constituents of Euphorbia supina Rafin. Kor J Pharmacogn. 1985;16:155–9. Chung BS, Kim HG. Studies on the terpenoid constituents of Euphorbia supina Rafin. Kor J Pharmacogn. 1985;16:155–9.
16.
go back to reference Ko YS, Lee WS, Joo YN, et al. Polyphenol mixture of Euphorbia supine the inhibit invasion and metastasis of highly metastatic breast cancer MDA-MB-231 cells. Oncol Rep. 2015;34:3035–42.CrossRef Ko YS, Lee WS, Joo YN, et al. Polyphenol mixture of Euphorbia supine the inhibit invasion and metastasis of highly metastatic breast cancer MDA-MB-231 cells. Oncol Rep. 2015;34:3035–42.CrossRef
17.
go back to reference Hong HK, Kwak JH, Kang SC, et al. Antioxidative constituents from whole plants of Euphorbia supina. Kor J Pharmacogn. 2008;39:260–4. Hong HK, Kwak JH, Kang SC, et al. Antioxidative constituents from whole plants of Euphorbia supina. Kor J Pharmacogn. 2008;39:260–4.
18.
go back to reference Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63.CrossRef Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63.CrossRef
19.
go back to reference Blois ML. Antioxidant determination by the use of a stable free radical. Nature. 1958;181:1199–200.CrossRef Blois ML. Antioxidant determination by the use of a stable free radical. Nature. 1958;181:1199–200.CrossRef
20.
go back to reference Re R, Pellegrini N, Proteggente A, et al. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999;26:1231–7.CrossRef Re R, Pellegrini N, Proteggente A, et al. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999;26:1231–7.CrossRef
21.
go back to reference Hosoi J, Abe E, Suda T, et al. Regulation of melanin synthesis of B16 mouse melanoma cells by 1 alpha, 25-dihydroxyvitamin D3 and retinoic acid. Cancer Res. 1985;45:1474–8.PubMed Hosoi J, Abe E, Suda T, et al. Regulation of melanin synthesis of B16 mouse melanoma cells by 1 alpha, 25-dihydroxyvitamin D3 and retinoic acid. Cancer Res. 1985;45:1474–8.PubMed
22.
go back to reference Lee MH, Lin YP, Hsu FL, et al. Bioactive constituents of Spatholobus suberectus in regulating tyrosinase-related proteins and mRNA in HEMn cells. Phytochemistry. 2006;67:1262–70.CrossRef Lee MH, Lin YP, Hsu FL, et al. Bioactive constituents of Spatholobus suberectus in regulating tyrosinase-related proteins and mRNA in HEMn cells. Phytochemistry. 2006;67:1262–70.CrossRef
23.
go back to reference Yamaguchi Y, Hearing VJ. Physiological factors that regulate skin pigmentation. Biofactors. 2009;35:193–9.CrossRef Yamaguchi Y, Hearing VJ. Physiological factors that regulate skin pigmentation. Biofactors. 2009;35:193–9.CrossRef
24.
go back to reference Hearing VJ, Jimenez M. Mammalian tyrosinase-the critical regulatory control point in melanocyte pigmentation. Int J BioChemiPhysics. 1987;19:1141–7.CrossRef Hearing VJ, Jimenez M. Mammalian tyrosinase-the critical regulatory control point in melanocyte pigmentation. Int J BioChemiPhysics. 1987;19:1141–7.CrossRef
25.
go back to reference Song Y, Jeong SW, Lee WS, et al. Determination of polyphenol components of Korean prostrate spurge (Euphorbia supina) by using liquid chromatography—tandem mass spectrometry: overall contribution to antioxidant activity. J Anal Methods Chem. 2014. https://doi.org/10.1155/2014/418690.CrossRef Song Y, Jeong SW, Lee WS, et al. Determination of polyphenol components of Korean prostrate spurge (Euphorbia supina) by using liquid chromatography—tandem mass spectrometry: overall contribution to antioxidant activity. J Anal Methods Chem. 2014. https://​doi.​org/​10.​1155/​2014/​418690.CrossRef
26.
go back to reference Choi CH, Song ES, Kim JS, et al. Antioxidative activities of Castanea crenata Flos. Methanol extracts. Korean J Food Sci Technol. 2003;35:1216–20. Choi CH, Song ES, Kim JS, et al. Antioxidative activities of Castanea crenata Flos. Methanol extracts. Korean J Food Sci Technol. 2003;35:1216–20.
27.
go back to reference Busca R, Ballotti R. Cyclic AMP a key messenger in the regulation of skin pigmentation. Pigment Cell Res. 2000;13:60–9.CrossRef Busca R, Ballotti R. Cyclic AMP a key messenger in the regulation of skin pigmentation. Pigment Cell Res. 2000;13:60–9.CrossRef
28.
go back to reference Hwang JH, Lee BM. Inhibitory effects of plant extracts on tyrosinase, L-DOPA oxidation, and melanin synthesis. J Toxicol Environ Health A. 2007;70:393–407.CrossRef Hwang JH, Lee BM. Inhibitory effects of plant extracts on tyrosinase, L-DOPA oxidation, and melanin synthesis. J Toxicol Environ Health A. 2007;70:393–407.CrossRef
29.
go back to reference Tayarani NZ, Akaberi M, Vatani M, et al. Evaluation of antioxidant and antimelanogenic activities of different extracts from aerial parts of Nepeta binaludensis Jamzad in murine melanoma B16F10 cells. Iran J Basic Med Sci. 2016;19:662–9. Tayarani NZ, Akaberi M, Vatani M, et al. Evaluation of antioxidant and antimelanogenic activities of different extracts from aerial parts of Nepeta binaludensis Jamzad in murine melanoma B16F10 cells. Iran J Basic Med Sci. 2016;19:662–9.
30.
go back to reference Kim DS, Kim SY, Park SH, et al. Inhibitory effects of 4-n-Butylresorcinol on Tyrosinase activity and melanin synthesis. Biol Pharm Bull. 2005;28:2216–9.CrossRef Kim DS, Kim SY, Park SH, et al. Inhibitory effects of 4-n-Butylresorcinol on Tyrosinase activity and melanin synthesis. Biol Pharm Bull. 2005;28:2216–9.CrossRef
31.
go back to reference Goding CR. Melanocytes: the new black. Int J Biochem Cell Biol. 2007;39:275–9.CrossRef Goding CR. Melanocytes: the new black. Int J Biochem Cell Biol. 2007;39:275–9.CrossRef
32.
go back to reference Jeong SC, Park JH, Kim JH. The development trend of skin beauty food with skin protection effects from natural source. Kor J Aesthet Cosmetol. 2013;11:203–12. Jeong SC, Park JH, Kim JH. The development trend of skin beauty food with skin protection effects from natural source. Kor J Aesthet Cosmetol. 2013;11:203–12.
33.
go back to reference Truong XT, Park SH, Lee YG, et al. Protocatechuic acid from pear inhibits Melanogenesis in melanoma cells. Int J Mol Sci. 2017;21, 18(8).CrossRef Truong XT, Park SH, Lee YG, et al. Protocatechuic acid from pear inhibits Melanogenesis in melanoma cells. Int J Mol Sci. 2017;21, 18(8).CrossRef
34.
go back to reference Su TR, Lin JJ, Tsai CC, et al. Inhibition of melanogenesis by gallic acid: possible involvement of the PI3K/Akt, MEK/ERK and Wnt/β-catenin signaling pathways in B16F10 cells. Int J Mol Sci. 2013;14(10):20443–2058.CrossRef Su TR, Lin JJ, Tsai CC, et al. Inhibition of melanogenesis by gallic acid: possible involvement of the PI3K/Akt, MEK/ERK and Wnt/β-catenin signaling pathways in B16F10 cells. Int J Mol Sci. 2013;14(10):20443–2058.CrossRef
Metadata
Title
Antioxidant and skin-whitening effects of aerial part of Euphorbia supina Raf. Extract
Authors
Sa-Haeng Kang
Yong-Deok Jeon
Ji-Yoon Cha
Sung-Woo Hwang
Hoon-Yeon Lee
Min Park
Bo-Ri Lee
Min-Kyoung Shin
Su-Jeong Kim
Sang-Min Shin
Dae-Ki Kim
Jong-Sik Jin
Young-Mi Lee
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2018
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-018-2323-5

Other articles of this Issue 1/2018

BMC Complementary Medicine and Therapies 1/2018 Go to the issue