Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2018

Open Access 01-12-2018 | Research article

Dendritic cells pulsed with generated tumor cell lysate from Phyllanthus amarus Schum. & Thonn. induces anti-tumor immune response

Authors: Shimaa Ibrahim Abdelmenym Mohamed, Ibrahim Jantan, Mohd Azlan Nafiah, Mohamed Ali Seyed, Kok Meng Chan

Published in: BMC Complementary Medicine and Therapies | Issue 1/2018

Login to get access

Abstract

Background

Dendritic cells (DCs) are unique antigen presenting cells (APC) which play a pivotal role in immunotherapy and induction of an effective immune response against tumors. In the present study, 80% ethanol extract of Phyllanthus amarus was used to generate tumor lysate (TLY) derived from HCT 116 and MCF-7 cancer cell lines via induction of apoptosis. Monocyte-derived DCs were generated ex vivo from the adherent population of peripheral blood mononuclear cells (PBMCs). The generated TLY were used to impulse DCs to investigate its effect on their cellular immune functions including antigen presentation capacity, phagocytic activity, chemotaxis capacity, T-cell proliferation and cytokines release.

Methods

The effect of P. amarus-generated TLY on DCs maturation was evaluated by determination of MHC class I, II and CD 11c expression as well as the co-stimulatory molecules CD 83 and 86 by using flow cytometry. The phagocytic capacity of TLY-pulsed DCs was investigated through FITC-dextran uptake by using flow cytometry. The effect on the cytokines release including IL-12, IL-6 and IL-10 was elucidated by using ELISA. The migration capacity and T cell proliferation activity of pulsed DCs were measured. The relative gene expression levels of cytokines were determined by using qRT-PCR. The major constituents of P. amarus extract were qualitatively and quantitatively analyzed by using validated reversed-phase high performance liquid chromatography (HPLC) methods.

Results

P. amarus-generated TLY significantly up-regulated the expression levels of MHC class I, CD 11 c, CD 83 and 86 in pulsed DCs. The release of interleukin IL-12 and IL-6 was enhanced by TLY-DCs at a ratio of 1 DC: 3 tumor apoptotic bodies (APO), however, the release of IL-10 was suppressed. The migration ability as well as allogeneic T-cell proliferation activities of loaded DCs were significantly enhanced, but their phagocytic capacity was highly attenuated. The gene expression profiles for IL-12 and IL-6 of DCs showed increase in their mRNA gene expression in TLY pulsed DCs versus unloaded and LPS-treated only DCs.

Conclusion

The effect of P. amarus-generated TLY on the immune effector mechanisms of DCs verified its potential to induce an in vitro anti-tumor immune response against the recognized tumor antigen.
Literature
2.
go back to reference Steinman RM. The dendritic cell system and its role in immunogenicity. Annu Rev Immunol. 1991;9:203–8.CrossRef Steinman RM. The dendritic cell system and its role in immunogenicity. Annu Rev Immunol. 1991;9:203–8.CrossRef
3.
4.
go back to reference Stockwin LH, McGonagle D, Martin IG, Blair GE. Dendritic cells: immunological sentinels with a central role in health and disease. Immunol Cell Biol. 2000;78(2):91–102.CrossRefPubMed Stockwin LH, McGonagle D, Martin IG, Blair GE. Dendritic cells: immunological sentinels with a central role in health and disease. Immunol Cell Biol. 2000;78(2):91–102.CrossRefPubMed
5.
go back to reference Tugues S, Burkhard SH, Ohs I, Vrohlings M, Nussbaum K, Vom BJ. New insights into IL-12-mediated tumor suppression. Cell Death Differ. 2015;22(2):237–46.CrossRefPubMed Tugues S, Burkhard SH, Ohs I, Vrohlings M, Nussbaum K, Vom BJ. New insights into IL-12-mediated tumor suppression. Cell Death Differ. 2015;22(2):237–46.CrossRefPubMed
6.
go back to reference Martínez-Lostao L, Anel A, Pardo J. How do cytotoxic lymphocytes kill cancer cells? Clin Cancer Res. 2015;21(22):5047–56.CrossRefPubMed Martínez-Lostao L, Anel A, Pardo J. How do cytotoxic lymphocytes kill cancer cells? Clin Cancer Res. 2015;21(22):5047–56.CrossRefPubMed
8.
9.
go back to reference Inaba K, Turley S, Yamaide F, Iyoda T, Mahnke K, Inaba M. Efficient presentation of phagocytosed cellular fragments on the major histocompatibility complex class II products of dendritic cells. J Exp Med. 1998;188(11):2163–73.CrossRefPubMedPubMedCentral Inaba K, Turley S, Yamaide F, Iyoda T, Mahnke K, Inaba M. Efficient presentation of phagocytosed cellular fragments on the major histocompatibility complex class II products of dendritic cells. J Exp Med. 1998;188(11):2163–73.CrossRefPubMedPubMedCentral
10.
go back to reference Trinchieri G. Interleukin-12: a proinflammatory cytokine with immuneregulatory functions that bridge innate resistence and antigen-specific adaptive immunity. Annu Rev Immunol. 1995;13:251–176.CrossRefPubMed Trinchieri G. Interleukin-12: a proinflammatory cytokine with immuneregulatory functions that bridge innate resistence and antigen-specific adaptive immunity. Annu Rev Immunol. 1995;13:251–176.CrossRefPubMed
11.
go back to reference Ma Y, Shurin GV, Peiyuan Z, Shurin MR. Dendritic cells in the cancer microenvironment. J Cancer. 2013;4(1):36–44.CrossRefPubMed Ma Y, Shurin GV, Peiyuan Z, Shurin MR. Dendritic cells in the cancer microenvironment. J Cancer. 2013;4(1):36–44.CrossRefPubMed
13.
go back to reference Grivennikov SI, Karin M. Inflammatory cytokines in cancer: tumour necrosis factor and interleukin 6 take the stage. Ann Rheum Dis. 2011;70:104–8.CrossRef Grivennikov SI, Karin M. Inflammatory cytokines in cancer: tumour necrosis factor and interleukin 6 take the stage. Ann Rheum Dis. 2011;70:104–8.CrossRef
14.
go back to reference Podrazil M, Horvath R, Becht E, Rozkova D, Bilkova P, Hromadkova H. Phase I/II clinical trial of dendritic-cell based immunotherapy (DCVAC/PCa) combined with chemotherapy in patients with metastatic, castration-resistant prostate cancer. Oncotarget. 2015;6(20):18192–205.CrossRefPubMedPubMedCentral Podrazil M, Horvath R, Becht E, Rozkova D, Bilkova P, Hromadkova H. Phase I/II clinical trial of dendritic-cell based immunotherapy (DCVAC/PCa) combined with chemotherapy in patients with metastatic, castration-resistant prostate cancer. Oncotarget. 2015;6(20):18192–205.CrossRefPubMedPubMedCentral
15.
go back to reference Gray HJ, Benigno B, Berek J, Chang J, Mason J, Mileshkin L. Progression-free and overall survival in ovarian cancer patients treated with CVac, a mucin 1 dendritic cell therapy in a randomized phase 2 trial. J Immunother Cancer. 2016;4(1):34.CrossRefPubMedPubMedCentral Gray HJ, Benigno B, Berek J, Chang J, Mason J, Mileshkin L. Progression-free and overall survival in ovarian cancer patients treated with CVac, a mucin 1 dendritic cell therapy in a randomized phase 2 trial. J Immunother Cancer. 2016;4(1):34.CrossRefPubMedPubMedCentral
16.
go back to reference Amin A, Dudek AZ, Logan TF, Lance RS, Holzbeierlein JM, Knox JJ. Survival with AGS-003, an autologous dendritic cell–based immunotherapy, in combination with sunitinib in unfavorable risk patients with advanced renal cell carcinoma (RCC): phase 2 study results. J Immunother Cancer. 2015;3(1):14.CrossRefPubMedPubMedCentral Amin A, Dudek AZ, Logan TF, Lance RS, Holzbeierlein JM, Knox JJ. Survival with AGS-003, an autologous dendritic cell–based immunotherapy, in combination with sunitinib in unfavorable risk patients with advanced renal cell carcinoma (RCC): phase 2 study results. J Immunother Cancer. 2015;3(1):14.CrossRefPubMedPubMedCentral
17.
go back to reference Dillman RO, Selvan SR, Schiltz PM, McClay EF, Barth NM, DePriest C. Phase II trial of dendritic cells loaded with antigens from self-renewing, proliferating autologous tumor cells as patient-specific antitumor vaccines in patients with metastatic melanoma: final report. Cancer Biother Radiopharm. 2009;24(3):311–9.CrossRefPubMed Dillman RO, Selvan SR, Schiltz PM, McClay EF, Barth NM, DePriest C. Phase II trial of dendritic cells loaded with antigens from self-renewing, proliferating autologous tumor cells as patient-specific antitumor vaccines in patients with metastatic melanoma: final report. Cancer Biother Radiopharm. 2009;24(3):311–9.CrossRefPubMed
18.
go back to reference Mayanagi S, Kitago M, Sakurai T, Matsuda T, Fujita T, Higuchi H. Phase I pilot study of Wilms tumor gene 1 peptide-pulsed dendritic cell vaccination combined with gemcitabine in pancreatic cancer. Cancer Sci. 2015;106(4):397–406.CrossRefPubMedPubMedCentral Mayanagi S, Kitago M, Sakurai T, Matsuda T, Fujita T, Higuchi H. Phase I pilot study of Wilms tumor gene 1 peptide-pulsed dendritic cell vaccination combined with gemcitabine in pancreatic cancer. Cancer Sci. 2015;106(4):397–406.CrossRefPubMedPubMedCentral
19.
go back to reference Polyzoidis S, Ashkan K. DCVax®-L - developed by northwest biotherapeutics. Hum Vaccines Immunother. 2014;10(11):3139–45.CrossRef Polyzoidis S, Ashkan K. DCVax®-L - developed by northwest biotherapeutics. Hum Vaccines Immunother. 2014;10(11):3139–45.CrossRef
20.
go back to reference Notka F, Meier GR, Wagner R. Inhibition of wild-type human immunodeficiency virus and reverse transcriptase inhibitor-resistant variants by Phyllanthus amarus. Antivir Res. 2003;58(2):175–86.CrossRefPubMed Notka F, Meier GR, Wagner R. Inhibition of wild-type human immunodeficiency virus and reverse transcriptase inhibitor-resistant variants by Phyllanthus amarus. Antivir Res. 2003;58(2):175–86.CrossRefPubMed
21.
go back to reference Yuandani, Ilangkovan M, Jantan I, Mohamad HF, Husain K, Abdul Razak AF. Inhibitory effects of standardized extracts of Phyllanthus amarus and Phyllanthus urinaria and their marker compounds on phagocytic activity of human neutrophils. Evidence-based Complement Altern Med. 2013;2013:603634.CrossRef Yuandani, Ilangkovan M, Jantan I, Mohamad HF, Husain K, Abdul Razak AF. Inhibitory effects of standardized extracts of Phyllanthus amarus and Phyllanthus urinaria and their marker compounds on phagocytic activity of human neutrophils. Evidence-based Complement Altern Med. 2013;2013:603634.CrossRef
22.
go back to reference Bhat SS, Hegde KS, Chandrashekhar S, Rao SN, Manikkoth S. Preclinical screening of Phyllanthus amarus ethanolic extract for its analgesic and antimicrobial activity. Pharm Res. 2015;7(4):378–84. Bhat SS, Hegde KS, Chandrashekhar S, Rao SN, Manikkoth S. Preclinical screening of Phyllanthus amarus ethanolic extract for its analgesic and antimicrobial activity. Pharm Res. 2015;7(4):378–84.
23.
go back to reference Lawson-Evi P, Eklu-Gadeg K, Agbonon A, Aklikokou K, Creppy E, Gbeassor M. Antidiabetic activity of Phyllanthus amarus Schum. And Thonn. (Euphorbiaceae) on alloxan induced diabetes in male wistar rats. J Appl Sci. 2011;11(16):2968–73.CrossRef Lawson-Evi P, Eklu-Gadeg K, Agbonon A, Aklikokou K, Creppy E, Gbeassor M. Antidiabetic activity of Phyllanthus amarus Schum. And Thonn. (Euphorbiaceae) on alloxan induced diabetes in male wistar rats. J Appl Sci. 2011;11(16):2968–73.CrossRef
24.
go back to reference Abhyankar G, Suprasanna P, Pandey BN, Mishra KP, Rao KV, Reddy VD. Hairy root extract of Phyllanthus amarus induces apoptotic cell death in human breast cancer cells. Innov Food Sci Emerg Technol. 2010;11(3):526–32.CrossRef Abhyankar G, Suprasanna P, Pandey BN, Mishra KP, Rao KV, Reddy VD. Hairy root extract of Phyllanthus amarus induces apoptotic cell death in human breast cancer cells. Innov Food Sci Emerg Technol. 2010;11(3):526–32.CrossRef
25.
go back to reference Lee SH, Jaganath IB, Wang SM, Sekaran SD. Antimetastatic effects of Phyllanthus on human lung (A549) and breast (MCF-7) cancer cell lines. PLoS One. 2011;6(6):1–14. Lee SH, Jaganath IB, Wang SM, Sekaran SD. Antimetastatic effects of Phyllanthus on human lung (A549) and breast (MCF-7) cancer cell lines. PLoS One. 2011;6(6):1–14.
26.
go back to reference Jantan I, Ilangkovan M, Mohamad HF. Correlation between the major components of Phyllanthus amarus and Phyllanthus urinaria and their inhibitory effects on phagocytic activity of human neutrophils. Evidence-based Complement Altern Med. 2014;14:1–12.CrossRef Jantan I, Ilangkovan M, Mohamad HF. Correlation between the major components of Phyllanthus amarus and Phyllanthus urinaria and their inhibitory effects on phagocytic activity of human neutrophils. Evidence-based Complement Altern Med. 2014;14:1–12.CrossRef
27.
go back to reference Henry F, Boisteau O, Bretaudeau L, Lieubeau B, Meflah K, Grégoire M. Antigen-presenting cells that phagocytose apoptotic tumor-derived cells are potent tumor vaccines. Cancer Res. 1999;59(14):3329–32.PubMed Henry F, Boisteau O, Bretaudeau L, Lieubeau B, Meflah K, Grégoire M. Antigen-presenting cells that phagocytose apoptotic tumor-derived cells are potent tumor vaccines. Cancer Res. 1999;59(14):3329–32.PubMed
29.
go back to reference Zajac AJ, Blattman JN, Murali-Krishna K, Sourdive DJ, Suresh M, Altman JD. Viral immune evasion due to persistence of activated T cells without effector function. J Exp Med. 1998;188(12):2205–13.CrossRefPubMedPubMedCentral Zajac AJ, Blattman JN, Murali-Krishna K, Sourdive DJ, Suresh M, Altman JD. Viral immune evasion due to persistence of activated T cells without effector function. J Exp Med. 1998;188(12):2205–13.CrossRefPubMedPubMedCentral
30.
31.
go back to reference Fadok VA, Bratton DL, Rose DM, Pearson A, Ezekewitz RAB, Henson PM. A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature. 2000;405(6782):85–90.CrossRefPubMed Fadok VA, Bratton DL, Rose DM, Pearson A, Ezekewitz RAB, Henson PM. A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature. 2000;405(6782):85–90.CrossRefPubMed
32.
go back to reference Idoyaga J, Moreno J, Bonifaz L. Tumor cells prevent mouse dendritic cell maturation induced by TLR ligands. Cancer Immunol Immunother. 2007;56(8):1237–50.CrossRefPubMed Idoyaga J, Moreno J, Bonifaz L. Tumor cells prevent mouse dendritic cell maturation induced by TLR ligands. Cancer Immunol Immunother. 2007;56(8):1237–50.CrossRefPubMed
33.
go back to reference Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature. 2002;418(6894):191–5.CrossRefPubMed Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature. 2002;418(6894):191–5.CrossRefPubMed
34.
go back to reference Strome SE, Voss S, Wilcox R, Wakefield TL, Tamada K, Flies D. Strategies for antigen loading of dendritic cells to enhance the antitumor immune response. Cancer Res. 2002;62(6):1884–9.PubMed Strome SE, Voss S, Wilcox R, Wakefield TL, Tamada K, Flies D. Strategies for antigen loading of dendritic cells to enhance the antitumor immune response. Cancer Res. 2002;62(6):1884–9.PubMed
35.
go back to reference Parvathaneni M, Battu GR, Gray AI, Gummalla P. Investigation of anticancer potential of hypophyllanthin and phyllanthin against breast cancer by in vitro and in vivo methods. Asian Pacific J Trop Dis. 2014;4(S1):930–5. Parvathaneni M, Battu GR, Gray AI, Gummalla P. Investigation of anticancer potential of hypophyllanthin and phyllanthin against breast cancer by in vitro and in vivo methods. Asian Pacific J Trop Dis. 2014;4(S1):930–5.
36.
go back to reference Pang JHS, Huang ST, Wang CY, Yang RC, Wu HT, Yang SH. Ellagic acid, the active compound of Phyllanthus urinaria, exerts in vivo anti-angiogenic effect and inhibits MMP-2 activity. Evidence-based Complement Altern Med. 2011;2011:1–11. Pang JHS, Huang ST, Wang CY, Yang RC, Wu HT, Yang SH. Ellagic acid, the active compound of Phyllanthus urinaria, exerts in vivo anti-angiogenic effect and inhibits MMP-2 activity. Evidence-based Complement Altern Med. 2011;2011:1–11.
37.
go back to reference Bin-Chuan JI, Hsu WH, Yang JS, Hsia TC, Lu CC, Chiang JH. Gallic acid induces apoptosis via caspase-3 and mitochondrion-dependent pathways in vitro and suppresses lung xenograft tumor growth in vivo. J Agric Food Chem. 2009;57(16):7596–604.CrossRef Bin-Chuan JI, Hsu WH, Yang JS, Hsia TC, Lu CC, Chiang JH. Gallic acid induces apoptosis via caspase-3 and mitochondrion-dependent pathways in vitro and suppresses lung xenograft tumor growth in vivo. J Agric Food Chem. 2009;57(16):7596–604.CrossRef
38.
go back to reference Hatfield P, Merrick AE, West E, OʼDonnell D, Selby P, Vile R. Optimization of dendritic cell loading with tumor cell lysates for cancer immunotherapy. J Immunother. 2008;31(7):620–32.CrossRefPubMedPubMedCentral Hatfield P, Merrick AE, West E, OʼDonnell D, Selby P, Vile R. Optimization of dendritic cell loading with tumor cell lysates for cancer immunotherapy. J Immunother. 2008;31(7):620–32.CrossRefPubMedPubMedCentral
39.
go back to reference Fields RC, Shimizu K, Mulé JJ. Murine dendritic cells pulsed with whole tumor lysates mediate potent antitumor immune responses in vitro and in vivo. Proc Natl Acad Sci U S A. 1998;95(16):9482–7.CrossRefPubMedPubMedCentral Fields RC, Shimizu K, Mulé JJ. Murine dendritic cells pulsed with whole tumor lysates mediate potent antitumor immune responses in vitro and in vivo. Proc Natl Acad Sci U S A. 1998;95(16):9482–7.CrossRefPubMedPubMedCentral
40.
go back to reference Sharma A, Koldovsky U, Xu S, Mick R, Roses R, Fitzpatrick E. HER-2 pulsed dendritic cell vaccine can eliminate HER-2 expression and impact ductal carcinoma in situ. Cancer. 2012;118(17):4354–62.CrossRefPubMedPubMedCentral Sharma A, Koldovsky U, Xu S, Mick R, Roses R, Fitzpatrick E. HER-2 pulsed dendritic cell vaccine can eliminate HER-2 expression and impact ductal carcinoma in situ. Cancer. 2012;118(17):4354–62.CrossRefPubMedPubMedCentral
41.
go back to reference Czerniecki BJ, Koski GK, Koldovsky U, Xu S, Cohen PA, Mick R. Targeting HER-2/neu in early breast cancer development using dendritic cells with staged Interleukin-12 burst secretion. Cancer Res. 2007;67(4):1842–52.CrossRefPubMed Czerniecki BJ, Koski GK, Koldovsky U, Xu S, Cohen PA, Mick R. Targeting HER-2/neu in early breast cancer development using dendritic cells with staged Interleukin-12 burst secretion. Cancer Res. 2007;67(4):1842–52.CrossRefPubMed
42.
go back to reference Bonham CA, Lu L, Banas RA, Fontes P, Rao AS, Starzl TE. TGF-β1 pretreatment impairs the allostimulatory function of human bone marrow-derived antigen-presenting cells for both naive and primed T cells. Transpl Immunol. 1996;4(3):186–91.CrossRefPubMedPubMedCentral Bonham CA, Lu L, Banas RA, Fontes P, Rao AS, Starzl TE. TGF-β1 pretreatment impairs the allostimulatory function of human bone marrow-derived antigen-presenting cells for both naive and primed T cells. Transpl Immunol. 1996;4(3):186–91.CrossRefPubMedPubMedCentral
43.
go back to reference Sallusto F, Cella M, Danieli C, Lanzavecchia A. Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class 1I compartment: downregulation by cytokines and bacterial products. J Exp Med. 1995;182:389–400.CrossRefPubMed Sallusto F, Cella M, Danieli C, Lanzavecchia A. Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class 1I compartment: downregulation by cytokines and bacterial products. J Exp Med. 1995;182:389–400.CrossRefPubMed
44.
go back to reference Hsieh CS, Macatonia SE, Tripp CS, Wolf SF, O’Garra A, Murphy KM. Development of TH1 CD4+ T cells through IL-12 produced by listeria-induced macrophages. Science. 1993;260(5107):547–9.CrossRefPubMed Hsieh CS, Macatonia SE, Tripp CS, Wolf SF, O’Garra A, Murphy KM. Development of TH1 CD4+ T cells through IL-12 produced by listeria-induced macrophages. Science. 1993;260(5107):547–9.CrossRefPubMed
45.
go back to reference Vanden Bush TJ, Buchta CM, Claudio J, Bishop GA. Cutting edge: importance of IL-6 and cooperation between innate and adaptive immune receptors in cellular vaccination with B lymphocytes. J Immunol. 2009;183(8):4833–7.CrossRefPubMed Vanden Bush TJ, Buchta CM, Claudio J, Bishop GA. Cutting edge: importance of IL-6 and cooperation between innate and adaptive immune receptors in cellular vaccination with B lymphocytes. J Immunol. 2009;183(8):4833–7.CrossRefPubMed
46.
go back to reference Gagnon J, Ramanathan S, Leblanc C, Cloutier A, McDonald PP, Ilangumaran S. IL-6, in synergy with IL-7 or IL-15, stimulates TCR-independent proliferation and functional differentiation of CD8+ T lymphocytes. J Immunol. 2008;180(12):7958–68.CrossRefPubMed Gagnon J, Ramanathan S, Leblanc C, Cloutier A, McDonald PP, Ilangumaran S. IL-6, in synergy with IL-7 or IL-15, stimulates TCR-independent proliferation and functional differentiation of CD8+ T lymphocytes. J Immunol. 2008;180(12):7958–68.CrossRefPubMed
47.
go back to reference Teague TK, Marrack P, Kappler JW, Vella AT. IL-6 rescues resting mouse T cells from apoptosis. J Immunol. 1997;158(12):5791–6.PubMed Teague TK, Marrack P, Kappler JW, Vella AT. IL-6 rescues resting mouse T cells from apoptosis. J Immunol. 1997;158(12):5791–6.PubMed
48.
go back to reference Mohamed SIA, Jantan I, Haque MA. Naturally occurring immunomodulators with antitumor activity: an insight on their mechanisms of action. Int Immunopharmacol. 2017;50:291–304.CrossRefPubMed Mohamed SIA, Jantan I, Haque MA. Naturally occurring immunomodulators with antitumor activity: an insight on their mechanisms of action. Int Immunopharmacol. 2017;50:291–304.CrossRefPubMed
49.
go back to reference Zhang X, Huang H, Yuan J, Sun D, Hou W-S, Gordon J. CD4-8- dendritic cells prime CD4+ T regulatory 1 cells to suppress antitumor immunity. J Immunol. 2005;175(5):2931–7.CrossRefPubMed Zhang X, Huang H, Yuan J, Sun D, Hou W-S, Gordon J. CD4-8- dendritic cells prime CD4+ T regulatory 1 cells to suppress antitumor immunity. J Immunol. 2005;175(5):2931–7.CrossRefPubMed
50.
go back to reference Vopenkova K, Mollova K, Buresova I, Michalek J. Complex evaluation of human monocyte-derived dendritic cells for cancer immunotherapy. J Cell Mol Med. 2012;16(11):2827–37.CrossRefPubMedPubMedCentral Vopenkova K, Mollova K, Buresova I, Michalek J. Complex evaluation of human monocyte-derived dendritic cells for cancer immunotherapy. J Cell Mol Med. 2012;16(11):2827–37.CrossRefPubMedPubMedCentral
Metadata
Title
Dendritic cells pulsed with generated tumor cell lysate from Phyllanthus amarus Schum. & Thonn. induces anti-tumor immune response
Authors
Shimaa Ibrahim Abdelmenym Mohamed
Ibrahim Jantan
Mohd Azlan Nafiah
Mohamed Ali Seyed
Kok Meng Chan
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2018
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-018-2296-4

Other articles of this Issue 1/2018

BMC Complementary Medicine and Therapies 1/2018 Go to the issue