Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2018

Open Access 01-12-2018 | Research article

Naringin ameliorates the high glucose-induced rat mesangial cell inflammatory reaction by modulating the NLRP3 Inflammasome

Authors: Fenqin Chen, Guozhu Wei, Jiao Xu, Xiaoyu Ma, Qiuyue Wang

Published in: BMC Complementary Medicine and Therapies | Issue 1/2018

Login to get access

Abstract

Background

The Nucleotide binding and oligomerization domain-like receptorfamily pyrin domain-containing 3 (NLRP3)-inflammasome plays an important role in various diseases, including a variety of kidney diseases. Naringin exhibits anti-inflammatory and anti-oxidation effects among others, but its specific mechanisms are not clear. We investigated the expression of the NLRP3-inflammasome under high-glucose conditions, assessed the effects of naringin on that process, and further elucidated the role of naringin in the pathogenesis of diabetic kidney disease(DKD).

Methods

To assess the therapeutic potential of naringin and the mechanisms involved, we cultured rat glomerular mesangial cells and grouped them according to different glucose concentrations, different action times, different concentrations of MCC950, and different concentrations of naringin.The cell proliferation was measured by MTT assay. The expression of Interleukin-1β(IL-1β) and Interleukin18 (IL-18) in the cell supernatant were detected by ELISA. The expression and activity of NLPR3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) and Caspase-1 were detected by Western Blot.

Results

The expressions of NLRP3, ASC, caspase-1, IL-1β, and IL-18 in rat glomerular mesangial cells were significantly higher in the high glucose (HG) group than in the control normal glucose (NG) group and exhibited time-dependence activity. The expression levels of NLRP3, caspase-1, IL-1β, and IL-18 in different treatment groups were significantly lower compared with the HG group after 48 h of MCC950 pre-treatment (p < 0.05). Pre-treatment with naringin produced the same results. Naringin also inhibited the proliferation of cells.

Conclusions

The NLRP3-inflammasome potentially plays a role in the process of activation and inflammation of glomerular mesangial cells as induced by high-glucose conditions. Naringin inhibited the proliferation of cells that were induced by high glucose. Further, it reduced the expression of inflammatory factors that are mediated by NLRP3 through the NLRP3-caspase-1-IL-1β/IL-18 signaling pathway, which makes naringin a potentially novel treatment for DKD disease.
Appendix
Available only for authorised users
Literature
1.
go back to reference Chen F, Wang Q, Wei G, et al. Effects of mycophenolate mofetil on the expression of monocyte chemoattractant protein-1 and fibronectin in high glucose cultured human mesangial cells. Genet Mol Res. 2014;13(2):3154–61.CrossRefPubMed Chen F, Wang Q, Wei G, et al. Effects of mycophenolate mofetil on the expression of monocyte chemoattractant protein-1 and fibronectin in high glucose cultured human mesangial cells. Genet Mol Res. 2014;13(2):3154–61.CrossRefPubMed
2.
go back to reference Chen F-q, Wang J, Liu X-b, et al. Levels of inflammatory cytokines in type 2 diabetes patients with different urinary albumin excretion rates and their correlation with clinical variables. Journal of Diabetes Research. 2013;2013:138969.PubMedPubMedCentral Chen F-q, Wang J, Liu X-b, et al. Levels of inflammatory cytokines in type 2 diabetes patients with different urinary albumin excretion rates and their correlation with clinical variables. Journal of Diabetes Research. 2013;2013:138969.PubMedPubMedCentral
3.
go back to reference Arora MK, Singh UK. Molecular mechanisms in the pathogenesis of diabetic nephropathy:an update. Vasc Pharmacol. 2013;58(4):259–71.CrossRef Arora MK, Singh UK. Molecular mechanisms in the pathogenesis of diabetic nephropathy:an update. Vasc Pharmacol. 2013;58(4):259–71.CrossRef
4.
go back to reference Yamahara K, Yasuda M, Kume S, et al. The role of autophagy in the pathogenesis of diabetic nephropathy. Journal of diabetes research. 2013;2013:193757.CrossRefPubMedPubMedCentral Yamahara K, Yasuda M, Kume S, et al. The role of autophagy in the pathogenesis of diabetic nephropathy. Journal of diabetes research. 2013;2013:193757.CrossRefPubMedPubMedCentral
6.
go back to reference Zhang MZ, Wang Y, Paueksakon P, et al. Epidermal growth factor receptor inhibition slows progression of diabetic nephropathy in association with a decrease in endoplasmic reticulum stress and an increase in autophagy. Diabetes. 2014;63(6):2063–72.CrossRefPubMedPubMedCentral Zhang MZ, Wang Y, Paueksakon P, et al. Epidermal growth factor receptor inhibition slows progression of diabetic nephropathy in association with a decrease in endoplasmic reticulum stress and an increase in autophagy. Diabetes. 2014;63(6):2063–72.CrossRefPubMedPubMedCentral
7.
go back to reference Madhumita JB, Marie EM, Hyunjin S, et al. Elevated proinflammatory cytokine production by a skewed T cell compartment requires monocytes and promotes inflammation in type 2 diabetes. J Immunol. 2011;186(2):1162–72.CrossRef Madhumita JB, Marie EM, Hyunjin S, et al. Elevated proinflammatory cytokine production by a skewed T cell compartment requires monocytes and promotes inflammation in type 2 diabetes. J Immunol. 2011;186(2):1162–72.CrossRef
8.
go back to reference Juan F, Navarro G, Carmen MF. The role of inflammatory cytokines in diabetic nephropathy. J Am Soc Nephrol. 2008;19(3):433–42.CrossRef Juan F, Navarro G, Carmen MF. The role of inflammatory cytokines in diabetic nephropathy. J Am Soc Nephrol. 2008;19(3):433–42.CrossRef
9.
go back to reference Guadalupe OM, Virginia LP, Oscar LF, et al. Suppressors of cytokine signaling abrogates diabetic nephropathy. J Am Soc Nephrol. 2010;21(5):763–72.CrossRef Guadalupe OM, Virginia LP, Oscar LF, et al. Suppressors of cytokine signaling abrogates diabetic nephropathy. J Am Soc Nephrol. 2010;21(5):763–72.CrossRef
10.
go back to reference Sridevi D, Jung MY, Catherine R, et al. Low vitamin D levels correlate with the proinflammatory state in type 1 diabetic subjects with and without microvascular complications. American Society for Clinical Pathology. 2011;135(3):429–33.CrossRef Sridevi D, Jung MY, Catherine R, et al. Low vitamin D levels correlate with the proinflammatory state in type 1 diabetic subjects with and without microvascular complications. American Society for Clinical Pathology. 2011;135(3):429–33.CrossRef
11.
go back to reference Zehra O, Tahseen AC. Vitamin D deficiency and type 2 diabetes. Postgrad Med J. 2010;86(1011):18–25.CrossRef Zehra O, Tahseen AC. Vitamin D deficiency and type 2 diabetes. Postgrad Med J. 2010;86(1011):18–25.CrossRef
12.
go back to reference Sheena K, Reinhold V, Ravi R, et al. Association of Vitamin D with insulin resistance and β-cell dysfunction in subjects at risk for type 2 diabetes. Diabetes Care. 2010;33(6):1379–81.CrossRef Sheena K, Reinhold V, Ravi R, et al. Association of Vitamin D with insulin resistance and β-cell dysfunction in subjects at risk for type 2 diabetes. Diabetes Care. 2010;33(6):1379–81.CrossRef
13.
go back to reference Hypponen E, Boucher BJ, Berry DJ, et al. 25-hydroxyvitamin D,IGF-1,and metabolic syndrome at 45 years of age:a cross sectional study in the 1958 British birth cohort. Diabetes. 2008;57(2):298–305.CrossRefPubMed Hypponen E, Boucher BJ, Berry DJ, et al. 25-hydroxyvitamin D,IGF-1,and metabolic syndrome at 45 years of age:a cross sectional study in the 1958 British birth cohort. Diabetes. 2008;57(2):298–305.CrossRefPubMed
14.
go back to reference Shahzad K, Bock F, Al-Dabet MM, et al. Stabilization of endogenous Nrf2 by minocycline protects against Nlrp3-inflammasome induced diabeticnephropathy. Sci Rep. 2016;10(6):34228.CrossRef Shahzad K, Bock F, Al-Dabet MM, et al. Stabilization of endogenous Nrf2 by minocycline protects against Nlrp3-inflammasome induced diabeticnephropathy. Sci Rep. 2016;10(6):34228.CrossRef
15.
go back to reference Xiao J, Fu C, Zhang X, et al. Soluble monosodium urate, but not its crystal, induces toll like receptor 4-dependent immune activation in renal mesangial cells. Mol Immunol. 2015;66(2):310–8.CrossRefPubMed Xiao J, Fu C, Zhang X, et al. Soluble monosodium urate, but not its crystal, induces toll like receptor 4-dependent immune activation in renal mesangial cells. Mol Immunol. 2015;66(2):310–8.CrossRefPubMed
16.
go back to reference Lichtnekert J, Kulkarni OP, Mulay SR, et al. Anti-GBM glomerulonephritis involves IL-1 butis independent of NLRP3/ASC inflammasome-mediatedactivation of caspase-1. PLoS One. 2011;6(10):e26778.CrossRefPubMedPubMedCentral Lichtnekert J, Kulkarni OP, Mulay SR, et al. Anti-GBM glomerulonephritis involves IL-1 butis independent of NLRP3/ASC inflammasome-mediatedactivation of caspase-1. PLoS One. 2011;6(10):e26778.CrossRefPubMedPubMedCentral
17.
go back to reference Samra YA, Said HS, Elsherbiny NM, et al. Cepharanthine and Piperine ameliorate diabetic nephropathy in rats:role of NF-κB and NLRP3 inflammasome. Life Sci. 2016;15(157):187–99.CrossRef Samra YA, Said HS, Elsherbiny NM, et al. Cepharanthine and Piperine ameliorate diabetic nephropathy in rats:role of NF-κB and NLRP3 inflammasome. Life Sci. 2016;15(157):187–99.CrossRef
18.
go back to reference Yang SM, Ka SM, Wu HL, et al. Thrombomodulin domain 1 ameliorate diabeticnephropathy in mice via anti-NF-κB/NLRP3inflammasome-mediated inflammation,enhancement of NRF2 antioxidant activity and inhibition of apoptosis. Diabetologia. 2014;57(2):424–34.CrossRefPubMed Yang SM, Ka SM, Wu HL, et al. Thrombomodulin domain 1 ameliorate diabeticnephropathy in mice via anti-NF-κB/NLRP3inflammasome-mediated inflammation,enhancement of NRF2 antioxidant activity and inhibition of apoptosis. Diabetologia. 2014;57(2):424–34.CrossRefPubMed
19.
go back to reference Feng H,Gu J,Gou F, et al. High glucose and lipopolysaccharide prime NLRP3 Inflammasome via ROS/TXNIP pathway in mesangial cells. J Diabetes Res, 2016,2016:6973175. Feng H,Gu J,Gou F, et al. High glucose and lipopolysaccharide prime NLRP3 Inflammasome via ROS/TXNIP pathway in mesangial cells. J Diabetes Res, 2016,2016:6973175.
20.
go back to reference Chen HY, Huang XR, Wang W, et al. The protective role of samd7 in diabetic kidney disease:mechanism and therapeutic potential. Diabetes. 2011;60(2):590–601.CrossRefPubMedPubMedCentral Chen HY, Huang XR, Wang W, et al. The protective role of samd7 in diabetic kidney disease:mechanism and therapeutic potential. Diabetes. 2011;60(2):590–601.CrossRefPubMedPubMedCentral
21.
go back to reference Alam MA, Subhan N, Rahman MM, et al. Effect of citrus flavonoids, naringin and naringenin,on metabolic syndrome and their mechanisms of action. Adv Nutr. 2014;5(4):404–17.CrossRefPubMedPubMedCentral Alam MA, Subhan N, Rahman MM, et al. Effect of citrus flavonoids, naringin and naringenin,on metabolic syndrome and their mechanisms of action. Adv Nutr. 2014;5(4):404–17.CrossRefPubMedPubMedCentral
22.
go back to reference Sadowska-Bartosz I,Galiniak S,Bartosz G. Polyphenols protect against protein glycoxidation. Free Radic Biol Med. 2014;75(Suppl 1):S47.CrossRefPubMed Sadowska-Bartosz I,Galiniak S,Bartosz G. Polyphenols protect against protein glycoxidation. Free Radic Biol Med. 2014;75(Suppl 1):S47.CrossRefPubMed
23.
go back to reference Dhanya R, Arun KB, Nisha VM, et al. Preconditioning L6 muscle cells with Naringin ameliorates oxidative stress and increases glucose uptake. PLoS One. 2015;10(7):e0132429.CrossRefPubMedPubMedCentral Dhanya R, Arun KB, Nisha VM, et al. Preconditioning L6 muscle cells with Naringin ameliorates oxidative stress and increases glucose uptake. PLoS One. 2015;10(7):e0132429.CrossRefPubMedPubMedCentral
24.
go back to reference Kandhare AD, Ghosh P, Bodhankar SL. Naringin,a flavanone glycoside,promotes angiogenesis and inhibits endothelial apoptosis through modulation of inflammatory and growth factor expression in diabetic foot ulcer in rats. Chem Biol Interact. 2014;219:101–12.CrossRefPubMed Kandhare AD, Ghosh P, Bodhankar SL. Naringin,a flavanone glycoside,promotes angiogenesis and inhibits endothelial apoptosis through modulation of inflammatory and growth factor expression in diabetic foot ulcer in rats. Chem Biol Interact. 2014;219:101–12.CrossRefPubMed
25.
go back to reference MacKenzie A, Wilson HL, Kiss-Toth E, et al. Rapid secretion of interleukin-1beta b microvesicle shedding. Immunity. 2001;15(5):825–35.CrossRefPubMed MacKenzie A, Wilson HL, Kiss-Toth E, et al. Rapid secretion of interleukin-1beta b microvesicle shedding. Immunity. 2001;15(5):825–35.CrossRefPubMed
26.
go back to reference Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol Cell. 2002;10(2):417–26.CrossRefPubMed Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol Cell. 2002;10(2):417–26.CrossRefPubMed
27.
go back to reference Wang C, Pan Y, Zhang QY, et al. Quercetin and allopurinla ameliorate kidney injury in STZ-treated rats with regulation of renal NLRP3inflammasome activation and lipid accumulation. PLoS One. 2012;7(6):e38285.CrossRefPubMedPubMedCentral Wang C, Pan Y, Zhang QY, et al. Quercetin and allopurinla ameliorate kidney injury in STZ-treated rats with regulation of renal NLRP3inflammasome activation and lipid accumulation. PLoS One. 2012;7(6):e38285.CrossRefPubMedPubMedCentral
28.
go back to reference Fang L, Xie D, Wu X, et al. Involvement of endoplasmic reticulumstress in albuminuria induced inflammasome activation in renal proximal tubular cells. PLoS One. 2013;8(8):e72344.CrossRefPubMedPubMedCentral Fang L, Xie D, Wu X, et al. Involvement of endoplasmic reticulumstress in albuminuria induced inflammasome activation in renal proximal tubular cells. PLoS One. 2013;8(8):e72344.CrossRefPubMedPubMedCentral
29.
go back to reference Kim SM, Lee SH, Kim YG, et al. Hyperuricemia-induced NLRP3 activation of macrophages contributes tothe progression of diabeticnephropathy. Am J Physiol Renal Physiol. 2015;308(9):F993–F1003.CrossRefPubMed Kim SM, Lee SH, Kim YG, et al. Hyperuricemia-induced NLRP3 activation of macrophages contributes tothe progression of diabeticnephropathy. Am J Physiol Renal Physiol. 2015;308(9):F993–F1003.CrossRefPubMed
30.
go back to reference Gao P, He FF, Tang H, et al. NADPH oxidase-induced NALP3 Inflammasome activation is driven by Thioredoxin-interacting protein which contributes to podocyte injury in hyperglycemia. J Diabetes Res. 2016;2016:1213892.CrossRefPubMedPubMedCentral Gao P, He FF, Tang H, et al. NADPH oxidase-induced NALP3 Inflammasome activation is driven by Thioredoxin-interacting protein which contributes to podocyte injury in hyperglycemia. J Diabetes Res. 2016;2016:1213892.CrossRefPubMedPubMedCentral
31.
go back to reference Chen K, Zhang J, Zhang W, et al. ATP-P2X4 signaling mediates NLRP3 inflammasome activation:a novel pathway of diabetic nephropathy. Int J Biochem Cell Biol. 2013;45(5):932–43.CrossRefPubMed Chen K, Zhang J, Zhang W, et al. ATP-P2X4 signaling mediates NLRP3 inflammasome activation:a novel pathway of diabetic nephropathy. Int J Biochem Cell Biol. 2013;45(5):932–43.CrossRefPubMed
32.
go back to reference Coll RC, Robertson AA, Chae JJ, et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med. 2015;21(3):248–55.CrossRefPubMedPubMedCentral Coll RC, Robertson AA, Chae JJ, et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med. 2015;21(3):248–55.CrossRefPubMedPubMedCentral
33.
go back to reference Primiano MJ, Lefker BA, Bowman MR, et al. Efficacy and pharmacology of the NLRP3 Inflammasome inhibitor CP-456,773 (CRID3)in murine models ofDermal and pulmonary inflammation. Immunol. 2016;197(6):2421–33.CrossRef Primiano MJ, Lefker BA, Bowman MR, et al. Efficacy and pharmacology of the NLRP3 Inflammasome inhibitor CP-456,773 (CRID3)in murine models ofDermal and pulmonary inflammation. Immunol. 2016;197(6):2421–33.CrossRef
34.
go back to reference Lu HJ, Tzeng TF, Liou SS, et al. Ruscogenin ameliorates diabetic nephropathy by its anti-inflammatory and anti-fibrotic effects in streptozotocin-induced diabetic rat. BMC Complement Altern Med. 2014;14:110.CrossRefPubMedPubMedCentral Lu HJ, Tzeng TF, Liou SS, et al. Ruscogenin ameliorates diabetic nephropathy by its anti-inflammatory and anti-fibrotic effects in streptozotocin-induced diabetic rat. BMC Complement Altern Med. 2014;14:110.CrossRefPubMedPubMedCentral
35.
go back to reference Tang LQ, Ni WJ, Cai M, et al. The renoprotective effects of berberine and its potential impact on the expression of β-arrestins and ICAM-1/VCAM-1 in streptozocin induced-diabetic nephropathy rats. J. Diabete. 2016;8(5):693–700.CrossRef Tang LQ, Ni WJ, Cai M, et al. The renoprotective effects of berberine and its potential impact on the expression of β-arrestins and ICAM-1/VCAM-1 in streptozocin induced-diabetic nephropathy rats. J. Diabete. 2016;8(5):693–700.CrossRef
36.
go back to reference Chen J, Mangelinckx S, Adams A, et al. Natural flavonoids as potential herbal medication for the treatment of diabetes mellitus and its complications. Nat Prod Commun. 2015;10(1):187–200.PubMed Chen J, Mangelinckx S, Adams A, et al. Natural flavonoids as potential herbal medication for the treatment of diabetes mellitus and its complications. Nat Prod Commun. 2015;10(1):187–200.PubMed
37.
go back to reference Punithavathi VR, Anuthama R, Prince PS. Combined treatment with naringin and vitamin C ameliorates streptozotocin-induced diabetes in male Wistarrats. J Appl Toxicol. 2008;28(6):806–13.CrossRefPubMed Punithavathi VR, Anuthama R, Prince PS. Combined treatment with naringin and vitamin C ameliorates streptozotocin-induced diabetes in male Wistarrats. J Appl Toxicol. 2008;28(6):806–13.CrossRefPubMed
38.
go back to reference Ali MM, El Kader MA. The influence of naringin on the oxidative state of rats with streptozotocin-induced acute hyperglycaemia. Zeitschrift Fur Naturforschung C A Journal of Biosciences. 2004;59(9–10):726. Ali MM, El Kader MA. The influence of naringin on the oxidative state of rats with streptozotocin-induced acute hyperglycaemia. Zeitschrift Fur Naturforschung C A Journal of Biosciences. 2004;59(9–10):726.
39.
go back to reference Lin H, Li Z, Lin D, et al. Role of NLRP3 Inflammasome in eosinophilic and non-eosinophilic chronic rhinosinusitis with nasal polyps. Inflammation. 2016;39(6):2045–52.CrossRefPubMed Lin H, Li Z, Lin D, et al. Role of NLRP3 Inflammasome in eosinophilic and non-eosinophilic chronic rhinosinusitis with nasal polyps. Inflammation. 2016;39(6):2045–52.CrossRefPubMed
40.
go back to reference Juliana C, Fernandes-Alnemri T, Wu J, et al. Anti-inflammatory compounds parthenolide and bay 11-7082 are direct inhibitors of the inflammasome. J Biol Chem. 2010;285(13):9792–802.CrossRefPubMedPubMedCentral Juliana C, Fernandes-Alnemri T, Wu J, et al. Anti-inflammatory compounds parthenolide and bay 11-7082 are direct inhibitors of the inflammasome. J Biol Chem. 2010;285(13):9792–802.CrossRefPubMedPubMedCentral
41.
go back to reference Honda H, Nagai Y, Matsunaga T, et al. Isoliquiritigenin is a potent inhibitor of NLRP3 inflammasome activation and diet-induced adipose tissue inflammation. J Leukoc Biol. 2014;96(6):1087–100.CrossRefPubMed Honda H, Nagai Y, Matsunaga T, et al. Isoliquiritigenin is a potent inhibitor of NLRP3 inflammasome activation and diet-induced adipose tissue inflammation. J Leukoc Biol. 2014;96(6):1087–100.CrossRefPubMed
42.
go back to reference Diaz B, Shani G, Pass I, et al. Tks5-dependent, nox-mediated generation of reactive oxygen species is necessary for invadopodia formation. Sci Signal. 2009;2(88):ra53.CrossRefPubMedPubMedCentral Diaz B, Shani G, Pass I, et al. Tks5-dependent, nox-mediated generation of reactive oxygen species is necessary for invadopodia formation. Sci Signal. 2009;2(88):ra53.CrossRefPubMedPubMedCentral
Metadata
Title
Naringin ameliorates the high glucose-induced rat mesangial cell inflammatory reaction by modulating the NLRP3 Inflammasome
Authors
Fenqin Chen
Guozhu Wei
Jiao Xu
Xiaoyu Ma
Qiuyue Wang
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2018
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-018-2257-y

Other articles of this Issue 1/2018

BMC Complementary Medicine and Therapies 1/2018 Go to the issue