Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2018

Open Access 01-12-2018 | Research article

Zanthoxylum armatum DC extracts from fruit, bark and leaf induce hypolipidemic and hypoglycemic effects in mice- in vivo and in vitro study

Authors: Fiaz Alam, Qazi Najam us Saqib, Mohammad Ashraf

Published in: BMC Complementary Medicine and Therapies | Issue 1/2018

Login to get access

Abstract

Background

Zanthoxylum armatum DC is an important medicinal plant of south East Asia, and has been used to treat various ailments in traditional medicine including diabetes. This study investigated the in vitro and in vivo antidiabetic and biochemical effects of extracts of Z. armatum in mice.

Method

The extracts of fruit, bark and leaf from Z. armatum were tested for α-glucosidase inhibition activity. Albino mice of either sex weighing (26–30 g) assigned into groups. Diabetes was induced by IP injection of alloxan monohydrate (150 mg/kg). The extracts (500 mg/kg) and standard (Glibenclamide 10 mg/kg) were administered to mice for 15 days. Serum biochemical parameters were monitored for the period of study.

Results

The leaves and bark extracts showed maximum α-glucosidase inhibition (96.61 ± 2.13 and 93.58 ± 2.31% respectively). The extracts treated and the standard treated groups showed significant decrease in the fasting blood glucose levels compared to diabetic control. The effect was more pronounced in mice treated with leaves extract. In the in vivo studies body weights of diabetic mice treated with Z. armatum extracts and the standard did not reduced to extent as observed in diabetic control and this difference was significant (p < 0.05). There was a significance (p < 0.001) improvement in blood hemoglobin, urea, creatinine, cholesterol, and triglycerides of the extracts treated diabetic mice. The extracts showed hypolipidemic effect by reducing the LDL level. The extracts produced no prominent changes in proteins levels.

Conclusion

It can be concluded that Z. armatum extracts showed excellent antidiabetic potential in vivo and in vitro and could be considered for further appraisal in clinical assessment and drug development.
Literature
1.
go back to reference Jadhav R, Puchchakayala G. Hypoglycemic and antidiabetic activity of flavonoids: Boswellic acid, ellagic acid, quercetin, rutin on streptozotocin-nicotinamide induced type 2 diabetic rats. Group. 2012;1:100g. Jadhav R, Puchchakayala G. Hypoglycemic and antidiabetic activity of flavonoids: Boswellic acid, ellagic acid, quercetin, rutin on streptozotocin-nicotinamide induced type 2 diabetic rats. Group. 2012;1:100g.
2.
go back to reference Ceylan S, Azal Ö, Taşlipinar A, Türker T, Açikel CH, Gulec M. Complementary and alternative medicine use among Turkish diabetes patients. Compl Ther Med. 2009;17(2):78–83.CrossRef Ceylan S, Azal Ö, Taşlipinar A, Türker T, Açikel CH, Gulec M. Complementary and alternative medicine use among Turkish diabetes patients. Compl Ther Med. 2009;17(2):78–83.CrossRef
3.
go back to reference World Health Organization. Annex, II-Guidelines for the Assessment of Herbal Medicines (WHO Technical Report Series No. 863). Geneva; 1996. World Health Organization. Annex, II-Guidelines for the Assessment of Herbal Medicines (WHO Technical Report Series No. 863). Geneva; 1996.
4.
go back to reference Shruthi A, Latha K, Vagdevi H, Pushpa B, Shwetha C. Anti-diabetic activity of the leaves extracts of Wrightia Tinctoria on alloxan induced diabetic rats. J Chem & Pharm Res. 2012;4(6):3125–8. Shruthi A, Latha K, Vagdevi H, Pushpa B, Shwetha C. Anti-diabetic activity of the leaves extracts of Wrightia Tinctoria on alloxan induced diabetic rats. J Chem & Pharm Res. 2012;4(6):3125–8.
5.
go back to reference Grover J, Yadav S, Vats V. Medicinal plants of India with anti-diabetic potential. J Ethnopharmacol. 2002;81(1):81–100.CrossRefPubMed Grover J, Yadav S, Vats V. Medicinal plants of India with anti-diabetic potential. J Ethnopharmacol. 2002;81(1):81–100.CrossRefPubMed
6.
go back to reference Eddouks M, Lemhadri A, Michel J-B. Caraway and caper: potential anti-hyperglycaemic plants in diabetic rats. J Ethnopharmacol. 2004;94(1):143–8.CrossRefPubMed Eddouks M, Lemhadri A, Michel J-B. Caraway and caper: potential anti-hyperglycaemic plants in diabetic rats. J Ethnopharmacol. 2004;94(1):143–8.CrossRefPubMed
7.
go back to reference Musabayane C, Bwititi P, Ojewole J. Effects of oral administration of some herbal extracts on food consumption and blood glucose levels in normal and streptozotocin-treated diabetic rats. Methods Find Exp Clin Pharmacol. 2006;28(4):223–8.CrossRefPubMed Musabayane C, Bwititi P, Ojewole J. Effects of oral administration of some herbal extracts on food consumption and blood glucose levels in normal and streptozotocin-treated diabetic rats. Methods Find Exp Clin Pharmacol. 2006;28(4):223–8.CrossRefPubMed
8.
go back to reference Collier E, Watkinson A, Cleland CF, Roth J. Partial purification and characterization of an insulin-like material from spinach and Lemna gibba G3. J Biol Chem. 1987;262(13):6238–47.PubMed Collier E, Watkinson A, Cleland CF, Roth J. Partial purification and characterization of an insulin-like material from spinach and Lemna gibba G3. J Biol Chem. 1987;262(13):6238–47.PubMed
9.
go back to reference Alarcon-Aguilara F, Roman-Ramos R, Perez-Gutierrez S, Aguilar-Contreras A, Contreras-Weber C, Flores-Saenz J. Study of the anti-hyperglycemic effect of plants used as antidiabetics. J Ethnopharmacol. 1998;61(2):101–10.CrossRefPubMed Alarcon-Aguilara F, Roman-Ramos R, Perez-Gutierrez S, Aguilar-Contreras A, Contreras-Weber C, Flores-Saenz J. Study of the anti-hyperglycemic effect of plants used as antidiabetics. J Ethnopharmacol. 1998;61(2):101–10.CrossRefPubMed
10.
go back to reference Mi B, Jelani G, Ahmad I. Leaf, Stem Bark And fruit anatomy of Zanthoxylum armatum dc.(Rutaceae). Pak J Bot. 2014;46(4):1343–9. Mi B, Jelani G, Ahmad I. Leaf, Stem Bark And fruit anatomy of Zanthoxylum armatum dc.(Rutaceae). Pak J Bot. 2014;46(4):1343–9.
11.
go back to reference Singh TP, Singh OM. Phytochemical and pharmacological profile of Zanthoxylum armatum DC.—an overview. Indian J Nat Prod Res. 2011;2(3):275–85. Singh TP, Singh OM. Phytochemical and pharmacological profile of Zanthoxylum armatum DC.—an overview. Indian J Nat Prod Res. 2011;2(3):275–85.
12.
go back to reference Rynjah CV, Devi NN, Khongthaw N, Syiem D, Majaw S. Evaluation of the antidiabetic property of aqueous leaves extract of Zanthoxylum armatum DC. Using in vivo and in vitro approaches. J Trad Compl Med. 2018;8(1):134–40.CrossRef Rynjah CV, Devi NN, Khongthaw N, Syiem D, Majaw S. Evaluation of the antidiabetic property of aqueous leaves extract of Zanthoxylum armatum DC. Using in vivo and in vitro approaches. J Trad Compl Med. 2018;8(1):134–40.CrossRef
13.
go back to reference Karki H, Upadhayay K, Pal H, Singh R. Antidiabetic potential of Zanthoxylum armatum bark extract on streptozotocin-induced diabetic rats. Intern J Green Pharm (IJGP). 2014;8(2):77.CrossRef Karki H, Upadhayay K, Pal H, Singh R. Antidiabetic potential of Zanthoxylum armatum bark extract on streptozotocin-induced diabetic rats. Intern J Green Pharm (IJGP). 2014;8(2):77.CrossRef
14.
go back to reference Matsui T, Yoshimoto C, Osajima K, Oki T, Osajima Y. In vitro survey of a-glucosidase inhibitory food components. Biosci Biotechnol Biochem. 1996;60(12):2019–22.CrossRefPubMed Matsui T, Yoshimoto C, Osajima K, Oki T, Osajima Y. In vitro survey of a-glucosidase inhibitory food components. Biosci Biotechnol Biochem. 1996;60(12):2019–22.CrossRefPubMed
15.
go back to reference Weir GC, Bonner-Weir S. Five stages of evolving beta-cell dysfunction during progression to diabetes. Diabetes. 2004;53(suppl 3):S16–21.CrossRefPubMed Weir GC, Bonner-Weir S. Five stages of evolving beta-cell dysfunction during progression to diabetes. Diabetes. 2004;53(suppl 3):S16–21.CrossRefPubMed
16.
go back to reference Ou Y, Lin L, Yang X, Pan Q, Cheng X. Antidiabetic potential of phycocyanin: effects on KKAy mice. Pharm Biol. 2013;51(5):539–44.CrossRefPubMed Ou Y, Lin L, Yang X, Pan Q, Cheng X. Antidiabetic potential of phycocyanin: effects on KKAy mice. Pharm Biol. 2013;51(5):539–44.CrossRefPubMed
17.
go back to reference Council NR. Guide for the care and use of laboratory animals. Washington DC: National Academy Press; 1996. Council NR. Guide for the care and use of laboratory animals. Washington DC: National Academy Press; 1996.
18.
go back to reference Phuong M, Ali B, Aziz E, Abdellatif S, Yahia C, Pierre S. The petroleum ether extract of Nigella sativa exerts lipid lowering and insulin-sensitizing action in the rats. J Ethnopharmacol. 2004;94:251–9.CrossRef Phuong M, Ali B, Aziz E, Abdellatif S, Yahia C, Pierre S. The petroleum ether extract of Nigella sativa exerts lipid lowering and insulin-sensitizing action in the rats. J Ethnopharmacol. 2004;94:251–9.CrossRef
19.
go back to reference Burtis CA, Ashwood ER, Bruns DE. Tietz textbook of clinical chemistry and molecular diagnostics. Elsevier Health Sciences. 2012; Burtis CA, Ashwood ER, Bruns DE. Tietz textbook of clinical chemistry and molecular diagnostics. Elsevier Health Sciences. 2012;
20.
go back to reference Thomas L, Whicher JT, Andert SE: Clinical laboratory diagnostics: use and assessment of clinical laboratory results: TH-books; 1998. Thomas L, Whicher JT, Andert SE: Clinical laboratory diagnostics: use and assessment of clinical laboratory results: TH-books; 1998.
21.
go back to reference Zaia DA, Marques FR, Zaia CT. Spectrophotometric determination of total proteins in blood plasma: a comparative study among dye-binding methods. Braz Arch Biol Technol. 2005;48(3):385–8.CrossRef Zaia DA, Marques FR, Zaia CT. Spectrophotometric determination of total proteins in blood plasma: a comparative study among dye-binding methods. Braz Arch Biol Technol. 2005;48(3):385–8.CrossRef
22.
go back to reference Burstein M, Scholnick H, Morfin R. Rapid method for the isolation of lipoproteins from human serum by precipitation with polyanions. J Lipid Res. 1970;11(6):583–95.PubMed Burstein M, Scholnick H, Morfin R. Rapid method for the isolation of lipoproteins from human serum by precipitation with polyanions. J Lipid Res. 1970;11(6):583–95.PubMed
23.
go back to reference Salimifar M, Fatehi-Hassanabad Z, Fatehi M. A review on natural products for controlling type 2 diabetes with an emphasis on their mechanisms of actions. Curr Diab Rev. 2013;9(5):402–11.CrossRef Salimifar M, Fatehi-Hassanabad Z, Fatehi M. A review on natural products for controlling type 2 diabetes with an emphasis on their mechanisms of actions. Curr Diab Rev. 2013;9(5):402–11.CrossRef
24.
go back to reference Shapiro K, Gong WC. Natural products used for diabetes. J Amer Pharm Assoc. 2002;42(2):217–26. Shapiro K, Gong WC. Natural products used for diabetes. J Amer Pharm Assoc. 2002;42(2):217–26.
25.
go back to reference Ya M, Umamageswari M, Karthikeyan T. Evaluation of Antihyperglycemic activity of aqueous extract of leaves of. Solanum Nigrum. Int J Pharm Bio Sci. 2012:312–9. Ya M, Umamageswari M, Karthikeyan T. Evaluation of Antihyperglycemic activity of aqueous extract of leaves of. Solanum Nigrum. Int J Pharm Bio Sci. 2012:312–9.
26.
go back to reference Karan SK, Mishra SK, Pal D, Mondal A. Isolation of β-sitosterol and evaluation of antidiabetic activity of Aristolochia indica in alloxan-induced diabetic mice with a reference to in-vitro antioxidant activity. J Med Plants Res. 2012;6(7):1219–23. Karan SK, Mishra SK, Pal D, Mondal A. Isolation of β-sitosterol and evaluation of antidiabetic activity of Aristolochia indica in alloxan-induced diabetic mice with a reference to in-vitro antioxidant activity. J Med Plants Res. 2012;6(7):1219–23.
27.
go back to reference Prisilla DH, Balamurugan R, Shah HR. Antidiabetic activity of methanol extract of Acorus calamus in STZ induced diabetic rats. Asian Pac J Trop Biomed. 2012;2(2):S941–6.CrossRef Prisilla DH, Balamurugan R, Shah HR. Antidiabetic activity of methanol extract of Acorus calamus in STZ induced diabetic rats. Asian Pac J Trop Biomed. 2012;2(2):S941–6.CrossRef
28.
go back to reference Pari L, Latha M. Protective role of Scoparia dulcis plant extract on brain antioxidant status and lipidperoxidation in STZ diabetic male Wistar rats. BMC Compl Altern Med. 2004;4(1):16.CrossRef Pari L, Latha M. Protective role of Scoparia dulcis plant extract on brain antioxidant status and lipidperoxidation in STZ diabetic male Wistar rats. BMC Compl Altern Med. 2004;4(1):16.CrossRef
29.
go back to reference Sezik E, Aslan M, Yesilada E, Ito S. Hypoglycaemic activity of Gentiana olivieri and isolation of the active constituent through bioassay-directed fractionation techniques. Life Sci. 2005;76(11):1223–38.CrossRefPubMed Sezik E, Aslan M, Yesilada E, Ito S. Hypoglycaemic activity of Gentiana olivieri and isolation of the active constituent through bioassay-directed fractionation techniques. Life Sci. 2005;76(11):1223–38.CrossRefPubMed
30.
go back to reference Slei A. Effects of Zanthoxylum zanthoxyloides leaves on blood glucose, lipid profile and some liver enzymes in alloxan induced diabetic rats. Intern J Sci Nat. 2012;3(3):497–501. Slei A. Effects of Zanthoxylum zanthoxyloides leaves on blood glucose, lipid profile and some liver enzymes in alloxan induced diabetic rats. Intern J Sci Nat. 2012;3(3):497–501.
31.
go back to reference Gao H, Huang Y-N, Gao B, Xu P-Y, Inagaki C, Kawabata J. α-glucosidase inhibitory effect by the flower buds of Tussilago farfara L. Food Chem. 2008;106(3):1195–201.CrossRef Gao H, Huang Y-N, Gao B, Xu P-Y, Inagaki C, Kawabata J. α-glucosidase inhibitory effect by the flower buds of Tussilago farfara L. Food Chem. 2008;106(3):1195–201.CrossRef
33.
go back to reference Sikarwar M, Patil M. Antidiabetic activity of Pongamia pinnata leaf extracts in alloxan-induced diabetic rats. Intern J Ayur Res. 2010;1(4):199.CrossRef Sikarwar M, Patil M. Antidiabetic activity of Pongamia pinnata leaf extracts in alloxan-induced diabetic rats. Intern J Ayur Res. 2010;1(4):199.CrossRef
34.
go back to reference Luo Q, Cai Y, Yan J, Sun M, Corke H. Hypoglycemic and hypolipidemic effects and antioxidant activity of fruit extracts from Lycium barbarum. Life Sci. 2004;76(2):137–49.CrossRefPubMed Luo Q, Cai Y, Yan J, Sun M, Corke H. Hypoglycemic and hypolipidemic effects and antioxidant activity of fruit extracts from Lycium barbarum. Life Sci. 2004;76(2):137–49.CrossRefPubMed
35.
go back to reference Koneri RB, Samaddar S, Ramaiah CT. Antidiabetic activity of a triterpenoid saponin isolated from Momordica cymbalaria Fenzl. Indian J Exp Biol. 2014;52:46–52.PubMed Koneri RB, Samaddar S, Ramaiah CT. Antidiabetic activity of a triterpenoid saponin isolated from Momordica cymbalaria Fenzl. Indian J Exp Biol. 2014;52:46–52.PubMed
36.
go back to reference Tiong SH, Looi CY, Hazni H, Arya A, Paydar M, Wong WF, Cheah S-C, Mustafa MR, Awang K. Antidiabetic and antioxidant properties of alkaloids from Catharanthus roseus (L.) G. Don. Molecules. 2013;18(8):9770–84.CrossRefPubMed Tiong SH, Looi CY, Hazni H, Arya A, Paydar M, Wong WF, Cheah S-C, Mustafa MR, Awang K. Antidiabetic and antioxidant properties of alkaloids from Catharanthus roseus (L.) G. Don. Molecules. 2013;18(8):9770–84.CrossRefPubMed
37.
go back to reference Salib JY, Michael HN, Eskande EF. Anti-diabetic properties of flavonoid compounds isolated from Hyphaene thebaica epicarp on alloxan induced diabetic rats. Pharm Res. 2013;5(1):22. Salib JY, Michael HN, Eskande EF. Anti-diabetic properties of flavonoid compounds isolated from Hyphaene thebaica epicarp on alloxan induced diabetic rats. Pharm Res. 2013;5(1):22.
38.
go back to reference Oboh G, Ogunsuyi OB, Ogunbadejo MD, Adefegha SA. Influence of gallic acid on α-amylase and α-glucosidase inhibitory properties of acarbose. J Food Drug Anal. 2016;24(3):627–34.CrossRefPubMed Oboh G, Ogunsuyi OB, Ogunbadejo MD, Adefegha SA. Influence of gallic acid on α-amylase and α-glucosidase inhibitory properties of acarbose. J Food Drug Anal. 2016;24(3):627–34.CrossRefPubMed
39.
go back to reference Alam F. QN US: Pharmacognostic study and development of quality control parameters for fruit, bark and leaf of Zanthoxylum armatum (Rutaceae). Anc Sci Life. 2015;34(3):148. Alam F. QN US: Pharmacognostic study and development of quality control parameters for fruit, bark and leaf of Zanthoxylum armatum (Rutaceae). Anc Sci Life. 2015;34(3):148.
40.
go back to reference Gerbes A, Gülberg V, Bilzer M, Vogeser M. Evaluation of serum cystatin C concentration as a marker of renal function in patients with cirrhosis of the liver. Gut. 2002;50(1):106–10.CrossRefPubMedPubMedCentral Gerbes A, Gülberg V, Bilzer M, Vogeser M. Evaluation of serum cystatin C concentration as a marker of renal function in patients with cirrhosis of the liver. Gut. 2002;50(1):106–10.CrossRefPubMedPubMedCentral
41.
go back to reference Nabeel MA, Kathiresan K, Manivannan S. Antidiabetic activity of the mangrove species Ceriops decandra in alloxan-induced diabetic rats. J Diab. 2010;2(2):97–103.CrossRef Nabeel MA, Kathiresan K, Manivannan S. Antidiabetic activity of the mangrove species Ceriops decandra in alloxan-induced diabetic rats. J Diab. 2010;2(2):97–103.CrossRef
Metadata
Title
Zanthoxylum armatum DC extracts from fruit, bark and leaf induce hypolipidemic and hypoglycemic effects in mice- in vivo and in vitro study
Authors
Fiaz Alam
Qazi Najam us Saqib
Mohammad Ashraf
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2018
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-018-2138-4

Other articles of this Issue 1/2018

BMC Complementary Medicine and Therapies 1/2018 Go to the issue