Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2017

Open Access 01-12-2017 | Research article

Extract from mango mistletoes Dendrophthoe pentandra ameliorates TNBS-induced colitis by regulating CD4+ T cells in mesenteric lymph nodes

Authors: Agustina Tri Endharti, Sofy Permana

Published in: BMC Complementary Medicine and Therapies | Issue 1/2017

Login to get access

Abstract

Background

Mango mistletoes Dendrophthoe pentandra (MMDP) extract has attracted interest due to its pharmacological properties, including gastro protective effects. The aim of this study was to investigate whether MMDP extract could increase Foxp3 regulatory T cells and inhibits development of Th17 cells.

Methods

Colitis was induced in Balb/c mice by rectal administration of 2,4,6-trinitrobenzene sulfonic acid (TNBS). The mice were randomly divided into five groups comprising group1 receiving vehicle (the negative control), group 2–5 receiving TNBS, group 3–5 orally receiving either MMDP extract 150, 300 and 600 mg/kgBW for 7 days after TNBS administration. On day 8 of the experiment, the colon tissues were removed for histological examination, cytokine and myeloperoxidase (MPO) measurement. T-cells sub-population in mesenteric lymph nodes were analyzed by flow cytometer.

Results

MMDP extract potently suppressed colon shortening and MPO in mice with TNBS-induced colitis. Administration of the extract significantly decreased the severity of TNBS-induced colitis in a dose-dependent manner. The extract significantly attenuated the loss of body weight (p < 0.05). These effects were associated with a remarkable amelioration of the disruption of the colonic architecture, significant reduction of the colonic MPO (p < 0.05). The extract lowered the levels of Th17-associated cytokines but increased the production of Treg-associated cytokines in mesenteric lymph node cells.

Conclusion

Our results suggest that MMDP has the therapeutic potential to ameliorate TNBS-induced colitis symptoms revealed by histological change and inhibit IL-17 production.
Literature
1.
go back to reference Zitvogel L, Pitt JM, Daillère R, et al. Mouse models in oncoimmunology. Nat Rev Cancer. 2016;16:759–73.CrossRefPubMed Zitvogel L, Pitt JM, Daillère R, et al. Mouse models in oncoimmunology. Nat Rev Cancer. 2016;16:759–73.CrossRefPubMed
2.
go back to reference Robertis MD, Massi E, Poeta ML, et al. The AOM/DSS murine model for the study of colon carcinogenesis: from pathways to diagnosis and therapy studies. J Carcinog. 2011;10:9.CrossRefPubMedPubMedCentral Robertis MD, Massi E, Poeta ML, et al. The AOM/DSS murine model for the study of colon carcinogenesis: from pathways to diagnosis and therapy studies. J Carcinog. 2011;10:9.CrossRefPubMedPubMedCentral
3.
go back to reference Machado VF, Feitosa MR, da Rocha JJ, et al. A review of experimental models in colorectal carcinogenesis. J Coloproctol (rio j). 2016;36(1):53–7.CrossRef Machado VF, Feitosa MR, da Rocha JJ, et al. A review of experimental models in colorectal carcinogenesis. J Coloproctol (rio j). 2016;36(1):53–7.CrossRef
4.
go back to reference Patila S, Anartheb S, Jadhava R, et al. Evaluation of anti inflammatory activity and in-vitro antioxidant activity of Indian mistletoe, the Hemiparasite Dendrophthoe falcate L. F. (Loranthaceae). Iran J Pharm Res. 2011;10(2):253–9. Patila S, Anartheb S, Jadhava R, et al. Evaluation of anti inflammatory activity and in-vitro antioxidant activity of Indian mistletoe, the Hemiparasite Dendrophthoe falcate L. F. (Loranthaceae). Iran J Pharm Res. 2011;10(2):253–9.
5.
go back to reference Sunil Kumar KN, Saraswathy A, Amerjothy S, et al. Total phenol content and in vitro antioxidant potential of Helicanthus elastica (Desr.) Danser-a less-explored Indian mango mistletoe. J Tradit Complement Med. 2014;4(4):285–8.CrossRefPubMedPubMedCentral Sunil Kumar KN, Saraswathy A, Amerjothy S, et al. Total phenol content and in vitro antioxidant potential of Helicanthus elastica (Desr.) Danser-a less-explored Indian mango mistletoe. J Tradit Complement Med. 2014;4(4):285–8.CrossRefPubMedPubMedCentral
6.
go back to reference Neufert C, Becker C, Tureci O, et al. Tumor fibroblast- derived epiregulin promotes growth of colitis-associated neoplasms through ERK. J Clin Investig. 2013;123:1428–43.CrossRefPubMedPubMedCentral Neufert C, Becker C, Tureci O, et al. Tumor fibroblast- derived epiregulin promotes growth of colitis-associated neoplasms through ERK. J Clin Investig. 2013;123:1428–43.CrossRefPubMedPubMedCentral
7.
go back to reference Chen H, Pu J, Liu D, et al. Anti-inflammatory and Antinociceptive properties of Flavonoids from the fruits of black mulberry (Morus nigra L.). PLoS One. 2016;11(4):e0153080.CrossRefPubMedPubMedCentral Chen H, Pu J, Liu D, et al. Anti-inflammatory and Antinociceptive properties of Flavonoids from the fruits of black mulberry (Morus nigra L.). PLoS One. 2016;11(4):e0153080.CrossRefPubMedPubMedCentral
8.
go back to reference Wang Y, Chen P, Tang C, et al. Antinociceptive and anti-inflammatory activities of extract and two isolated flavonoids of Carthamus tinctorius L. J Ethnopharmacol. 2014;151:944–50.CrossRefPubMed Wang Y, Chen P, Tang C, et al. Antinociceptive and anti-inflammatory activities of extract and two isolated flavonoids of Carthamus tinctorius L. J Ethnopharmacol. 2014;151:944–50.CrossRefPubMed
9.
go back to reference Endharti AT, Wulandari A, Listyana A, et al. Dendrophthoe pentandra (L.) Miq extract effectively inhibits inflammation, proliferation and induces p53 expression on colitis-associated colon cancer. BMC Complement Altern Med. 2016;16:374.CrossRefPubMedPubMedCentral Endharti AT, Wulandari A, Listyana A, et al. Dendrophthoe pentandra (L.) Miq extract effectively inhibits inflammation, proliferation and induces p53 expression on colitis-associated colon cancer. BMC Complement Altern Med. 2016;16:374.CrossRefPubMedPubMedCentral
10.
go back to reference Schwitalla S, Ziegler PK, Horst D, et al. Loss of p53 in enterocytes generates an inflammatory microenvironment enabling invasion and lymph node metastasis of carcinogen-induced colorectal tumors. Cancer Cell. 2013;23:93–106.CrossRefPubMed Schwitalla S, Ziegler PK, Horst D, et al. Loss of p53 in enterocytes generates an inflammatory microenvironment enabling invasion and lymph node metastasis of carcinogen-induced colorectal tumors. Cancer Cell. 2013;23:93–106.CrossRefPubMed
12.
go back to reference Backert I, Koralov SB, Wirtz S, et al. STAT3 activation in Th17 and Th22 cells controls IL-22–mediated epithelial host defense during infectious colitis. J Immunol. 2014;193:000.CrossRef Backert I, Koralov SB, Wirtz S, et al. STAT3 activation in Th17 and Th22 cells controls IL-22–mediated epithelial host defense during infectious colitis. J Immunol. 2014;193:000.CrossRef
14.
go back to reference Kanneganti M, Mino-Kenudson M, Mizoguchi E. Animal models of colitis-associated carcinogenesis. J Biomed Biotechnol. 2011;2011:342637. Kanneganti M, Mino-Kenudson M, Mizoguchi E. Animal models of colitis-associated carcinogenesis. J Biomed Biotechnol. 2011;2011:342637.
15.
go back to reference Ang HY, Subramani TS, Yeap SK, et al. Immunomodulatory effects of Potentilla indica and Dendrophthoe pentandra on mice splenocytes and thymocytes. Exp Ther Med. 2014;7:1733–7.CrossRefPubMedPubMedCentral Ang HY, Subramani TS, Yeap SK, et al. Immunomodulatory effects of Potentilla indica and Dendrophthoe pentandra on mice splenocytes and thymocytes. Exp Ther Med. 2014;7:1733–7.CrossRefPubMedPubMedCentral
16.
17.
go back to reference Gois E Jr, Daniel RA, Parra RS, et al. Hyperbaric oxygen therapy reduces COX-2 expression in a dimethylhydrazine-induced rat model of colorectal carcinogenesis. Undersea Hyperb Med. 2012;39:693–8.PubMed Gois E Jr, Daniel RA, Parra RS, et al. Hyperbaric oxygen therapy reduces COX-2 expression in a dimethylhydrazine-induced rat model of colorectal carcinogenesis. Undersea Hyperb Med. 2012;39:693–8.PubMed
18.
go back to reference Chen H, Feng J, Zhang Y, et al. Pien Tze Huang inhibits hypoxia-induced angiogenesis via HIF-1α/VEGF-A pathway in colorectal cancer. Evid Based Complement Alternat Med. 2015;2015:454279.PubMedPubMedCentral Chen H, Feng J, Zhang Y, et al. Pien Tze Huang inhibits hypoxia-induced angiogenesis via HIF-1α/VEGF-A pathway in colorectal cancer. Evid Based Complement Alternat Med. 2015;2015:454279.PubMedPubMedCentral
20.
21.
go back to reference Kohno H, Suzuki R, Sugie S, et al. Suppression of colitis-related mouse colon carcinogenesis by a COX-2 inhibitor and PPAR ligands. BMC Cancer. 2005;5:46.CrossRefPubMedPubMedCentral Kohno H, Suzuki R, Sugie S, et al. Suppression of colitis-related mouse colon carcinogenesis by a COX-2 inhibitor and PPAR ligands. BMC Cancer. 2005;5:46.CrossRefPubMedPubMedCentral
22.
go back to reference Xavier CPR, Cristovao F, Rohde LM, et al. Quercetin enhances 5-fluorouracil-induced apoptosis in MSI colorectal cancer cells through p53 modulation. Cancer Chemother Pharmacol. 2011;68:1449–57.CrossRefPubMed Xavier CPR, Cristovao F, Rohde LM, et al. Quercetin enhances 5-fluorouracil-induced apoptosis in MSI colorectal cancer cells through p53 modulation. Cancer Chemother Pharmacol. 2011;68:1449–57.CrossRefPubMed
23.
go back to reference Sang L, Chang B, Dai C, et al. Heat-killed VSL#3 ameliorates Dextran sulfate sodium (DSS)-induced acute experimental colitis in rats. Int J Mol Sci. 2014;15:15–28.CrossRef Sang L, Chang B, Dai C, et al. Heat-killed VSL#3 ameliorates Dextran sulfate sodium (DSS)-induced acute experimental colitis in rats. Int J Mol Sci. 2014;15:15–28.CrossRef
24.
go back to reference Randhawa KP, Singh K, Singh N. Review on chemical-induced inflammatory bowel disease models in rodents. Korean J Physiol Pharmacol. 2014;18(4):279–88.CrossRefPubMedPubMedCentral Randhawa KP, Singh K, Singh N. Review on chemical-induced inflammatory bowel disease models in rodents. Korean J Physiol Pharmacol. 2014;18(4):279–88.CrossRefPubMedPubMedCentral
25.
go back to reference Kiesler P, Fuss IJ, Strober W, et al. Experimental Models of Inflammatory Bowel Diseases. Cell Mol Gastroenterol Hepatol. 2015;1(2):154–70. Kiesler P, Fuss IJ, Strober W, et al. Experimental Models of Inflammatory Bowel Diseases. Cell Mol Gastroenterol Hepatol. 2015;1(2):154–70.
26.
go back to reference Mustarichie R, Warya S, Saptarini NM, et al. Total flavonoid content and anti-inflammatory properties of Indonesian mistletoes (Dendrophtoe pentandra (l.) miq.) ethanol extract. World J Pharm Res. 2015;4:287–302. Mustarichie R, Warya S, Saptarini NM, et al. Total flavonoid content and anti-inflammatory properties of Indonesian mistletoes (Dendrophtoe pentandra (l.) miq.) ethanol extract. World J Pharm Res. 2015;4:287–302.
27.
go back to reference Zou Y, Li WY, Wan Z, et al. Huangqin-Tang Ameliorates TNBS-Induced Colitis by Regulating Effector and Regulatory CD4+ T Cells. Biomed Res Int. 2015;2015:1–13. Zou Y, Li WY, Wan Z, et al. Huangqin-Tang Ameliorates TNBS-Induced Colitis by Regulating Effector and Regulatory CD4+ T Cells. Biomed Res Int. 2015;2015:1–13.
29.
go back to reference Endharti AT, Yusuke O, Zhe S, et al. CD8+CD122+ regulatory T cells prevent and cure inflammatory bowel disease in cooperation with CD4+ Treg. J Immunol. 2011;186:41–52.CrossRefPubMed Endharti AT, Yusuke O, Zhe S, et al. CD8+CD122+ regulatory T cells prevent and cure inflammatory bowel disease in cooperation with CD4+ Treg. J Immunol. 2011;186:41–52.CrossRefPubMed
30.
go back to reference Petanidis S, Anestakis D, Argyraki M, et al. Differential expression of IL-17, IL-22 and IL-23 in the progression of colorectal cancer in patients with k-ras mutation: ras signal inhibition and crosstalk with GMCSF and IFN-c. PLoS One. 2013;8:1–11.CrossRef Petanidis S, Anestakis D, Argyraki M, et al. Differential expression of IL-17, IL-22 and IL-23 in the progression of colorectal cancer in patients with k-ras mutation: ras signal inhibition and crosstalk with GMCSF and IFN-c. PLoS One. 2013;8:1–11.CrossRef
31.
go back to reference Griffin GK, Newton G, Tarrio ML, et al. IL-17 and TNF-α sustain neutrophil recruitment during inflammation through synergistic effects on endothelial activation. J Immunol. 2012;15:6287–99.CrossRef Griffin GK, Newton G, Tarrio ML, et al. IL-17 and TNF-α sustain neutrophil recruitment during inflammation through synergistic effects on endothelial activation. J Immunol. 2012;15:6287–99.CrossRef
33.
go back to reference Ueno A, Jijon H, Chan R, et al. Increased prevalence of circulating novel IL-17 secreting Foxp3 expressing CD4+ T cells and defective suppressive function of circulating Foxp3+ regulatory cells support plasticity between Th17 and regulatory T cells in inflammatory bowel disease patients. Inflamm Bowel Dis. 2013;19:2522–34.CrossRefPubMed Ueno A, Jijon H, Chan R, et al. Increased prevalence of circulating novel IL-17 secreting Foxp3 expressing CD4+ T cells and defective suppressive function of circulating Foxp3+ regulatory cells support plasticity between Th17 and regulatory T cells in inflammatory bowel disease patients. Inflamm Bowel Dis. 2013;19:2522–34.CrossRefPubMed
34.
go back to reference Ota N, Wong K, Valdez PA, et al. IL-22 bridges the lymphotoxin pathway with the maintenance of colonic lymphoid structures during infection with Citrobacter rodentium. Nat Immunol. 2011;12:941–8.CrossRefPubMed Ota N, Wong K, Valdez PA, et al. IL-22 bridges the lymphotoxin pathway with the maintenance of colonic lymphoid structures during infection with Citrobacter rodentium. Nat Immunol. 2011;12:941–8.CrossRefPubMed
35.
go back to reference Brighenti E, Calabrese LG, et al. Interleukin 6 down regulates p53 expression and activity by stimulating ribosome biogenesis: a new pathway connecting inflammation to cancer. Oncogene. 2014;33:4396–406.CrossRefPubMedPubMedCentral Brighenti E, Calabrese LG, et al. Interleukin 6 down regulates p53 expression and activity by stimulating ribosome biogenesis: a new pathway connecting inflammation to cancer. Oncogene. 2014;33:4396–406.CrossRefPubMedPubMedCentral
36.
go back to reference Endharti AT, Baskoro AD, Norahmawati E. Therapeutic effect of soluble worm protein acting as immune regulatory on colitis. Asian Pac J Trop Biomed. 2017;7(1):70–7.CrossRef Endharti AT, Baskoro AD, Norahmawati E. Therapeutic effect of soluble worm protein acting as immune regulatory on colitis. Asian Pac J Trop Biomed. 2017;7(1):70–7.CrossRef
37.
go back to reference Littman DR, Rudensky AY. Th17 and regulatory T cells in mediating and restraining inflammation. Cell. 2010;140:845–58.CrossRefPubMed Littman DR, Rudensky AY. Th17 and regulatory T cells in mediating and restraining inflammation. Cell. 2010;140:845–58.CrossRefPubMed
38.
go back to reference Sotnikova R, Nosalova V, Navarova J. Efficacy of quercetin derivatives in prevention of ulcerative colitis in rats. Interdiscip Toxicol. 2013;6(1):9–12.CrossRefPubMedPubMedCentral Sotnikova R, Nosalova V, Navarova J. Efficacy of quercetin derivatives in prevention of ulcerative colitis in rats. Interdiscip Toxicol. 2013;6(1):9–12.CrossRefPubMedPubMedCentral
Metadata
Title
Extract from mango mistletoes Dendrophthoe pentandra ameliorates TNBS-induced colitis by regulating CD4+ T cells in mesenteric lymph nodes
Authors
Agustina Tri Endharti
Sofy Permana
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2017
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-017-1973-z

Other articles of this Issue 1/2017

BMC Complementary Medicine and Therapies 1/2017 Go to the issue