Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2017

Open Access 01-12-2017 | Research article

Terpene constituents of the aerial parts, phenolic content, antibacterial potential, free radical scavenging and antioxidant activity of Callistemon citrinus (Curtis) Skeels (Myrtaceae) from Eastern Cape Province of South Africa

Authors: Rotimi A. Larayetan, Omobola O. Okoh, Alexander Sadimenko, Anthony I. Okoh

Published in: BMC Complementary Medicine and Therapies | Issue 1/2017

Login to get access

Abstract

Background

Volatile oil from aromatic plants has been used by ancient Egyptians in embalming for the inhibition of bacterial growth and prevention of decay, Callistemon citrinus is used in traditional therapies for the treatment of bronchitis, cough, inflammation and as an antimicrobial herbs. This study examines the essential constituents of the volatile oils obtained from the aerial parts of the plant as well as its antioxidant activity, free radical scavenging, phenolic content and the antibacterial potential of the oils.

Methods

A portion of 500 g, 250 g and 150 g of the leaves, flowers and stems of this plant respectively were subjected to hydro-distillation process for three hours. The oils collected from the various plant parts were immediately subjected to GC-MS analysis. The overall phenolic content of the leaves oil, radical scavenging, antibacterial action and antioxidant activities of the essential oils of both the leaves and flowers of Callistemon citrinus were determined using standard methods, with free radical DPPH and ABTS as a reference antioxidant.

Results

Analyses of the three oils revealed a total of twenty-six components for the leaves oil representing 96.84% of the total oil composition, forty-one components for the flowers oil accounting for 98.92% of the whole composition and ten components for the stem oil amounting to 99.98% of the entire oil constituents. The dominant compounds in the leaves oil were eucalyptol (48.98%) and α-terpineol (8.01%), while α-eudesmol (12.93%), caryophyllene (11.89%), (−)-bornyl-acetate (10.02%) and eucalyptol (8.11%) were the main constituents of the flowers oil. In the same vein, the leading constituents in the stems oil were eucalyptol (56.00%) and α-pinene (31.03%). The antioxidant capacities of both the leaves and flowers oils of the plant were evaluated and their IC50 were (1.49 and 1.13) for DPPH and (0.14 and 0.03) for ABTS assay respectively. The antibacterial activities of the oils from the (leaves and flowers) were also examined and were found to have wide range of activities against the bacterial strains used in this study.

Conclusion

Observations drawn from this experiment shows clearly that the leaves and flowers of Callistemon citrinus possess phenolic compounds and cyclic ether of several pharmacological behaviors.
Literature
1.
go back to reference Yadav RN, Agarwala M. Phytochemical analysis of some medicinal plants. Journal of phytology. 2011; 3(12). Yadav RN, Agarwala M. Phytochemical analysis of some medicinal plants. Journal of phytology. 2011; 3(12).
2.
go back to reference Khanna RK, Sharma OS, Singh A. Essential oil from the leaves of Callestemon polandii FM bailey. Indian Perfumer. 1990;34(2):123–5. Khanna RK, Sharma OS, Singh A. Essential oil from the leaves of Callestemon polandii FM bailey. Indian Perfumer. 1990;34(2):123–5.
3.
go back to reference Gilman EF. Callistemon rigidus1. Inst of Food and Agricultural Sciences: Environmental Horticulture Department; 1999. Gilman EF. Callistemon rigidus1. Inst of Food and Agricultural Sciences: Environmental Horticulture Department; 1999.
4.
go back to reference Nel JL, Richardson DM, Rouget M, Mgidi TN, Mdzeke N, Le Maitre DC, et al. A proposed classification of invasive alien plant species in South Africa: towards prioritizing species and areas for management action: working for water. S Afr J Sci. 2004;100(1–2):53–64. Nel JL, Richardson DM, Rouget M, Mgidi TN, Mdzeke N, Le Maitre DC, et al. A proposed classification of invasive alien plant species in South Africa: towards prioritizing species and areas for management action: working for water. S Afr J Sci. 2004;100(1–2):53–64.
5.
go back to reference Spencer RD, Lumley PF. Callistemon. Flora of new South Wales. 1991:168–73. Spencer RD, Lumley PF. Callistemon. Flora of new South Wales. 1991:168–73.
6.
go back to reference Wrigley JW, Fagg M. Bottlebrushes, paperbarks and tea trees: and all other plants in the Leptospermum alliance. Sydney: Angus & Robertson xiii, 352p.-illus., col. illus.. ISBN. 1993; 207168679. Wrigley JW, Fagg M. Bottlebrushes, paperbarks and tea trees: and all other plants in the Leptospermum alliance. Sydney: Angus & Robertson xiii, 352p.-illus., col. illus.. ISBN. 1993; 207168679.
7.
go back to reference Chopra RN, Nayer SL, Chopra IC. Glossary of Inidan Medicinal plants CSIR, New Delhi. J71. 1956; 34. Chopra RN, Nayer SL, Chopra IC. Glossary of Inidan Medicinal plants CSIR, New Delhi. J71. 1956; 34.
8.
go back to reference Wrigley JW, Fagg M. Australian native plants. Concise ed. Chatswood, NWS, Australia: New Holland Publishers; 2007. Wrigley JW, Fagg M. Australian native plants. Concise ed. Chatswood, NWS, Australia: New Holland Publishers; 2007.
9.
go back to reference Goyal PK, Jain R, Jain S, Sharma A. A Review on biological and phytochemical investigation of plant genus Callistimon. Asian Pacific Journal of Tropical Biomedicine. 2012; 1; 2(3):S1906–9. Goyal PK, Jain R, Jain S, Sharma A. A Review on biological and phytochemical investigation of plant genus Callistimon. Asian Pacific Journal of Tropical Biomedicine. 2012; 1; 2(3):S1906–9.
10.
go back to reference Shaha A, Salunkhe VR. Development and validation of a high performance thin layer chromatographic method for determination of 1, 8-cineole in Callistemon Citrinus. Pharm res. 2014;6(2):143. Shaha A, Salunkhe VR. Development and validation of a high performance thin layer chromatographic method for determination of 1, 8-cineole in Callistemon Citrinus. Pharm res. 2014;6(2):143.
11.
go back to reference Netala SI, Penmetsa RE, Nakka SN, Polisetty BL. Pharmacognostic study of Callistemon citrinus L. bark. Int J Pharm Pharm Sci. 2015;7(1):427–30. Netala SI, Penmetsa RE, Nakka SN, Polisetty BL. Pharmacognostic study of Callistemon citrinus L. bark. Int J Pharm Pharm Sci. 2015;7(1):427–30.
12.
go back to reference Oyedeji OO, Lawal OA, Shode FO, Oyedeji AO. Chemical composition and antibacterial activity of the essential oils of Callistemon Citrinus and Callistemon viminalis from South Africa. Molecules. 2009;14(6):1990–8.CrossRefPubMed Oyedeji OO, Lawal OA, Shode FO, Oyedeji AO. Chemical composition and antibacterial activity of the essential oils of Callistemon Citrinus and Callistemon viminalis from South Africa. Molecules. 2009;14(6):1990–8.CrossRefPubMed
13.
go back to reference Sudhakar M, Rao CV, Rao AL, Ramesh A, Srinivas N, Raju DB, et al. Antinociceptive and anti-inflammatory effects of the standardized oil of Indian Callistemon lanceolatus leaves in experimental animals. East and Central African Journal of Pharmaceutical Sciences. 2004;7(1):10–5. Sudhakar M, Rao CV, Rao AL, Ramesh A, Srinivas N, Raju DB, et al. Antinociceptive and anti-inflammatory effects of the standardized oil of Indian Callistemon lanceolatus leaves in experimental animals. East and Central African Journal of Pharmaceutical Sciences. 2004;7(1):10–5.
14.
go back to reference Sadlon AE, Lamson DW. Immune-modifying and antimicrobial effects of Eucalyptus oil and simple inhalation devices. Altern med rev. 2010;15(1):33–43.PubMed Sadlon AE, Lamson DW. Immune-modifying and antimicrobial effects of Eucalyptus oil and simple inhalation devices. Altern med rev. 2010;15(1):33–43.PubMed
15.
go back to reference Small BE. The Australian eucalyptus oil industry—an overview. Aust for. 1981;44(3):170–7.CrossRef Small BE. The Australian eucalyptus oil industry—an overview. Aust for. 1981;44(3):170–7.CrossRef
16.
go back to reference Jennings WC. Isolement et caractérisation des composés responsables de la flaveur. Indus Aliment Agr. 1970; Jennings WC. Isolement et caractérisation des composés responsables de la flaveur. Indus Aliment Agr. 1970;
17.
go back to reference Burt S. Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol. 2004;94(3):223–53.CrossRefPubMed Burt S. Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol. 2004;94(3):223–53.CrossRefPubMed
18.
go back to reference Hulin V, Mathot AG, Mafart P, Dufosse L. Les proprietés anti-microbiennes des huiles essentielles et composés d'arômes. Sci Aliment. 1998;18(6):563–82. Hulin V, Mathot AG, Mafart P, Dufosse L. Les proprietés anti-microbiennes des huiles essentielles et composés d'arômes. Sci Aliment. 1998;18(6):563–82.
19.
go back to reference Jirovetz L, Buchbauer G, Denkova Z, Stoyanova A, Murgov I, Schmidt E, et al. Antimicrobial testings and gas chromatographic analysis of pure oxygenated monoterpenes 1, 8-cineole, α-terpineol, terpinen-4-ol and camphor as well as target compounds in essential oils of pine (Pinus pinaster), rosemary (Rosmarinus officinalis), tea tree (Melaleuca alternifolia). Sci Pharm. 2005;73(1):27–38. Jirovetz L, Buchbauer G, Denkova Z, Stoyanova A, Murgov I, Schmidt E, et al. Antimicrobial testings and gas chromatographic analysis of pure oxygenated monoterpenes 1, 8-cineole, α-terpineol, terpinen-4-ol and camphor as well as target compounds in essential oils of pine (Pinus pinaster), rosemary (Rosmarinus officinalis), tea tree (Melaleuca alternifolia). Sci Pharm. 2005;73(1):27–38.
20.
go back to reference Govindappa M, Poojashri MN. Antimicrobial, antioxidant and in vitro anti-inflammatory activity of ethanol extract and active phytochemical screening of Wedelia trilobata (L.) Hitchc. J Pharmacogn Phytother. 2011;3(3):43–51. Govindappa M, Poojashri MN. Antimicrobial, antioxidant and in vitro anti-inflammatory activity of ethanol extract and active phytochemical screening of Wedelia trilobata (L.) Hitchc. J Pharmacogn Phytother. 2011;3(3):43–51.
21.
go back to reference Okoh SO, Asekun OT, Familoni OB, Afolayan AJ. Composition and antioxidant activities of leaf and root volatile oils of Morinda Lucida. Nat Prod Commun. 2011;10:1537–41. Okoh SO, Asekun OT, Familoni OB, Afolayan AJ. Composition and antioxidant activities of leaf and root volatile oils of Morinda Lucida. Nat Prod Commun. 2011;10:1537–41.
22.
go back to reference Nantitanon W, Chowwanapoonpohn S, Okonogi S. Antioxidant and antimicrobial activities of Hyptis suaveolens essential oil. Sci Pharm. 2007;75(1):35–54.CrossRef Nantitanon W, Chowwanapoonpohn S, Okonogi S. Antioxidant and antimicrobial activities of Hyptis suaveolens essential oil. Sci Pharm. 2007;75(1):35–54.CrossRef
23.
go back to reference Collins CH., Lyne PM., Grange JM. and Falkinham III, JO. Microbiological Methods. 8th Edition. Butterworth and Co. Ltd. 2004; 168–186. Collins CH., Lyne PM., Grange JM. and Falkinham III, JO. Microbiological Methods. 8th Edition. Butterworth and Co. Ltd. 2004; 168–186.
24.
go back to reference European Pharmacopoeia Commission. European Pharmacopoeia. 5th Ed. Council of Europe: Strasbourg Cedex, France. 2004. European Pharmacopoeia Commission. European Pharmacopoeia. 5th Ed. Council of Europe: Strasbourg Cedex, France. 2004.
25.
go back to reference McLafferty FW. Stauffer DB. The Wiley/NBS registry of mass spectral data: Wiley-Interscience; 1989. McLafferty FW. Stauffer DB. The Wiley/NBS registry of mass spectral data: Wiley-Interscience; 1989.
26.
go back to reference Adams, RP. Identification of Essential Oil Components by gas chromatography/quadrupole mass spectroscopy. ion trap mass spectroscopy. Allured Publishing Corporation, Illinois, USA. 2001; P.456. Adams, RP. Identification of Essential Oil Components by gas chromatography/quadrupole mass spectroscopy. ion trap mass spectroscopy. Allured Publishing Corporation, Illinois, USA. 2001; P.456.
27.
go back to reference Joulain D, König WA. The atlas of spectral data of sesquiterpene hydrocarbons. EB-Verlag; 1998. Joulain D, König WA. The atlas of spectral data of sesquiterpene hydrocarbons. EB-Verlag; 1998.
28.
go back to reference Harris B. 1, 8 cineole–a component of choice for respiratory pathologies. International Journal of Clinical Aromatherapy Vol4 (2). 2007:3–8. Harris B. 1, 8 cineole–a component of choice for respiratory pathologies. International Journal of Clinical Aromatherapy Vol4 (2). 2007:3–8.
29.
go back to reference Soković M, Glamočlija J, Marin PD, Brkić D, van Griensven LJ. Antibacterial effects of the essential oils of commonly consumed medicinal herbs using an in vitro model. Molecules. 2010;15(11):7532–46.CrossRefPubMed Soković M, Glamočlija J, Marin PD, Brkić D, van Griensven LJ. Antibacterial effects of the essential oils of commonly consumed medicinal herbs using an in vitro model. Molecules. 2010;15(11):7532–46.CrossRefPubMed
30.
go back to reference Bae GS, Park KC, Choi SB, Jo IJ, Choi MO, Hong SH, et al. Protective effects of alpha-pinene in mice with cerulein-induced acute pancreatitis. Life Sci. 2012;91(17):866–71.CrossRefPubMed Bae GS, Park KC, Choi SB, Jo IJ, Choi MO, Hong SH, et al. Protective effects of alpha-pinene in mice with cerulein-induced acute pancreatitis. Life Sci. 2012;91(17):866–71.CrossRefPubMed
31.
go back to reference Dorman HJ, Figueiredo AC, Barroso JG, Deans SG. In vitro evaluation of antioxidant activity of essential oils and their components. Flavour and Fragrance Journal. 2000;15(1):12–6.CrossRef Dorman HJ, Figueiredo AC, Barroso JG, Deans SG. In vitro evaluation of antioxidant activity of essential oils and their components. Flavour and Fragrance Journal. 2000;15(1):12–6.CrossRef
32.
go back to reference Wang W, Wu N, Zu YG, Fu YJ. Antioxidative activity of Rosmarinus officinalis L. essential oil compared to its main components. Food Chem. 2008;108(3):1019–22.CrossRefPubMed Wang W, Wu N, Zu YG, Fu YJ. Antioxidative activity of Rosmarinus officinalis L. essential oil compared to its main components. Food Chem. 2008;108(3):1019–22.CrossRefPubMed
33.
go back to reference Wang W, Li N, Luo M, Zu Y, Efferth T. Antibacterial activity and anticancer activity of Rosmarinus officinalis L. essential oil compared to that of its main components. Molecules. 2012;17(3):2704–13.CrossRefPubMed Wang W, Li N, Luo M, Zu Y, Efferth T. Antibacterial activity and anticancer activity of Rosmarinus officinalis L. essential oil compared to that of its main components. Molecules. 2012;17(3):2704–13.CrossRefPubMed
34.
go back to reference Him A, Ozbek H, Turel I, Oner AC. Antinociceptive activity of alpha-pinene and fenchone. Pharmacol Online. 2008;3:363–9. Him A, Ozbek H, Turel I, Oner AC. Antinociceptive activity of alpha-pinene and fenchone. Pharmacol Online. 2008;3:363–9.
35.
go back to reference Asakura K, Kanemasa T, Minagawa K, Kagawa K, Yagami T, Nakajima M, et al. α-Eudesmol, a P/Q-type ca 2+ channel blocker, inhibits neurogenic vasodilation and extravasation following electrical stimulation of trigeminal ganglion. Brain res. 2000;873(1):94–10.CrossRefPubMed Asakura K, Kanemasa T, Minagawa K, Kagawa K, Yagami T, Nakajima M, et al. α-Eudesmol, a P/Q-type ca 2+ channel blocker, inhibits neurogenic vasodilation and extravasation following electrical stimulation of trigeminal ganglion. Brain res. 2000;873(1):94–10.CrossRefPubMed
36.
go back to reference Asakura K, Matsuo Y, Oshima T, Kihara T, Minagawa K, Araki Y, et al. ω-Agatoxin IVA-sensitive ca 2+ channel blocker, α-eudesmol, protects against brain injury after focal ischemia in rats. Eur J Pharmacol. 2000;394(1):57–65.CrossRefPubMed Asakura K, Matsuo Y, Oshima T, Kihara T, Minagawa K, Araki Y, et al. ω-Agatoxin IVA-sensitive ca 2+ channel blocker, α-eudesmol, protects against brain injury after focal ischemia in rats. Eur J Pharmacol. 2000;394(1):57–65.CrossRefPubMed
37.
go back to reference Kumar D, Sukapaka M, Babu GK, Padwad Y. Chemical composition and in vitro cytotoxicity of essential oils from leaves and flowers of Callistemon Citrinus from western himalayas. PLoS One. 2015;10(8):e0133823.CrossRefPubMedPubMedCentral Kumar D, Sukapaka M, Babu GK, Padwad Y. Chemical composition and in vitro cytotoxicity of essential oils from leaves and flowers of Callistemon Citrinus from western himalayas. PLoS One. 2015;10(8):e0133823.CrossRefPubMedPubMedCentral
38.
go back to reference Zandi-Sohani N, Hojjati M, Carbonell-Barrachina AA. Volatile composition of the essential oil of Callistemon Citrinus leaves from Iran. Journal of Essential oil Bearing Plants. 2012;15(5):703–7.CrossRef Zandi-Sohani N, Hojjati M, Carbonell-Barrachina AA. Volatile composition of the essential oil of Callistemon Citrinus leaves from Iran. Journal of Essential oil Bearing Plants. 2012;15(5):703–7.CrossRef
39.
go back to reference Minar.J; Amineh. K.; Abol Fazi. DT and Fariba. R. Essential oil composition and antioxidant activity of hydromethanolic extract from the flowers, leaves and stems of Callistemon citrinus (Curtis) skeels. Indian Journal of natural Products and Resources Vol 5 (4), 2014; 308–312. Minar.J; Amineh. K.; Abol Fazi. DT and Fariba. R. Essential oil composition and antioxidant activity of hydromethanolic extract from the flowers, leaves and stems of Callistemon citrinus (Curtis) skeels. Indian Journal of natural Products and Resources Vol 5 (4), 2014; 308–312.
40.
go back to reference Chane-Ming J, Vera RR, Fraisse DJ. Chemical composition of essential oil of Callistemon Citrinus (Curtis) Skeel from Reunion. J Essent oil res. 1998;10(4):429–31.CrossRef Chane-Ming J, Vera RR, Fraisse DJ. Chemical composition of essential oil of Callistemon Citrinus (Curtis) Skeel from Reunion. J Essent oil res. 1998;10(4):429–31.CrossRef
41.
go back to reference Srivastava SK, Ahmad A, Syamsunder KV, Aggarwal KK, Khanuja SP. Essential oil composition of Callistemon viminalis leaves from India. Flavour and Fragrance Journal. 2003;18(5):361–3.CrossRef Srivastava SK, Ahmad A, Syamsunder KV, Aggarwal KK, Khanuja SP. Essential oil composition of Callistemon viminalis leaves from India. Flavour and Fragrance Journal. 2003;18(5):361–3.CrossRef
42.
go back to reference Riaz M, Chaudhary FM. The chemical composition of Pakistani Callistemon Citrinus oils. J Essent oil res. 1990;2(6):327–8.CrossRef Riaz M, Chaudhary FM. The chemical composition of Pakistani Callistemon Citrinus oils. J Essent oil res. 1990;2(6):327–8.CrossRef
43.
go back to reference Ogundajo AL, Oladosu IA, Ogunwande IA, Flamini G, Owolabi MS. Study on the volatile constituents of Solanum nigrum L. var virginicum from Nigeria. Asian J Plant Sci res. 2013;3(1):94–8. Ogundajo AL, Oladosu IA, Ogunwande IA, Flamini G, Owolabi MS. Study on the volatile constituents of Solanum nigrum L. var virginicum from Nigeria. Asian J Plant Sci res. 2013;3(1):94–8.
44.
go back to reference Panizzi L, Flamini G, Coni PL, Morelli I. Composition and antimicrobial properties of essential oils of four Mediterranean Laminaceae. J Ethnopharmacol. 1993;39:167–70.CrossRefPubMed Panizzi L, Flamini G, Coni PL, Morelli I. Composition and antimicrobial properties of essential oils of four Mediterranean Laminaceae. J Ethnopharmacol. 1993;39:167–70.CrossRefPubMed
45.
go back to reference Kumar A, Kaur R, Thind TS, Arora R, Kaur P, Arora S. In vitro Antioxidative potential of extracts from Callistemon lanceolatus sweet. And Eucalyptus Lanceolata Labill. Int. J. Curr. Microbiol. App. Sci. 2015;4(10):316–24. Kumar A, Kaur R, Thind TS, Arora R, Kaur P, Arora S. In vitro Antioxidative potential of extracts from Callistemon lanceolatus sweet. And Eucalyptus Lanceolata Labill. Int. J. Curr. Microbiol. App. Sci. 2015;4(10):316–24.
46.
go back to reference Tawata S, Taira S, Kobamoto N, Ishihara M, Toyama S. Syntheses and biological activities of dihydro-5, 6-dehydrokawain derivatives. Biosci Biotechnol Biochem. 1996;60(10):1643–5.CrossRefPubMed Tawata S, Taira S, Kobamoto N, Ishihara M, Toyama S. Syntheses and biological activities of dihydro-5, 6-dehydrokawain derivatives. Biosci Biotechnol Biochem. 1996;60(10):1643–5.CrossRefPubMed
47.
go back to reference Mediani A, Abas F, Khatib A, Tan CP. Cosmos caudatus As a potential source of polyphenolic compounds: optimisation of oven drying conditions and characterisation of its functional properties. Molecules. 2013;18(9):10452–64.CrossRefPubMed Mediani A, Abas F, Khatib A, Tan CP. Cosmos caudatus As a potential source of polyphenolic compounds: optimisation of oven drying conditions and characterisation of its functional properties. Molecules. 2013;18(9):10452–64.CrossRefPubMed
48.
go back to reference Cock IE. Antimicrobial activity of Callistemon Citrinus and Callistemon salignus methanolic extracts. 2012 Pharmacognosy. Communications. 2012;2(3):50–7. Cock IE. Antimicrobial activity of Callistemon Citrinus and Callistemon salignus methanolic extracts. 2012 Pharmacognosy. Communications. 2012;2(3):50–7.
49.
go back to reference Okwu DE, Iroabuchi FI. Phytochemical studies and antimicrobial activity screening of aqueous and ethanolic roots extracts of Uvaria chamae bear and Cnestis ferruginea DCJ Chem. Soc Nig. 2001;29(2):112–4. Okwu DE, Iroabuchi FI. Phytochemical studies and antimicrobial activity screening of aqueous and ethanolic roots extracts of Uvaria chamae bear and Cnestis ferruginea DCJ Chem. Soc Nig. 2001;29(2):112–4.
50.
go back to reference Okwu DE, Morah FN. Isolation and characterization of flavanone glycoside 4I, 5, 7-trihydroxy flavanone rhamnoglucose from Garcinia kola seed. J Appl Sci. 2007;7:306–9.CrossRef Okwu DE, Morah FN. Isolation and characterization of flavanone glycoside 4I, 5, 7-trihydroxy flavanone rhamnoglucose from Garcinia kola seed. J Appl Sci. 2007;7:306–9.CrossRef
51.
go back to reference Doughari JH, Human IS, Bennade S, Ndakidemi PA. Phytochemicals as chemotherapeutic agents and antioxidants: possible solution to the control of antibiotic resistant verocytotoxin producing bacteria. Journal of Medicinal Plants Research. 2009;3(11):839–48. Doughari JH, Human IS, Bennade S, Ndakidemi PA. Phytochemicals as chemotherapeutic agents and antioxidants: possible solution to the control of antibiotic resistant verocytotoxin producing bacteria. Journal of Medicinal Plants Research. 2009;3(11):839–48.
52.
go back to reference Edziri H, Ammar S, Soulad L, Mahjoub MA, Mastouri M, Aounim MZ, et al. In vitro evaluation of antimicrobial and antioxidant activities of some Tunisians vegetables. S.Afri. Bot. 2012;78:252–6. Edziri H, Ammar S, Soulad L, Mahjoub MA, Mastouri M, Aounim MZ, et al. In vitro evaluation of antimicrobial and antioxidant activities of some Tunisians vegetables. S.Afri. Bot. 2012;78:252–6.
53.
go back to reference Mimica-Dukić N, Božin B, Soković M, Mihajlović B, Matavulj M. Antimicrobial and antioxidant activities of three Mentha species essential oils. Planta med. 2003;69(05):413–9.CrossRefPubMed Mimica-Dukić N, Božin B, Soković M, Mihajlović B, Matavulj M. Antimicrobial and antioxidant activities of three Mentha species essential oils. Planta med. 2003;69(05):413–9.CrossRefPubMed
54.
go back to reference Edris AE. Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: a review. Phytother res. 2007;21(4):308–23.CrossRefPubMed Edris AE. Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: a review. Phytother res. 2007;21(4):308–23.CrossRefPubMed
55.
go back to reference Miguel G, Simoes M, Figueiredo AC, Barroso JG, Pedro LG, Carvalho L. Composition and antioxidant activities of the essential oils of Thymus caespititius, Thymus camphoratus and Thymus mastichina. Food Chem. 2004;86(2):183–8.CrossRef Miguel G, Simoes M, Figueiredo AC, Barroso JG, Pedro LG, Carvalho L. Composition and antioxidant activities of the essential oils of Thymus caespititius, Thymus camphoratus and Thymus mastichina. Food Chem. 2004;86(2):183–8.CrossRef
Metadata
Title
Terpene constituents of the aerial parts, phenolic content, antibacterial potential, free radical scavenging and antioxidant activity of Callistemon citrinus (Curtis) Skeels (Myrtaceae) from Eastern Cape Province of South Africa
Authors
Rotimi A. Larayetan
Omobola O. Okoh
Alexander Sadimenko
Anthony I. Okoh
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2017
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-017-1804-2

Other articles of this Issue 1/2017

BMC Complementary Medicine and Therapies 1/2017 Go to the issue