Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2017

Open Access 01-12-2017 | Research article

Changes in pancreatic histology, insulin secretion and oxidative status in diabetic rats following treatment with Ficus deltoidea and vitexin

Authors: Samsulrizal Nurdiana, Yong Meng Goh, Hafandi Ahmad, Sulaiman Md Dom, Nur Syimal’ain Azmi, Noor Syaffinaz Noor Mohamad Zin, Mahdi Ebrahimi

Published in: BMC Complementary Medicine and Therapies | Issue 1/2017

Login to get access

Abstract

Background

The potential application of Ficus deltoidea and vitexin for the management of symptomatologies associated with diabetes mellitus (DM) has gained much attention. However, less firm evidence comes from data to augment our understanding of the role of F. deltoidea and vitexin in protecting pancreatic β-cells. The aim of this study was to assess histological and oxidative stress changes in the pancreas of streptozotocin (STZ)-induced diabetic rats following F. deltoidea extract and vitexin treatment.

Methods

F. deltoidea and vitexin was administrated orally to six-weeks STZ-induced diabetic rats over 8 weeks period. The glucose and insulin tolerances were assessed by intraperitoneal glucose (2 g/kg) tolerance test (IPGTT) and intraperitoneal insulin (0.65 U/kg) tolerance test (IPITT), respectively. Subsequently, insulin resistance was assessed by homeostasis assessment model of insulin resistance (HOMA-IR), quantitative insulin sensitivity check index (QUICKI) and the insulin/triglyceride-derived McAuley index. The histological changes in the pancreas were then observed by hematoxylin-eosin (H&E) staining. Further, the pattern of fatty acid composition and infrared (IR) spectra of the serum and pancreas were monitored by gas chromatography (GC) method and Fourier Transform Infrared (FT-IR) spectroscopy.

Results

F. deltoidea and vitexin increased pancreatic antioxidant enzymes and promoted islet regeneration. However, a significant increase in insulin secretion was observed only in rats treated with F. deltoidea. More importantly, reduction of fasting blood glucose is consistent with reduced FT-IR peaks at 1200-1000 cm−1.

Conclusions

These results accentuate that F. deltoidea and vitexin could be a potential agent to attenuate pancreatic oxidative damage and advocate their therapeutic potential for treating DM.
Literature
6.
go back to reference Meier JJ, Bonadonna RC. Role of reduced β-cell mass versus impaired β-cell function in the pathogenesis of type 2 diabetes. Diabetes Care. 2013;2:S113–9. doi:10.2337/dcS13-2008.CrossRef Meier JJ, Bonadonna RC. Role of reduced β-cell mass versus impaired β-cell function in the pathogenesis of type 2 diabetes. Diabetes Care. 2013;2:S113–9. doi:10.​2337/​dcS13-2008.CrossRef
8.
go back to reference Chen S, Bastarrachea RA, Roberts BJ, Voruganti VS, Frost PA, Nava-Gonzalez EJ, Arriaga-Cazares HE, Chen J, Huang P, DeFronzo RA, Comuzzie AG, Grayburn PA. Successful β cells islet regeneration in streptozotocin-induced diabetic baboons using ultrasound-targeted microbubble gene therapy with cyclinD2/CDK4/GLP1. Cell Cycle. 2014;13(7):1145–51. doi:10.4161/cc.27997.CrossRefPubMedPubMedCentral Chen S, Bastarrachea RA, Roberts BJ, Voruganti VS, Frost PA, Nava-Gonzalez EJ, Arriaga-Cazares HE, Chen J, Huang P, DeFronzo RA, Comuzzie AG, Grayburn PA. Successful β cells islet regeneration in streptozotocin-induced diabetic baboons using ultrasound-targeted microbubble gene therapy with cyclinD2/CDK4/GLP1. Cell Cycle. 2014;13(7):1145–51. doi:10.​4161/​cc.​27997.CrossRefPubMedPubMedCentral
9.
go back to reference Abdullah Z, Hussain K, Zhari I, Rasadah MA, Mazura P, Jamaludin F, Sahdan R. Evaluation of extracts of leaf of three Ficus Deltoidea varieties for antioxidant activities and secondary metabolites. Phcog Res. 2009;1:216–23. Abdullah Z, Hussain K, Zhari I, Rasadah MA, Mazura P, Jamaludin F, Sahdan R. Evaluation of extracts of leaf of three Ficus Deltoidea varieties for antioxidant activities and secondary metabolites. Phcog Res. 2009;1:216–23.
12.
go back to reference Nurdiana S, Harita H, Farida Zuraina MY. Effect of Ficus Deltoidea leaves on glycolytic enzymes in liver of normal and streptozotocin-induced diabetic rats. Nat Prod. 2009;5(4):162–6. Nurdiana S, Harita H, Farida Zuraina MY. Effect of Ficus Deltoidea leaves on glycolytic enzymes in liver of normal and streptozotocin-induced diabetic rats. Nat Prod. 2009;5(4):162–6.
16.
go back to reference Farsi E, Ahmad M, Hor SY, Ahamed MB, Yam MF, Asmawi MZ. Standardized extract of Ficus Deltoidea stimulates insulin secretion and blocks hepatic glucose production by regulating the expression of glucose-metabolic genes in streptozitocin-induced diabetic rats. BMC Complement Altern Med. 2014;14:220. doi:10.1186/1472-6882-14-220.CrossRefPubMedPubMedCentral Farsi E, Ahmad M, Hor SY, Ahamed MB, Yam MF, Asmawi MZ. Standardized extract of Ficus Deltoidea stimulates insulin secretion and blocks hepatic glucose production by regulating the expression of glucose-metabolic genes in streptozitocin-induced diabetic rats. BMC Complement Altern Med. 2014;14:220. doi:10.​1186/​1472-6882-14-220.CrossRefPubMedPubMedCentral
21.
go back to reference Dong Y, Jing T, Meng Q, Liu C, Hu S, Ma Y, Liu Y, Lu J, Cheng Y, Wang D, Teng L. Studies on the antidiabetic activities of cordyceps militaris extract in diet-streptozotocin-induced diabetic Sprague-dawley rats. Biomed Res Int. 2014;2014:160980. doi:10.1155/2014/160980.PubMedPubMedCentral Dong Y, Jing T, Meng Q, Liu C, Hu S, Ma Y, Liu Y, Lu J, Cheng Y, Wang D, Teng L. Studies on the antidiabetic activities of cordyceps militaris extract in diet-streptozotocin-induced diabetic Sprague-dawley rats. Biomed Res Int. 2014;2014:160980. doi:10.​1155/​2014/​160980.PubMedPubMedCentral
22.
go back to reference Tahara A, Matsuyama-Yokono A, Nakano R, Someya Y, Shibasaki M. Hypoglycaemic effects of antidiabetic drugs in streptozotocin-nicotinamide-induced mildly diabetic and streptozotocin-induced severely diabetic rats. Basic Clin Pharmacol Toxicol. 2008;103(6):560–8. doi:10.1111/j.1742-7843.2008.00321.x.CrossRefPubMed Tahara A, Matsuyama-Yokono A, Nakano R, Someya Y, Shibasaki M. Hypoglycaemic effects of antidiabetic drugs in streptozotocin-nicotinamide-induced mildly diabetic and streptozotocin-induced severely diabetic rats. Basic Clin Pharmacol Toxicol. 2008;103(6):560–8. doi:10.​1111/​j.​1742-7843.​2008.​00321.​x.CrossRefPubMed
23.
go back to reference Abdollahi M, Zuki ABZ, Goh YM, Rezaeizadeh A, Noordin MM. The effects of Momordica charantia on the liver in streptozotocin-induced diabetes in neonatal rats. Afr J Biotechnol. 2010;9(31):5004–12. Abdollahi M, Zuki ABZ, Goh YM, Rezaeizadeh A, Noordin MM. The effects of Momordica charantia on the liver in streptozotocin-induced diabetes in neonatal rats. Afr J Biotechnol. 2010;9(31):5004–12.
24.
25.
go back to reference Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–9.CrossRefPubMed Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–9.CrossRefPubMed
27.
go back to reference Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265–75.PubMed Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265–75.PubMed
29.
go back to reference Eslami H, Batavani RA, Asr I-Rezaei S, Hobbenaghi R. Changes of stress oxidative enzymes in rat mammary tissue, blood and milk after experimental mastitis induced by E. coli lipopolysaccharide. Vet Res Forum. 2015;6(2):131–6.PubMedPubMedCentral Eslami H, Batavani RA, Asr I-Rezaei S, Hobbenaghi R. Changes of stress oxidative enzymes in rat mammary tissue, blood and milk after experimental mastitis induced by E. coli lipopolysaccharide. Vet Res Forum. 2015;6(2):131–6.PubMedPubMedCentral
31.
go back to reference Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957;226(1):497–509.PubMed Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957;226(1):497–509.PubMed
32.
go back to reference Demir P, Akkas SB, Severcan M, Zorlu F, Severcan F. Ionizing radiation induces structural and functional damage on the molecules of rat brain homogenate membranes: a Fourier transform infrared (FT-IR) spectroscopic study. Appl Spectrosc. 2015;69(1):154–64. doi:10.1366/13-07154.CrossRefPubMed Demir P, Akkas SB, Severcan M, Zorlu F, Severcan F. Ionizing radiation induces structural and functional damage on the molecules of rat brain homogenate membranes: a Fourier transform infrared (FT-IR) spectroscopic study. Appl Spectrosc. 2015;69(1):154–64. doi:10.​1366/​13-07154.CrossRefPubMed
34.
35.
go back to reference Donga E, van Dijk M, Hoogma RP, Corssmit EP, Romijn JA. Insulin resistance in multiple tissues in patients with type 1 diabetes mellitus on long-term continuous subcutaneous insulin infusion therapy. Diabetes Metab Res Rev. 2013;29(1):33–8. doi:10.1002/dmrr.2343.CrossRefPubMed Donga E, van Dijk M, Hoogma RP, Corssmit EP, Romijn JA. Insulin resistance in multiple tissues in patients with type 1 diabetes mellitus on long-term continuous subcutaneous insulin infusion therapy. Diabetes Metab Res Rev. 2013;29(1):33–8. doi:10.​1002/​dmrr.​2343.CrossRefPubMed
36.
go back to reference Subash-Babu P, Alshatwi AA, Ignacimuthu S. Beneficial antioxidative and antiperoxidative effect of Cinnamaldehyde protect streptozotocin-induced pancreatic β-cells damage in wistar rats. Biomol Ther (Seoul). 2014;22(1):47–54. doi:10.4062/biomolther.2013.100.CrossRef Subash-Babu P, Alshatwi AA, Ignacimuthu S. Beneficial antioxidative and antiperoxidative effect of Cinnamaldehyde protect streptozotocin-induced pancreatic β-cells damage in wistar rats. Biomol Ther (Seoul). 2014;22(1):47–54. doi:10.​4062/​biomolther.​2013.​100.CrossRef
37.
go back to reference Ding Y, Zhang Z, Dai X, Jiang Y, Bao L, Li Y, Li Y. Grape seed proanthocyanidins ameliorate pancreatic beta-cell dysfunction and death in low-dose streptozotocin- and high-carbohydrate/high-fat diet-induced diabetic rats partially by regulating endoplasmic reticulum stress. Nutr Metab (Lond). 2013;10:51. 10.1186/1743-7075-10-51. Ding Y, Zhang Z, Dai X, Jiang Y, Bao L, Li Y, Li Y. Grape seed proanthocyanidins ameliorate pancreatic beta-cell dysfunction and death in low-dose streptozotocin- and high-carbohydrate/high-fat diet-induced diabetic rats partially by regulating endoplasmic reticulum stress. Nutr Metab (Lond). 2013;10:51. 10.​1186/​1743-7075-10-51.
38.
go back to reference Amin A, Lotfy M, Mahmoud-Ghoneim D, Adeghate E, Al-Akhras MA, Al-Saadi M, Al-Rahmoun S, Hameed R. Pancreas-protective effects of chlorella in STZ-induced diabetic animal model: insights into the mechanism. J Diabetes Mellitus. 2011;1:36–45. doi:10.4236/jdm.2011.13006.CrossRef Amin A, Lotfy M, Mahmoud-Ghoneim D, Adeghate E, Al-Akhras MA, Al-Saadi M, Al-Rahmoun S, Hameed R. Pancreas-protective effects of chlorella in STZ-induced diabetic animal model: insights into the mechanism. J Diabetes Mellitus. 2011;1:36–45. doi:10.​4236/​jdm.​2011.​13006.CrossRef
39.
40.
41.
go back to reference Bhat M, Kothiwale SK, Tirmale AR, Bhargava SY, Joshi BN. Antidiabetic properties of Azardiracta indica and Bougainvillea spectabilis: in vivo studies in murine diabetes model. Evid Based Complement Alternat Med. 2011;2011:561625. doi:10.1093/ecam/nep033.PubMedPubMedCentral Bhat M, Kothiwale SK, Tirmale AR, Bhargava SY, Joshi BN. Antidiabetic properties of Azardiracta indica and Bougainvillea spectabilis: in vivo studies in murine diabetes model. Evid Based Complement Alternat Med. 2011;2011:561625. doi:10.​1093/​ecam/​nep033.PubMedPubMedCentral
42.
go back to reference Hafizur RM, Fatima N, Shaukat S. Immunohistochemical evidence of pancreatic β-cell regeneration in streptozotocin-induced type 2 diabetic rats treated with Gymnema sylvestre extract. J Cytol Histol. 2015;6:342. doi:10.4172/2157-7099.1000342.CrossRef Hafizur RM, Fatima N, Shaukat S. Immunohistochemical evidence of pancreatic β-cell regeneration in streptozotocin-induced type 2 diabetic rats treated with Gymnema sylvestre extract. J Cytol Histol. 2015;6:342. doi:10.​4172/​2157-7099.​1000342.CrossRef
43.
go back to reference Oh YS. Plant-derived compounds targeting pancreatic beta cells for the treatment of diabetes. Evid Based Complement Alternat Med. 2015;2015:629863. 10.1155/2015/629863. Oh YS. Plant-derived compounds targeting pancreatic beta cells for the treatment of diabetes. Evid Based Complement Alternat Med. 2015;2015:629863. 10.​1155/​2015/​629863.
44.
go back to reference Roza AM, Pieper GM, Johnson CP, Adams MB. Pancreatic antioxidant enzyme activity in normoglycemic diabetic prone BB rats. Pancreas. 1995;10(1):53–8.CrossRefPubMed Roza AM, Pieper GM, Johnson CP, Adams MB. Pancreatic antioxidant enzyme activity in normoglycemic diabetic prone BB rats. Pancreas. 1995;10(1):53–8.CrossRefPubMed
49.
go back to reference Zhou QX, Liu F, Zhang JS, Lu JG, Gu ZL, Gu GX. Effects of triterpenic acid from Prunella vulgaris L. on glycemia and pancreas in rat model of streptozotozin diabetes. Chin Med J (Engl). 2013;126(9):1647-53. Zhou QX, Liu F, Zhang JS, Lu JG, Gu ZL, Gu GX. Effects of triterpenic acid from Prunella vulgaris L. on glycemia and pancreas in rat model of streptozotozin diabetes. Chin Med J (Engl). 2013;126(9):1647-53.
50.
55.
go back to reference Shigihara N, Fukunaka A, Hara A, Komiya K, Honda A, Uchida T, Abe H, Toyofuku Y, Tamaki M, Ogihara T, Miyatsuka T, Hiddinga HJ, Sakagashira S, Koike M, Uchiyama Y, Yoshimori T, Eberhardt NL, Fujitani Y, Watada H. Human IAPP-induced pancreatic β cell toxicity and its regulation by autophagy. J Clin Invest. 2014;124(8):3634–44. doi:10.1172/JCI69866.CrossRefPubMedPubMedCentral Shigihara N, Fukunaka A, Hara A, Komiya K, Honda A, Uchida T, Abe H, Toyofuku Y, Tamaki M, Ogihara T, Miyatsuka T, Hiddinga HJ, Sakagashira S, Koike M, Uchiyama Y, Yoshimori T, Eberhardt NL, Fujitani Y, Watada H. Human IAPP-induced pancreatic β cell toxicity and its regulation by autophagy. J Clin Invest. 2014;124(8):3634–44. doi:10.​1172/​JCI69866.CrossRefPubMedPubMedCentral
56.
go back to reference Fuentes AL, Hennessy K, Pascual J, Pepe N, Wang I, Santiago A, Chaggan C, Martinez J, Rivera E, Cota P, Cunha C, Nogaj LA, Moffet DA. Identification of plant extracts that inhibit the formation of diabetes-linked IAPP amyloid. J Herb Med. 2016;6(1):37–41.CrossRefPubMedPubMedCentral Fuentes AL, Hennessy K, Pascual J, Pepe N, Wang I, Santiago A, Chaggan C, Martinez J, Rivera E, Cota P, Cunha C, Nogaj LA, Moffet DA. Identification of plant extracts that inhibit the formation of diabetes-linked IAPP amyloid. J Herb Med. 2016;6(1):37–41.CrossRefPubMedPubMedCentral
60.
go back to reference Němcová-Fürstová V, Balušíková K, Srámek J, James RF, Kovář J. Caspase-2 and JNK activated by saturated fatty acids are not involved in apoptosis induction but modulate ER stress in human pancreatic β-cells. Cell Physiol Biochem. 2013;31(2-3):277–89. doi:10.1159/000343367.CrossRefPubMed Němcová-Fürstová V, Balušíková K, Srámek J, James RF, Kovář J. Caspase-2 and JNK activated by saturated fatty acids are not involved in apoptosis induction but modulate ER stress in human pancreatic β-cells. Cell Physiol Biochem. 2013;31(2-3):277–89. doi:10.​1159/​000343367.CrossRefPubMed
62.
65.
go back to reference Itoh Y, Kawamata Y, Harada M, Kobayashi M, Fujii R, Fukusumi S, Ogi K, Hosoya M, Tanaka Y, Uejima H, Tanaka H, Maruyama M, Satoh R, Okubo S, Kizawa H, Komatsu H, Matsumura F, Noguchi Y, Shinohara T, Hinuma S, Fujisawa Y, Fujino M. Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40. Nature. 2003;422(6928):173–6. doi:10.2337/diabetes.53.suppl_3.S16.CrossRefPubMed Itoh Y, Kawamata Y, Harada M, Kobayashi M, Fujii R, Fukusumi S, Ogi K, Hosoya M, Tanaka Y, Uejima H, Tanaka H, Maruyama M, Satoh R, Okubo S, Kizawa H, Komatsu H, Matsumura F, Noguchi Y, Shinohara T, Hinuma S, Fujisawa Y, Fujino M. Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40. Nature. 2003;422(6928):173–6. doi:10.​2337/​diabetes.​53.​suppl_​3.​S16.CrossRefPubMed
66.
go back to reference Vassiliou EK, Gonzalez A, Garcia C, Tadros JH, Chakraborty G, Toney JH. Oleic acid and peanut oil high in oleic acid reverse the inhibitory effect of insulin production of the inflammatory cytokine TNF-alpha both in vitro and in vivo systems. Lipids Health Dis. 2009;8:25. doi:10.1186/1476-511X-8-25.CrossRefPubMedPubMedCentral Vassiliou EK, Gonzalez A, Garcia C, Tadros JH, Chakraborty G, Toney JH. Oleic acid and peanut oil high in oleic acid reverse the inhibitory effect of insulin production of the inflammatory cytokine TNF-alpha both in vitro and in vivo systems. Lipids Health Dis. 2009;8:25. doi:10.​1186/​1476-511X-8-25.CrossRefPubMedPubMedCentral
67.
go back to reference Kudo T, Wu J, Ogawa Y, Suga S, Hasegawa N, Suda T, Mizukami H, Yagihashi S, Wakui M. Novel mechanism of chronic exposure of oleic acid-induced insulin release impairment in rat pancreatic beta-cells. J Pharmacol Exp Ther. 2006;318(3):1203–10. doi:10.1124/jpet.106.105759.CrossRefPubMed Kudo T, Wu J, Ogawa Y, Suga S, Hasegawa N, Suda T, Mizukami H, Yagihashi S, Wakui M. Novel mechanism of chronic exposure of oleic acid-induced insulin release impairment in rat pancreatic beta-cells. J Pharmacol Exp Ther. 2006;318(3):1203–10. doi:10.​1124/​jpet.​106.​105759.CrossRefPubMed
69.
go back to reference Carrillo C, Del Mar CM, Roelofs H, Wanten G, Alonso-Torre SR. Activation of human neutrophils by oleic acid involves the production of reactive oxygen species and a rise in cytosolic calcium concentration: a comparison with N-6 polyunsaturated fatty acids. Cell Physiol Biochem. 2011;28(2):329–38. doi:10.1159/000331749.CrossRefPubMed Carrillo C, Del Mar CM, Roelofs H, Wanten G, Alonso-Torre SR. Activation of human neutrophils by oleic acid involves the production of reactive oxygen species and a rise in cytosolic calcium concentration: a comparison with N-6 polyunsaturated fatty acids. Cell Physiol Biochem. 2011;28(2):329–38. doi:10.​1159/​000331749.CrossRefPubMed
70.
go back to reference Bellenger J, Bellenger S, Bataille A, Massey KA, Nicolaou A, Rialland M, Tessier C, Kang JX, Narce M. High pancreatic n-3 fatty acids prevent STZ-induced diabetes in fat-1 mice: inflammatory pathway inhibition. Diabetes. 2011;60(4):1090–9. doi:10.2337/db10-0901.CrossRefPubMedPubMedCentral Bellenger J, Bellenger S, Bataille A, Massey KA, Nicolaou A, Rialland M, Tessier C, Kang JX, Narce M. High pancreatic n-3 fatty acids prevent STZ-induced diabetes in fat-1 mice: inflammatory pathway inhibition. Diabetes. 2011;60(4):1090–9. doi:10.​2337/​db10-0901.CrossRefPubMedPubMedCentral
71.
go back to reference Hwang WM, Bak DH, Kim DH, Hong JY, Han SY, Park KY, Lim K, Lim DM, Kang JG. Omega-3 polyunsaturated fatty acids may attenuate streptozotocin-induced pancreatic β-cell death via autophagy activation in fat1 transgenic mice. Endocrinol Metab (Seoul). 2015;30(4):569–75. doi:10.3803/EnM.2015.30.4.569.CrossRef Hwang WM, Bak DH, Kim DH, Hong JY, Han SY, Park KY, Lim K, Lim DM, Kang JG. Omega-3 polyunsaturated fatty acids may attenuate streptozotocin-induced pancreatic β-cell death via autophagy activation in fat1 transgenic mice. Endocrinol Metab (Seoul). 2015;30(4):569–75. doi:10.​3803/​EnM.​2015.​30.​4.​569.CrossRef
72.
go back to reference Baker MJ, Trevisan J, Bassan P, Bhargava R, Butler HJ, Dorling KM, Fielden PR, Fogarty SW, Fullwood NJ, Heys KA, Hughes C, Lasch P, Martin-Hirsch PL, Obinaju B, Sockalingum GD, Sulé-Suso J, Strong RJ, Walsh MJ, Wood BR, Gardner P, Martin FL. Using Fourier transform IR spectroscopy to analyze biological materials. Nat Protoc. 2014;9:1771–91. doi:10.1038/nprot.2014.110.CrossRefPubMedPubMedCentral Baker MJ, Trevisan J, Bassan P, Bhargava R, Butler HJ, Dorling KM, Fielden PR, Fogarty SW, Fullwood NJ, Heys KA, Hughes C, Lasch P, Martin-Hirsch PL, Obinaju B, Sockalingum GD, Sulé-Suso J, Strong RJ, Walsh MJ, Wood BR, Gardner P, Martin FL. Using Fourier transform IR spectroscopy to analyze biological materials. Nat Protoc. 2014;9:1771–91. doi:10.​1038/​nprot.​2014.​110.CrossRefPubMedPubMedCentral
74.
go back to reference Kaung HC. Effect of glucose on beta cell proliferation and population size in organ culture of foetal and neonatal rat pancreases. J Embryol Exp Morphol. 1983;75:303–12.PubMed Kaung HC. Effect of glucose on beta cell proliferation and population size in organ culture of foetal and neonatal rat pancreases. J Embryol Exp Morphol. 1983;75:303–12.PubMed
75.
go back to reference Porat S, Weinberg-Corem N, Tornovsky-Babaey S, Schyr-Ben-Haroush R, Hija A, Stolovich-Rain M, Dadon D, Granot Z, Ben-Hur V, White P, Girard CA, Karni R, Kaestner KH, Ashcroft FM, Magnuson MA, Saada A, Grimsby J, Glaser B, Dor Y. Control of pancreatic β cell regeneration by glucose metabolism. Cell Metab. 2011;13(4):440–9. doi:10.1016/j.cmet.2011.02.012.CrossRefPubMed Porat S, Weinberg-Corem N, Tornovsky-Babaey S, Schyr-Ben-Haroush R, Hija A, Stolovich-Rain M, Dadon D, Granot Z, Ben-Hur V, White P, Girard CA, Karni R, Kaestner KH, Ashcroft FM, Magnuson MA, Saada A, Grimsby J, Glaser B, Dor Y. Control of pancreatic β cell regeneration by glucose metabolism. Cell Metab. 2011;13(4):440–9. doi:10.​1016/​j.​cmet.​2011.​02.​012.CrossRefPubMed
78.
go back to reference Réus GZ, Dos Santos MA, Abelaira HM, Titus SE, Carlessi AS, Matias BI, Bruchchen L, Florentino D, Vieira A, Petronilho F, Ceretta LB, Zugno AI, Quevedo J. Antioxidant treatment ameliorates experimental diabetes-induced depressive-like behavior and reduces oxidative stress in brain and pancreas. Diabetes Metab Res Rev. 2016;32(3):278–88. doi:10.1002/dmrr.2732.CrossRefPubMed Réus GZ, Dos Santos MA, Abelaira HM, Titus SE, Carlessi AS, Matias BI, Bruchchen L, Florentino D, Vieira A, Petronilho F, Ceretta LB, Zugno AI, Quevedo J. Antioxidant treatment ameliorates experimental diabetes-induced depressive-like behavior and reduces oxidative stress in brain and pancreas. Diabetes Metab Res Rev. 2016;32(3):278–88. doi:10.​1002/​dmrr.​2732.CrossRefPubMed
80.
81.
go back to reference Chen YJ, Cheng YD, Liu HY, Lin PY, Wang CS. Observation of biochemical imaging changes in human pancreatic cancer tissue using Fourier-transform infrared microspectroscopy. Chang Gung Med J. 2006;29(5):518–27.PubMed Chen YJ, Cheng YD, Liu HY, Lin PY, Wang CS. Observation of biochemical imaging changes in human pancreatic cancer tissue using Fourier-transform infrared microspectroscopy. Chang Gung Med J. 2006;29(5):518–27.PubMed
82.
go back to reference Sánchez-Lozada LG, Tapia E, Bautista-García P, Soto V, Avila-Casado C, Vega-Campos IP, Nakagawa T, Zhao L, Franco M, Johnson RJ. Effects of febuxostat on metabolic and renal alterations in rats with fructose-induced metabolic syndrome. Am J Physiol Renal Physiol. 2008;294(4):F710–8. doi:10.1152/ajprenal.00454.2007.CrossRefPubMed Sánchez-Lozada LG, Tapia E, Bautista-García P, Soto V, Avila-Casado C, Vega-Campos IP, Nakagawa T, Zhao L, Franco M, Johnson RJ. Effects of febuxostat on metabolic and renal alterations in rats with fructose-induced metabolic syndrome. Am J Physiol Renal Physiol. 2008;294(4):F710–8. doi:10.​1152/​ajprenal.​00454.​2007.CrossRefPubMed
84.
go back to reference Arikawe AP, Udenze IC, Akinwolere MF, Ogunsola AO, Oghogholosu RT. Effects of streptozotocin, fructose and sucrose-induced insulin resistance on plasma and urinary electrolytes in male Sprague-Dawley rats. Nig Q J Hosp Med. 2012;22(4):224–30.PubMed Arikawe AP, Udenze IC, Akinwolere MF, Ogunsola AO, Oghogholosu RT. Effects of streptozotocin, fructose and sucrose-induced insulin resistance on plasma and urinary electrolytes in male Sprague-Dawley rats. Nig Q J Hosp Med. 2012;22(4):224–30.PubMed
Metadata
Title
Changes in pancreatic histology, insulin secretion and oxidative status in diabetic rats following treatment with Ficus deltoidea and vitexin
Authors
Samsulrizal Nurdiana
Yong Meng Goh
Hafandi Ahmad
Sulaiman Md Dom
Nur Syimal’ain Azmi
Noor Syaffinaz Noor Mohamad Zin
Mahdi Ebrahimi
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2017
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-017-1762-8

Other articles of this Issue 1/2017

BMC Complementary Medicine and Therapies 1/2017 Go to the issue