Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2017

Open Access 01-12-2017 | Research article

Rhein exhibits antioxidative effects similar to Rhubarb in a rat model of traumatic brain injury

Authors: Xia Xu, Huiying Lv, Zian Xia, Rong Fan, Chunhu Zhang, Yang Wang, Dongsheng Wang

Published in: BMC Complementary Medicine and Therapies | Issue 1/2017

Login to get access

Abstract

Background

The brain is secondarily harmed by pathological, physiological, and biological reactions that are caused by traumatic brain injury (TBI). Rhein, a significant composition of Rhubarb, is a well-known traditional Chinese treatment method and has a strong oxidation-resisting characteristic, but Rhein’s mechanism remains unclear.

Methods

This study aimed to identify Rhein in the brain tissues of TBI model of rats, and confirm whether Rhein induced an antioxidative effect similar to its parent medicine, Rhubarb. First, the ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was applied to identify Rhein in the brain tissue of the controlled cortical impact (CCI) rats after intra-gastric administration of Rhubarb. Further, for the purpose of calculating the oxidant stress of the CCI rats, the malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD), and glutathione disulfide (GSSG), as well as the proportion of glutathione (GSH)/GSSG were measured in the brain tissues.

Results

The results showed that Rhein was absorbed in the brain tissues of CCI rats. Rhubarb and rhein elevated the SOD, CAT activities, GSH level, and GSH/GSSG ratio, and diminished the MDA and GSSG levels.

Conclusion

The data demonstrated that Rhubarb and Rhein had the potential to be used as a neuroprotective drug for TBI, and that Rhein induced an antioxidative effect similar to its parent medicine, Rhubarb.
Literature
1.
go back to reference Li M, Lin YP, Chen JL, Li H, Jiang RC, Zhang JN. Role of regulatory T cell in clinical outcome of traumatic brain injury. Chin Med J (Engl). 2015;8:1072–8. Li M, Lin YP, Chen JL, Li H, Jiang RC, Zhang JN. Role of regulatory T cell in clinical outcome of traumatic brain injury. Chin Med J (Engl). 2015;8:1072–8.
2.
go back to reference Doulames VM, Vilcans M, Lee S, Shea TB. Social interaction attenuates the extent of secondary neuronal damage following closed head injury in mice. Front Behav Neurosci. 2015;9:275.CrossRefPubMedPubMedCentral Doulames VM, Vilcans M, Lee S, Shea TB. Social interaction attenuates the extent of secondary neuronal damage following closed head injury in mice. Front Behav Neurosci. 2015;9:275.CrossRefPubMedPubMedCentral
3.
go back to reference Toklu, HZ, Tumer N. Oxidative Stress, Brain Edema, Blood-brain Barrier Permeability, and Autonomic Dysfunction from Traumatic Brain Injury, in Brain Neurotrauma: Molecular, Neuropsychological, and Rehabilitation Aspects, F.H. Kobeissy, Editor. Boca Raton (FL): Frontiers in Neuroengineering; 2015. Toklu, HZ, Tumer N. Oxidative Stress, Brain Edema, Blood-brain Barrier Permeability, and Autonomic Dysfunction from Traumatic Brain Injury, in Brain Neurotrauma: Molecular, Neuropsychological, and Rehabilitation Aspects, F.H. Kobeissy, Editor. Boca Raton (FL): Frontiers in Neuroengineering; 2015.
4.
go back to reference Laskowski, RA, Creed JA, Raghupathi R. Pathophysiology of Mild TBI: Implications for Altered Signaling Pathways, in Brain Neurotrauma: Molecular, Neuropsychological, and Rehabilitation Aspects, F.H. Kobeissy, Editor. Boca Raton (FL): Frontiers in Neuroengineering; 2015. Laskowski, RA, Creed JA, Raghupathi R. Pathophysiology of Mild TBI: Implications for Altered Signaling Pathways, in Brain Neurotrauma: Molecular, Neuropsychological, and Rehabilitation Aspects, F.H. Kobeissy, Editor. Boca Raton (FL): Frontiers in Neuroengineering; 2015.
5.
go back to reference Zhang YB, Li SX, Chen XP, Yang L, Zhang YG, Liu R, et al. Autophagy is activated and might protect neurons from degeneration after traumatic brain injury. Neurosci Bull. 2008;3:143–9.CrossRef Zhang YB, Li SX, Chen XP, Yang L, Zhang YG, Liu R, et al. Autophagy is activated and might protect neurons from degeneration after traumatic brain injury. Neurosci Bull. 2008;3:143–9.CrossRef
6.
go back to reference Zhang W, Li BY, Bai Y, Wang T, Fu K, Sun G. Rhamnetin attenuates cognitive deficit and inhibits hippocampal inflammatory response and oxidative stress in rats with traumatic brain injury. Cent Eur J Immunol. 2015;1:35–41.CrossRef Zhang W, Li BY, Bai Y, Wang T, Fu K, Sun G. Rhamnetin attenuates cognitive deficit and inhibits hippocampal inflammatory response and oxidative stress in rats with traumatic brain injury. Cent Eur J Immunol. 2015;1:35–41.CrossRef
7.
go back to reference Dincel GC, Atmaca HT. Role of oxidative stress in the pathophysiology of Toxoplasma gondii infection. Int J Immunopathol Pharmacol. 2016;2:226–40.CrossRef Dincel GC, Atmaca HT. Role of oxidative stress in the pathophysiology of Toxoplasma gondii infection. Int J Immunopathol Pharmacol. 2016;2:226–40.CrossRef
8.
go back to reference Alavi Naini SM, Soussi-Yanicostas N. Tau Hyperphosphorylation and Oxidative Stress, a Critical Vicious Circle in Neurodegenerative Tauopathies? Oxid Med Cell Longev. 2015;2015:151979.CrossRefPubMedPubMedCentral Alavi Naini SM, Soussi-Yanicostas N. Tau Hyperphosphorylation and Oxidative Stress, a Critical Vicious Circle in Neurodegenerative Tauopathies? Oxid Med Cell Longev. 2015;2015:151979.CrossRefPubMedPubMedCentral
9.
go back to reference Awasthi D, Church DF, Torbati D, Carey ME, Pryor WA. Oxidative stress following traumatic brain injury in rats. Surg Neurol. 1997;6:581–2. Awasthi D, Church DF, Torbati D, Carey ME, Pryor WA. Oxidative stress following traumatic brain injury in rats. Surg Neurol. 1997;6:581–2.
10.
go back to reference Miyamoto K, Ohtaki H, Dohi K, Tsumuraya T, Song D, Kiriyama K, et al. Therapeutic time window for edaravone treatment of traumatic brain injury in mice. Biomed Res Int. 2013;2013:379206.CrossRefPubMedPubMedCentral Miyamoto K, Ohtaki H, Dohi K, Tsumuraya T, Song D, Kiriyama K, et al. Therapeutic time window for edaravone treatment of traumatic brain injury in mice. Biomed Res Int. 2013;2013:379206.CrossRefPubMedPubMedCentral
11.
go back to reference Omrani H, Alipour MR, Mohaddes G. Ghrelin Improves Antioxidant Defense in Blood and Brain in Normobaric Hypoxia in Adult Male Rats. Adv Pharm Bull. 2015;2:283–8.CrossRef Omrani H, Alipour MR, Mohaddes G. Ghrelin Improves Antioxidant Defense in Blood and Brain in Normobaric Hypoxia in Adult Male Rats. Adv Pharm Bull. 2015;2:283–8.CrossRef
12.
go back to reference Gan L, Wang ZH, Zhang H, Zhou R, Sun C, Liu Y, et al. Protective effects of shikonin on brain injury induced by carbon ion beam irradiation in mice. Biomed Environ Sci. 2015;2:148–51. Gan L, Wang ZH, Zhang H, Zhou R, Sun C, Liu Y, et al. Protective effects of shikonin on brain injury induced by carbon ion beam irradiation in mice. Biomed Environ Sci. 2015;2:148–51.
13.
go back to reference Toyama T, Wada-Takahashi S, Takamichi M, Watanabe K, Yoshida A, Yoshino F, et al. Takamichi et al., Reactive oxygen species scavenging activity of Jixueteng evaluated by electron spin resonance (ESR) and photon emission. Nat Prod Commun. 2014;12:1755–9. Toyama T, Wada-Takahashi S, Takamichi M, Watanabe K, Yoshida A, Yoshino F, et al. Takamichi et al., Reactive oxygen species scavenging activity of Jixueteng evaluated by electron spin resonance (ESR) and photon emission. Nat Prod Commun. 2014;12:1755–9.
14.
go back to reference Yu Y, Bai F, Wang W, Liu Y, Yuan Q, Qu S, et al. Fibroblast growth factor 21 protects mouse brain against D-galactose induced aging via suppression of oxidative stress response and advanced glycation end products formation. Pharmacol Biochem Behav. 2015;133:122–31.CrossRefPubMed Yu Y, Bai F, Wang W, Liu Y, Yuan Q, Qu S, et al. Fibroblast growth factor 21 protects mouse brain against D-galactose induced aging via suppression of oxidative stress response and advanced glycation end products formation. Pharmacol Biochem Behav. 2015;133:122–31.CrossRefPubMed
15.
go back to reference Yu XL, Li YN, Zhang H, Su YJ, Zhou WW, Zhang ZP, et al. Rutin inhibits amylin-induced neurocytotoxicity and oxidative stress. Food Funct. 2015;10:3296–306.CrossRef Yu XL, Li YN, Zhang H, Su YJ, Zhou WW, Zhang ZP, et al. Rutin inhibits amylin-induced neurocytotoxicity and oxidative stress. Food Funct. 2015;10:3296–306.CrossRef
16.
go back to reference Anglada JM, Martins-Costa M, Francisco JS, Ruiz-López MF. Interconnection of reactive oxygen species chemistry across the interfaces of atmospheric, environmental, and biological processes. Acc Chem Res. 2015;3:575–83.CrossRef Anglada JM, Martins-Costa M, Francisco JS, Ruiz-López MF. Interconnection of reactive oxygen species chemistry across the interfaces of atmospheric, environmental, and biological processes. Acc Chem Res. 2015;3:575–83.CrossRef
17.
go back to reference Moghbelinejad S, Nassiri-Asl M, Farivar TN, Abbasi E, Sheikhi M, Taghiloo M, et al. Rutin activates the MAPK pathway and BDNF gene expression on beta-amyloid induced neurotoxicity in rats. Toxicol Lett. 2014;1:108–13.CrossRef Moghbelinejad S, Nassiri-Asl M, Farivar TN, Abbasi E, Sheikhi M, Taghiloo M, et al. Rutin activates the MAPK pathway and BDNF gene expression on beta-amyloid induced neurotoxicity in rats. Toxicol Lett. 2014;1:108–13.CrossRef
18.
go back to reference Zeraatpishe A, Malekirad AA, Nik-Kherad J, Jafari A, Yousefi Babadi S, Tanwir F, et al. The Effects of Caffeine Supplements on Exercise-Induced Oxidative Damages. Asian J Sports Med. 2015;4:e23023. Zeraatpishe A, Malekirad AA, Nik-Kherad J, Jafari A, Yousefi Babadi S, Tanwir F, et al. The Effects of Caffeine Supplements on Exercise-Induced Oxidative Damages. Asian J Sports Med. 2015;4:e23023.
19.
go back to reference Giustarini D, Tsikas D, Colombo G, Milzani A, Dalle-Donne I, Fanti P, et al. Pitfalls in the analysis of the physiological antioxidant glutathione (GSH) and its disulfide (GSSG) in biological samples: An elephant in the room. J Chromatogr B Analyt Technol Biomed Life Sci. 2016;1019:21–8.CrossRefPubMed Giustarini D, Tsikas D, Colombo G, Milzani A, Dalle-Donne I, Fanti P, et al. Pitfalls in the analysis of the physiological antioxidant glutathione (GSH) and its disulfide (GSSG) in biological samples: An elephant in the room. J Chromatogr B Analyt Technol Biomed Life Sci. 2016;1019:21–8.CrossRefPubMed
20.
go back to reference Du X, West MB, Cheng W, Ewert DL, Li W, Saunders D, et al. Ameliorative Effects of Antioxidants on the Hippocampal Accumulation of Pathologic Tau in a Rat Model of Blast-Induced Traumatic Brain Injury. Oxid Med Cell Longev. 2016;2016:4159357.CrossRefPubMed Du X, West MB, Cheng W, Ewert DL, Li W, Saunders D, et al. Ameliorative Effects of Antioxidants on the Hippocampal Accumulation of Pathologic Tau in a Rat Model of Blast-Induced Traumatic Brain Injury. Oxid Med Cell Longev. 2016;2016:4159357.CrossRefPubMed
21.
go back to reference Lecoq AL, Chanson P. Hypopituitarism following traumatic brain injury: diagnostic and therapeuticissues. Ann Endocrinol (Paris). 2015;1:S10–8.CrossRef Lecoq AL, Chanson P. Hypopituitarism following traumatic brain injury: diagnostic and therapeuticissues. Ann Endocrinol (Paris). 2015;1:S10–8.CrossRef
22.
go back to reference Sun K, Fan J, Han J. Ameliorating effects of traditional Chinese medicine preparation, Chinese materia medica and active compounds on ischemia/reperfusion-induced cerebral microcirculatory disturbances and neuron damage. Acta Pharm Sin B. 2015;1:8–24.CrossRef Sun K, Fan J, Han J. Ameliorating effects of traditional Chinese medicine preparation, Chinese materia medica and active compounds on ischemia/reperfusion-induced cerebral microcirculatory disturbances and neuron damage. Acta Pharm Sin B. 2015;1:8–24.CrossRef
23.
go back to reference Ribas GS, Vargas CR, Wajner M. L-carnitine supplementation as a potential antioxidant therapy for inherited neurometabolic disorders. Gene. 2014;2:469–76.CrossRef Ribas GS, Vargas CR, Wajner M. L-carnitine supplementation as a potential antioxidant therapy for inherited neurometabolic disorders. Gene. 2014;2:469–76.CrossRef
24.
go back to reference Gao D, Zeng LN, Zhang P, Ma ZJ, Li RS, Zhao YL, et al. Rhubarb Anthraquinones Protect Rats against Mercuric Chloride (HgCl(2))-Induced Acute Renal Failure. Molecules. 2016;3:298.CrossRef Gao D, Zeng LN, Zhang P, Ma ZJ, Li RS, Zhao YL, et al. Rhubarb Anthraquinones Protect Rats against Mercuric Chloride (HgCl(2))-Induced Acute Renal Failure. Molecules. 2016;3:298.CrossRef
25.
go back to reference Shia CS, Juang SH, Tsai SY, Chang PH, Kuo SC, Hou YC, et al. Metabolism and pharmacokinetics of anthraquinones in Rheum palmatum in rats and ex vivo antioxidant activity. Planta Med. 2009;13:1386–92.CrossRef Shia CS, Juang SH, Tsai SY, Chang PH, Kuo SC, Hou YC, et al. Metabolism and pharmacokinetics of anthraquinones in Rheum palmatum in rats and ex vivo antioxidant activity. Planta Med. 2009;13:1386–92.CrossRef
26.
go back to reference Sun W, Zhang X, Zhang Z, Zhu R. Data fusion of near-infrared and mid-infrared spectra for identification of Rhubarb. Spectrochim Acta A Mol Biomol Spectrosc. 2017;171:72–9.CrossRefPubMed Sun W, Zhang X, Zhang Z, Zhu R. Data fusion of near-infrared and mid-infrared spectra for identification of Rhubarb. Spectrochim Acta A Mol Biomol Spectrosc. 2017;171:72–9.CrossRefPubMed
27.
go back to reference Lu K, Zhang C, Wu W, Zhou M, Tang Y, Peng Y. Rhubarb extract has a protective role against radiation-induced brain injury and neuronal cell apoptosis. Mol Med Rep. 2015;2:2689–94. Lu K, Zhang C, Wu W, Zhou M, Tang Y, Peng Y. Rhubarb extract has a protective role against radiation-induced brain injury and neuronal cell apoptosis. Mol Med Rep. 2015;2:2689–94.
28.
go back to reference Wang Y, Huang X, Liang QH, Fan R, Qin F, Guo Y, et al. A strategy for detecting absorbed bioactive compounds for quality control in the water extract of Rhubarb by ultra performance liquid chromatography with photodiode array detector. Chin J Integr Med. 2012;9:690–8.CrossRef Wang Y, Huang X, Liang QH, Fan R, Qin F, Guo Y, et al. A strategy for detecting absorbed bioactive compounds for quality control in the water extract of Rhubarb by ultra performance liquid chromatography with photodiode array detector. Chin J Integr Med. 2012;9:690–8.CrossRef
29.
go back to reference Bounda GA, Zhou W, Wang DD, Yu F. Rhein Elicits In Vitro Cytotoxicity in Primary Human Liver HL-7702 Cells by Inducing Apoptosis through Mitochondria-Mediated Pathway. Evid Based Complement Alternat Med. 2015;2015:329831.CrossRefPubMedPubMedCentral Bounda GA, Zhou W, Wang DD, Yu F. Rhein Elicits In Vitro Cytotoxicity in Primary Human Liver HL-7702 Cells by Inducing Apoptosis through Mitochondria-Mediated Pathway. Evid Based Complement Alternat Med. 2015;2015:329831.CrossRefPubMedPubMedCentral
31.
go back to reference Zhong XF, Huang GD, Luo T, Deng ZY, Hu JN. Protective effect of Rhein against oxidative stress-related endothelial cell injury. Mol Med Rep. 2012;5:1261–6.PubMed Zhong XF, Huang GD, Luo T, Deng ZY, Hu JN. Protective effect of Rhein against oxidative stress-related endothelial cell injury. Mol Med Rep. 2012;5:1261–6.PubMed
32.
go back to reference Xing Z, Xia Z, Peng W, Li J, Zhang C, Fu C, et al. Xuefu Zhuyu decoction, a traditional Chinese medicine, provides neuroprotection in a rat model of traumatic brain injury via an anti-inflammatory pathway. Sci Rep. 2016;6:20040.CrossRefPubMedPubMedCentral Xing Z, Xia Z, Peng W, Li J, Zhang C, Fu C, et al. Xuefu Zhuyu decoction, a traditional Chinese medicine, provides neuroprotection in a rat model of traumatic brain injury via an anti-inflammatory pathway. Sci Rep. 2016;6:20040.CrossRefPubMedPubMedCentral
33.
go back to reference Li WJ, Nie SP, Xie MY, Yu Q, Chen Y, He M. Ganoderma atrum polysaccharide attenuates oxidative stress induced by d-galactose in mouse brain. Life Sci. 2011;15–16:713–8.CrossRef Li WJ, Nie SP, Xie MY, Yu Q, Chen Y, He M. Ganoderma atrum polysaccharide attenuates oxidative stress induced by d-galactose in mouse brain. Life Sci. 2011;15–16:713–8.CrossRef
34.
go back to reference Sun DQ, Li AW, Li J, Li DG, Li YX, Hao-Feng. Changes of lipid peroxidation in carbon disulfide-treated rat nerve tissues and serum. Chem Biol Interact. 2009;2–3:110–7.CrossRef Sun DQ, Li AW, Li J, Li DG, Li YX, Hao-Feng. Changes of lipid peroxidation in carbon disulfide-treated rat nerve tissues and serum. Chem Biol Interact. 2009;2–3:110–7.CrossRef
35.
go back to reference Bas O, Songur A, Sahin O, Mollaoglu H, Ozen OA, Yaman M, et al. The protective effect of fish n-3 fatty acids on cerebral ischemia in rat hippocampus. Neurochem Int. 2007;3:548–54.CrossRef Bas O, Songur A, Sahin O, Mollaoglu H, Ozen OA, Yaman M, et al. The protective effect of fish n-3 fatty acids on cerebral ischemia in rat hippocampus. Neurochem Int. 2007;3:548–54.CrossRef
36.
go back to reference Sarkar S, Mukherjee S, Chattopadhyay A, Bhattacharya S. Low dose of arsenic trioxide triggers oxidative stress in zebrafish brain: expression of antioxidant genes. Ecotoxicol Environ Saf. 2014;107:1–8.CrossRefPubMed Sarkar S, Mukherjee S, Chattopadhyay A, Bhattacharya S. Low dose of arsenic trioxide triggers oxidative stress in zebrafish brain: expression of antioxidant genes. Ecotoxicol Environ Saf. 2014;107:1–8.CrossRefPubMed
37.
go back to reference Tejada S, Sureda A, Roca C, Gamundí A, Esteban S. Antioxidant response and oxidative damage in brain cortex after high dose of pilocarpine. Brain Res Bull. 2007;4:372–5.CrossRef Tejada S, Sureda A, Roca C, Gamundí A, Esteban S. Antioxidant response and oxidative damage in brain cortex after high dose of pilocarpine. Brain Res Bull. 2007;4:372–5.CrossRef
38.
go back to reference Duan Y, Wang Z, Zhang H, He Y, Lu R, Zhang R, et al. The preventive effect of lotus seedpod procyanidins on cognitive impairment and oxidative damage induced by extremely low frequency electromagnetic field exposure. Food Funct. 2013;8:1252–62.CrossRef Duan Y, Wang Z, Zhang H, He Y, Lu R, Zhang R, et al. The preventive effect of lotus seedpod procyanidins on cognitive impairment and oxidative damage induced by extremely low frequency electromagnetic field exposure. Food Funct. 2013;8:1252–62.CrossRef
39.
go back to reference Wang D, Yuan X, Liu T, Liu L, Hu Y, Wang Z, et al. Neuroprotective activity of lavender oil on transient focal cerebral ischemia in mice. Molecules. 2012;8:9803–17.CrossRef Wang D, Yuan X, Liu T, Liu L, Hu Y, Wang Z, et al. Neuroprotective activity of lavender oil on transient focal cerebral ischemia in mice. Molecules. 2012;8:9803–17.CrossRef
40.
go back to reference Khalaj L, Nejad SC, Mohammadi M, Zadeh SS, Pour MH, Ahmadiani A, et al. Gemfibrozil pretreatment proved protection against acute restraint stress-induced changes in the male rats’ hippocampus. Brain Res. 2013;1527:117–30.CrossRefPubMed Khalaj L, Nejad SC, Mohammadi M, Zadeh SS, Pour MH, Ahmadiani A, et al. Gemfibrozil pretreatment proved protection against acute restraint stress-induced changes in the male rats’ hippocampus. Brain Res. 2013;1527:117–30.CrossRefPubMed
41.
go back to reference Wang QS, Xie KQ, Zhang CL, Zhu YJ, Zhang LP, Guo X, et al. Allyl chloride-induced time dependent changes of lipid peroxidation in rat nerve tissue. Neurochem Res. 2005;11:1387–95.CrossRef Wang QS, Xie KQ, Zhang CL, Zhu YJ, Zhang LP, Guo X, et al. Allyl chloride-induced time dependent changes of lipid peroxidation in rat nerve tissue. Neurochem Res. 2005;11:1387–95.CrossRef
42.
go back to reference Yang B, Wang Z, Sheng C, Wang Y, Zhou J, Xiong XG, et al. Evidence-based review of oral traditional Chinese medicine compound recipe administration for treating weight drop-induced experimental traumatic brain injury. BMC Complement Altern Med. 2016;16:95.CrossRefPubMedPubMedCentral Yang B, Wang Z, Sheng C, Wang Y, Zhou J, Xiong XG, et al. Evidence-based review of oral traditional Chinese medicine compound recipe administration for treating weight drop-induced experimental traumatic brain injury. BMC Complement Altern Med. 2016;16:95.CrossRefPubMedPubMedCentral
43.
go back to reference Jia D, Han B, Yang S, Zhao J. Anemonin alleviates nerve injury after cerebral ischemia and reperfusion (i/r) in rats by improving antioxidant activities and inhibiting apoptosis pathway. J Mol Neurosci. 2014;2:271–9.CrossRef Jia D, Han B, Yang S, Zhao J. Anemonin alleviates nerve injury after cerebral ischemia and reperfusion (i/r) in rats by improving antioxidant activities and inhibiting apoptosis pathway. J Mol Neurosci. 2014;2:271–9.CrossRef
44.
go back to reference Ashaf A, Raja Adil S, Farooq A, Shaukat Ali S, Khalid M. A. Chemical composition and biological activities of leaves of Ziziphus mauritiana L. native to Pakistan. Pak J Bot. 2015;47:367–76. Ashaf A, Raja Adil S, Farooq A, Shaukat Ali S, Khalid M. A. Chemical composition and biological activities of leaves of Ziziphus mauritiana L. native to Pakistan. Pak J Bot. 2015;47:367–76.
45.
go back to reference Tu Q, Wang R, Ding B, Zhong W, Cao H. Protective and antioxidant effect of Danshen polysaccharides on cerebral ischemia/reperfusion injury in rats. Int J Biol Macromol. 2013;60:268–71.CrossRefPubMed Tu Q, Wang R, Ding B, Zhong W, Cao H. Protective and antioxidant effect of Danshen polysaccharides on cerebral ischemia/reperfusion injury in rats. Int J Biol Macromol. 2013;60:268–71.CrossRefPubMed
46.
go back to reference Tang YP, Cai DF, Liu J. Research on acting mechanism of Rhubarb on aquaporin-4 in rats with blood-brain barrier injury after acute cerebral hemorrhage. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2006;2:152–6. Tang YP, Cai DF, Liu J. Research on acting mechanism of Rhubarb on aquaporin-4 in rats with blood-brain barrier injury after acute cerebral hemorrhage. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2006;2:152–6.
47.
go back to reference Wang ZP, Liu L, Mei QB, Zhang R, Gu JW, Zhang X, Gao DK. Protective effect of Rheum tanguticum polysaccharides (RTP) on traumatic brain injury in rats. Zhongguo Zhong Yao Za Zhi. 2003;10:974–6. Wang ZP, Liu L, Mei QB, Zhang R, Gu JW, Zhang X, Gao DK. Protective effect of Rheum tanguticum polysaccharides (RTP) on traumatic brain injury in rats. Zhongguo Zhong Yao Za Zhi. 2003;10:974–6.
48.
go back to reference Corps KN, Roth TL, McGavern DB. Inflammation and neuroprotection in traumatic brain injury. JAMA Neurol. 2015;3:355–62.CrossRef Corps KN, Roth TL, McGavern DB. Inflammation and neuroprotection in traumatic brain injury. JAMA Neurol. 2015;3:355–62.CrossRef
49.
go back to reference Wang Y, Zhang C, Peng W, Xia Z, Gan P, Huang W, et al. Hydroxysafflor yellow A exerts antioxidant effects in a rat model of traumatic brain injury. Mol Med Rep. 2016;4:3690–6. Wang Y, Zhang C, Peng W, Xia Z, Gan P, Huang W, et al. Hydroxysafflor yellow A exerts antioxidant effects in a rat model of traumatic brain injury. Mol Med Rep. 2016;4:3690–6.
50.
go back to reference Jiang BP, Le L, Xu LJ, et al. Minocycline inhibits ICAD degradation and the NF-kappaB activation induced by 6-OHDA in PC12 cells. Brain Res. 2014;1586:1–11.CrossRefPubMed Jiang BP, Le L, Xu LJ, et al. Minocycline inhibits ICAD degradation and the NF-kappaB activation induced by 6-OHDA in PC12 cells. Brain Res. 2014;1586:1–11.CrossRefPubMed
51.
go back to reference Jiang BP, Le L, Xu LJ, Xiao PG. Development and validation of a UPLC method for quality control of Rhubarb-based medicine: fast simultaneous determination of five anthraquinone derivatives. J Pharm Biomed Anal. 2008;4–5:765–70. Jiang BP, Le L, Xu LJ, Xiao PG. Development and validation of a UPLC method for quality control of Rhubarb-based medicine: fast simultaneous determination of five anthraquinone derivatives. J Pharm Biomed Anal. 2008;4–5:765–70.
52.
go back to reference Liang YZ, Xie P, Chan K. Quality control of herbal medicines. J Chromatogr B Analyt Technol Biomed Life Sci. 2004;1–2:53–70.CrossRef Liang YZ, Xie P, Chan K. Quality control of herbal medicines. J Chromatogr B Analyt Technol Biomed Life Sci. 2004;1–2:53–70.CrossRef
Metadata
Title
Rhein exhibits antioxidative effects similar to Rhubarb in a rat model of traumatic brain injury
Authors
Xia Xu
Huiying Lv
Zian Xia
Rong Fan
Chunhu Zhang
Yang Wang
Dongsheng Wang
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2017
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-017-1655-x

Other articles of this Issue 1/2017

BMC Complementary Medicine and Therapies 1/2017 Go to the issue