Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2017

Open Access 01-12-2017 | Research article

Litchi seed extract inhibits epidermal growth factor receptor signaling and growth of Two Non-small cell lung carcinoma cells

Authors: Yuan-Chiang Chung, Chin-Hui Chen, Yu-Ting Tsai, Chih-Cheng Lin, Jyh-Ching Chou, Ting-Yu Kao, Chiu-Chen Huang, Chi-Hsuan Cheng, Chih-Ping Hsu

Published in: BMC Complementary Medicine and Therapies | Issue 1/2017

Login to get access

Abstract

Background

Litchi seeds possess rich amounts of phenolics and have been shown to inhibit proliferation of several types of cancer cells. However, the suppression of EGFR signaling in non-small cell lung cancer (NSCLC) by litchi seed extract (LCSE) has not been fully understood.

Methods

In this study, the effects of LCSE on EGFR signaling, cell proliferation, the cell cycle and apoptosis in A549 adenocarcinoma cells and NCI- H661 large-cell carcinoma cells were examined.

Results

The results demonstrated that LCSE potently reduced the number of cancer cells and induced growth inhibition, cell-cycle arrest in the G1 or G2/M phase, and apoptotic death in the cellular experiment. Only low cytotoxicity effect was noted in normal lung MRC-5 cells. LCSE also suppressed cyclins and Bcl-2 and elevated Kip1/p27, Bax and caspase 8, 9 and 3 activities, which are closely associated with the downregulation of EGFR and its downstream Akt and Erk-1/-2 signaling.

Conclusion

The results implied that LCSE suppressed EGFR signaling and inhibited NSCLC cell growth. This study provided in vitro evidence that LCSE could serve as a potential agent for the adjuvant treatment of NSCLC.
Literature
1.
go back to reference Ellis PM, Coakley N, Feld R, Kuruvilla S, Ung YC. Use of the epidermal growth factor receptor inhibitors gefitinib, erlotinib, afatinib, dacomitinib, and icotinib in the treatment of non-small-cell lung cancer: a systematic review. Curr Oncol. 2015;22:e183–215.CrossRefPubMedPubMedCentral Ellis PM, Coakley N, Feld R, Kuruvilla S, Ung YC. Use of the epidermal growth factor receptor inhibitors gefitinib, erlotinib, afatinib, dacomitinib, and icotinib in the treatment of non-small-cell lung cancer: a systematic review. Curr Oncol. 2015;22:e183–215.CrossRefPubMedPubMedCentral
2.
go back to reference Sculier JP, Berghmans T, Meert AP. Advances in target therapy in lung cancer. Eur Respir Rev. 2015;24:23–9.CrossRefPubMed Sculier JP, Berghmans T, Meert AP. Advances in target therapy in lung cancer. Eur Respir Rev. 2015;24:23–9.CrossRefPubMed
3.
go back to reference West H, Oxnard GR, Doebele RC. Acquired resistance to targeted therapies in advanced non-small cell lung cancer: new strategies and new agents. Am Soc Clin Oncol Educ Book. 2013. doi: 10.1200/EdBook_AM.2013.33.e272. West H, Oxnard GR, Doebele RC. Acquired resistance to targeted therapies in advanced non-small cell lung cancer: new strategies and new agents. Am Soc Clin Oncol Educ Book. 2013. doi: 10.1200/EdBook_AM.2013.33.e272.
4.
go back to reference Linardou H, Dahabreh IJ, Kanaloupiti D, Siannis F, Bafaloukos D, Kosmidis P, Papadimitriou CA, Murray S. Assessment of somatic k-RAS mutations as a mechanism associated with resistance to EGFR-targeted agents: a systematic review and meta-analysis of studies in advanced non-small-cell lung cancer and metastatic colorectal cancer. Lancet Oncol. 2008;9:962–72.CrossRefPubMed Linardou H, Dahabreh IJ, Kanaloupiti D, Siannis F, Bafaloukos D, Kosmidis P, Papadimitriou CA, Murray S. Assessment of somatic k-RAS mutations as a mechanism associated with resistance to EGFR-targeted agents: a systematic review and meta-analysis of studies in advanced non-small-cell lung cancer and metastatic colorectal cancer. Lancet Oncol. 2008;9:962–72.CrossRefPubMed
5.
go back to reference Gontiner E, Boussouel N, Terrasse C, Jannoyer M, Ménard M, Thomasset B, Bourgaud F. Litchi Chinensis fatty acid diversity: occurrence of the unusual cyclopropanoic fatty acids. Biochem Soc Trans. 2000;28:578–80.CrossRef Gontiner E, Boussouel N, Terrasse C, Jannoyer M, Ménard M, Thomasset B, Bourgaud F. Litchi Chinensis fatty acid diversity: occurrence of the unusual cyclopropanoic fatty acids. Biochem Soc Trans. 2000;28:578–80.CrossRef
6.
go back to reference Li J, Jiang Y. Litchi flavnoids: isolation, identification and biological activity. Molecules. 2007;12:745–58.CrossRefPubMed Li J, Jiang Y. Litchi flavnoids: isolation, identification and biological activity. Molecules. 2007;12:745–58.CrossRefPubMed
7.
go back to reference Huang F, Zhang R, Yang Y. Comparison of physicochemical properties and immunomodulatory activity of polysaccharides from fresh and dried litchi pulp. Molecules. 2014;19:3909–25.CrossRefPubMed Huang F, Zhang R, Yang Y. Comparison of physicochemical properties and immunomodulatory activity of polysaccharides from fresh and dried litchi pulp. Molecules. 2014;19:3909–25.CrossRefPubMed
8.
go back to reference Xu X, Xie H, Hao J, Jiang Y, Wei X. Flavnoid glycosides from the seeds of Litchi Chinensis. J Agric Food Chem. 2011;59:1205–9.CrossRefPubMed Xu X, Xie H, Hao J, Jiang Y, Wei X. Flavnoid glycosides from the seeds of Litchi Chinensis. J Agric Food Chem. 2011;59:1205–9.CrossRefPubMed
9.
go back to reference Xu X, Xie H, Wang Y, Wei X. A-type proanthocyanidins from lychee seeds and their antioxidant and antiviral activities. J Agric Food Chem. 2010;58:11667–72.CrossRefPubMed Xu X, Xie H, Wang Y, Wei X. A-type proanthocyanidins from lychee seeds and their antioxidant and antiviral activities. J Agric Food Chem. 2010;58:11667–72.CrossRefPubMed
10.
go back to reference Zhang JY, Zhang C. Research progress on the antineoplastic pharmacological effects and mechanisms of Litchi seeds. Chin Med. 2015;6:20–6.CrossRef Zhang JY, Zhang C. Research progress on the antineoplastic pharmacological effects and mechanisms of Litchi seeds. Chin Med. 2015;6:20–6.CrossRef
11.
go back to reference Lin CC, Chung YC, Hsu CP. Anti-cancer potential of Litchi seed extract. World J Exp Med. 2013;3:56–61. Lin CC, Chung YC, Hsu CP. Anti-cancer potential of Litchi seed extract. World J Exp Med. 2013;3:56–61.
12.
go back to reference Hsu CP, Lin CC, Huang CC, Lin YH, Chou JC, Tsia YT, Su JR, Chung YC. Induction of apoptosis and cell cycle arrest in human colorectal carcinoma by Litchi seed extract. J Biomed Biotechnol. 2012;2012:341479.CrossRefPubMedPubMedCentral Hsu CP, Lin CC, Huang CC, Lin YH, Chou JC, Tsia YT, Su JR, Chung YC. Induction of apoptosis and cell cycle arrest in human colorectal carcinoma by Litchi seed extract. J Biomed Biotechnol. 2012;2012:341479.CrossRefPubMedPubMedCentral
13.
go back to reference Chung YC, Lin CC, Chou CC, Hsu CP. The effect of longan seed polyphenols on colorectal carcinoma cells. Euro J Clin Invest. 2010;40:713–21.CrossRef Chung YC, Lin CC, Chou CC, Hsu CP. The effect of longan seed polyphenols on colorectal carcinoma cells. Euro J Clin Invest. 2010;40:713–21.CrossRef
14.
go back to reference Chung YC, Huang CC, Chen CH, Chiang HC, Chen KB, Chen YJ, Liu CL, Chuang LT, Liu M, Hsu CP. Grape-seed procyanidins inhibit the in vitro growth and invasion of pancreatic carcinoma cells. Pancreas. 2012;41:447–54.CrossRefPubMed Chung YC, Huang CC, Chen CH, Chiang HC, Chen KB, Chen YJ, Liu CL, Chuang LT, Liu M, Hsu CP. Grape-seed procyanidins inhibit the in vitro growth and invasion of pancreatic carcinoma cells. Pancreas. 2012;41:447–54.CrossRefPubMed
15.
go back to reference Hsu CP, Lin YH, Zhou SP, Chung YC, Lin CC, Wang SC. Longan flower extract inhibits the growth of colorectal carcinoma. Nutri Cancer. 2010;62:229–36.CrossRef Hsu CP, Lin YH, Zhou SP, Chung YC, Lin CC, Wang SC. Longan flower extract inhibits the growth of colorectal carcinoma. Nutri Cancer. 2010;62:229–36.CrossRef
16.
go back to reference Iida M, Brand TM, Campbell DA, Starr MM, Luthar N, Traynor AM, Wheeler DL. Targeting AKT with the allosteric AKT inhibitor MK-2206 in non-small cell lung cancer cells with acquired resistance to cetuximab. Cancer Biol Ther. 2013;14:481–91.CrossRefPubMedPubMedCentral Iida M, Brand TM, Campbell DA, Starr MM, Luthar N, Traynor AM, Wheeler DL. Targeting AKT with the allosteric AKT inhibitor MK-2206 in non-small cell lung cancer cells with acquired resistance to cetuximab. Cancer Biol Ther. 2013;14:481–91.CrossRefPubMedPubMedCentral
17.
go back to reference Roberts EC, Shapiro PS, Nahreini TS, Pages G, Pouyssegur J, Ahn NG. Distinct cell cycle timing requirements for extracellular signal-regulated kinase and phosphoinositide 3-kinase signaling pathways in somatic cell mitosis. Mol Cell Biol. 2002;22:7226–41.CrossRefPubMedPubMedCentral Roberts EC, Shapiro PS, Nahreini TS, Pages G, Pouyssegur J, Ahn NG. Distinct cell cycle timing requirements for extracellular signal-regulated kinase and phosphoinositide 3-kinase signaling pathways in somatic cell mitosis. Mol Cell Biol. 2002;22:7226–41.CrossRefPubMedPubMedCentral
18.
go back to reference Wright JH, Munar E, Jameson DR, Andreassen PR, Margolis RL, Seger R, Krebs EG. Mitogen-activated protein kinase kinase activity is required for the G(2)/M transition of the cell cycle in mammalian fibroblasts. Proc Natl Acad Sci U S A. 1999;96:11335–40.CrossRefPubMedPubMedCentral Wright JH, Munar E, Jameson DR, Andreassen PR, Margolis RL, Seger R, Krebs EG. Mitogen-activated protein kinase kinase activity is required for the G(2)/M transition of the cell cycle in mammalian fibroblasts. Proc Natl Acad Sci U S A. 1999;96:11335–40.CrossRefPubMedPubMedCentral
19.
go back to reference Lin YM, Kuo WW, Velmurugan BK, Hsien HH, Hsieh YL, Hsu HH, Tu CC, Bau DT, Viswanadha VP, Huang CY. Helioxanthin suppresses the cross talk of COX-2/PGE2 and EGFR/ERK pathway to inhibit Arecoline-induced Oral Cancer Cell (T28) proliferation and blocks tumor growth in xenografted nude mice. Environ Toxicol. 2015; doi: 10.1002/tox.22204. Lin YM, Kuo WW, Velmurugan BK, Hsien HH, Hsieh YL, Hsu HH, Tu CC, Bau DT, Viswanadha VP, Huang CY. Helioxanthin suppresses the cross talk of COX-2/PGE2 and EGFR/ERK pathway to inhibit Arecoline-induced Oral Cancer Cell (T28) proliferation and blocks tumor growth in xenografted nude mice. Environ Toxicol. 2015; doi: 10.1002/tox.22204.
20.
go back to reference Kim HS, Chang YG, Bae HJ, Eun JW, Shen Q, Park SJ, Shin WC, Lee EK, Park S, Ahn YM, Park WS, Lee JY, Nam SW. Oncogenic potential of CK2α and its regulatory role in EGF-induced HDAC2 expression in human liver cancer. FEBS J. 2014;281:851–61.CrossRefPubMed Kim HS, Chang YG, Bae HJ, Eun JW, Shen Q, Park SJ, Shin WC, Lee EK, Park S, Ahn YM, Park WS, Lee JY, Nam SW. Oncogenic potential of CK2α and its regulatory role in EGF-induced HDAC2 expression in human liver cancer. FEBS J. 2014;281:851–61.CrossRefPubMed
21.
go back to reference Okumura S, Jänne PA. Molecular pathways: the basis for rational combination using MEK inhibitors in KRAS-mutant cancers. Clin Cancer Res. 2014;20:4193–9.CrossRefPubMed Okumura S, Jänne PA. Molecular pathways: the basis for rational combination using MEK inhibitors in KRAS-mutant cancers. Clin Cancer Res. 2014;20:4193–9.CrossRefPubMed
22.
go back to reference Moreno-Layseca P, Streuli CH. Signalling pathways linking integrins with cell cycle progression. Matrix Biol. 2014;34:144–53.CrossRefPubMed Moreno-Layseca P, Streuli CH. Signalling pathways linking integrins with cell cycle progression. Matrix Biol. 2014;34:144–53.CrossRefPubMed
23.
go back to reference Kirsammer G, Strizzi L, Margaryan NV, Gilgur A, Hyser M, Atkinson J, Kirschmann DA, Seftor EA, Hendrix MJ. Nodal signaling promotes a tumorigenic phenotype in human breast cancer. Semin Cancer Biol. 2014;29:40–50.CrossRefPubMedPubMedCentral Kirsammer G, Strizzi L, Margaryan NV, Gilgur A, Hyser M, Atkinson J, Kirschmann DA, Seftor EA, Hendrix MJ. Nodal signaling promotes a tumorigenic phenotype in human breast cancer. Semin Cancer Biol. 2014;29:40–50.CrossRefPubMedPubMedCentral
24.
go back to reference Hlobilková A, Knillová J, Bártek J, Lukás J, Kolár Z. The mechanism of action of the tumour suppressor gene PTEN. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2003;147:19–25.CrossRefPubMed Hlobilková A, Knillová J, Bártek J, Lukás J, Kolár Z. The mechanism of action of the tumour suppressor gene PTEN. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2003;147:19–25.CrossRefPubMed
25.
go back to reference Chambard JC, Lefloch R, Pouysségur J, Lenormand P. ERK implication in cell cycle regulation. Biochim Biophys Acta. 2007;1773:1299–310.CrossRefPubMed Chambard JC, Lefloch R, Pouysségur J, Lenormand P. ERK implication in cell cycle regulation. Biochim Biophys Acta. 2007;1773:1299–310.CrossRefPubMed
26.
go back to reference Keenan SM, Bellone C, Baldassare JJ. Cyclin-dependent kinase 2 nucleocytoplasmic translocation is regulated by extracellular regulated kinase. J Biol Chem. 2001;276:22404–9.CrossRefPubMed Keenan SM, Bellone C, Baldassare JJ. Cyclin-dependent kinase 2 nucleocytoplasmic translocation is regulated by extracellular regulated kinase. J Biol Chem. 2001;276:22404–9.CrossRefPubMed
27.
go back to reference Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 1999;13:1501–12.CrossRefPubMed Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 1999;13:1501–12.CrossRefPubMed
28.
go back to reference Weber JD, Raben DM, Phillips PJ, Baldassare JJ. Sustained activation of extracellular-signal-regulated kinase 1 (ERK1) is required for the continued expression of cyclin D1 in G1 phase. Biochem J. 1997;326:61–8.CrossRefPubMedPubMedCentral Weber JD, Raben DM, Phillips PJ, Baldassare JJ. Sustained activation of extracellular-signal-regulated kinase 1 (ERK1) is required for the continued expression of cyclin D1 in G1 phase. Biochem J. 1997;326:61–8.CrossRefPubMedPubMedCentral
29.
go back to reference Lavoie JN, L’Allemain G, Brunet A, Müller R, Pouysségur J. Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. J Biol Chem. 1996;271:20608–16.CrossRefPubMed Lavoie JN, L’Allemain G, Brunet A, Müller R, Pouysségur J. Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. J Biol Chem. 1996;271:20608–16.CrossRefPubMed
Metadata
Title
Litchi seed extract inhibits epidermal growth factor receptor signaling and growth of Two Non-small cell lung carcinoma cells
Authors
Yuan-Chiang Chung
Chin-Hui Chen
Yu-Ting Tsai
Chih-Cheng Lin
Jyh-Ching Chou
Ting-Yu Kao
Chiu-Chen Huang
Chi-Hsuan Cheng
Chih-Ping Hsu
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2017
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-016-1541-y

Other articles of this Issue 1/2017

BMC Complementary Medicine and Therapies 1/2017 Go to the issue