Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2016

Open Access 01-12-2016 | Research article

Methanolic extract of Agerantum conyzoides exhibited toxicity and growth disruption activities against Anopheles gambiae sensu stricto and Anopheles arabiensis larvae

Authors: Jackson Mbithi Muema, Sospeter Ngoci Njeru, Céline Colombier, Rose Muthoni Marubu

Published in: BMC Complementary Medicine and Therapies | Issue 1/2016

Login to get access

Abstract

Background

Vector control remains the mainstay to effective malaria management. The negative implications following persistent application of synthetic insecticides geared towards regulation of mosquito populations have necessitated prospection for ecofriendly effective chemistries. Plant-derived compounds have the potential to control malaria-transmitting mosquito populations. Previously, Agerantum conyzoides extracts have demonstrated toxicity effects on disease-transmitting mosquitoes. However, their efficacy in controlling Afrotropical malaria vectors remains unclear. Herein, the toxicity and growth disruption activities of crude methanolic leaf extract of A. conyzoides on Anopheles gambiae sensu stricto and An. arabiensis larvae were assessed.

Methods

Late third (L3) instars of An. gambiae s.s and An. arabiensis larvae were challenged with increasing doses of crude methanolic extract of A. conyzoides. The larval mortality rates were recorded every 24 h and the LC50 values determined at their associated 95% confidence levels. ANOVA followed by Post-hoc Student-Newman-Keuls (SNK) test was used to compare results between treatment and control groups. Phytochemical profiling of the extract was performed using standard chemical procedures.

Results

Treatment of larvae with the methanolic extract depicted dose-dependent effects with highest mortality percentages of ≥ 69% observed when exposed with 250 ppm and 500 ppm for 48 h while growth disruption effects were induced by sublethal doses of between 50–100 ppm for both species. Relative to experimental controls, the extract significantly reduced larval survival in both mosquito species (ANOVA, F(8,126) = 43.16776, P < 0.001). The LC50 values of the extract against An. gambiae s.s ranged between 84.71–232.70 ppm (95% CI 81.17–239.20), while against An. arabiensis the values ranged between 133.46–406.35 ppm (95% CI 131.51–411.25). The development of the juvenile stages was arrested at pupal-larval intermediates and adult emergence. The presence of alkaloids, aglycone flavonoids, triterpenoids, tannins and coumarins can partly be associated with the observed effects.

Conclusion

The extract displayed considerable larvicidal activity and inhibited emergence of adult mosquitoes relative to experimental controls, a phenomenon probably associated with induced developmental hormone imbalance. Optimization of the bioactive compounds could open pathways into vector control programmes for improved mosquito control and reduced malaria transmission rates.
Literature
1.
go back to reference WHO. World malaria report 2015. World Heal Organ. 2015;2015:1–280. WHO. World malaria report 2015. World Heal Organ. 2015;2015:1–280.
2.
go back to reference Ranson H, Lissenden N. Insecticide resistance in African Anopheles mosquitoes: a worsening situation that needs urgent action to maintain malaria control. Trends Parasitol. 2016;32:187–96.CrossRefPubMed Ranson H, Lissenden N. Insecticide resistance in African Anopheles mosquitoes: a worsening situation that needs urgent action to maintain malaria control. Trends Parasitol. 2016;32:187–96.CrossRefPubMed
3.
go back to reference Russell TL, Beebe NW, Cooper RD, Lobo NF, Burkot TR. Successful malaria elimination strategies require interventions that target changing vector behaviours. Malar J. 2013;12:1–5.CrossRef Russell TL, Beebe NW, Cooper RD, Lobo NF, Burkot TR. Successful malaria elimination strategies require interventions that target changing vector behaviours. Malar J. 2013;12:1–5.CrossRef
4.
go back to reference Nkya TE, Akhouayri I, Kisinza W, David J-P. Impact of environment on mosquito response to pyrethroid insecticides: facts, evidences and prospects. Insect Biochem Mol Biol. 2013;43:407–16.CrossRefPubMed Nkya TE, Akhouayri I, Kisinza W, David J-P. Impact of environment on mosquito response to pyrethroid insecticides: facts, evidences and prospects. Insect Biochem Mol Biol. 2013;43:407–16.CrossRefPubMed
5.
go back to reference MalERA. A research agenda for malaria eradication: vector control. PLoS Med. 2011;8:e1000401.CrossRef MalERA. A research agenda for malaria eradication: vector control. PLoS Med. 2011;8:e1000401.CrossRef
6.
go back to reference Karunamoorthi K. Vector control: a cornerstone in the malaria elimination campaign. Clin Microbiol Infect. 2011;17:1608–16.CrossRefPubMed Karunamoorthi K. Vector control: a cornerstone in the malaria elimination campaign. Clin Microbiol Infect. 2011;17:1608–16.CrossRefPubMed
7.
go back to reference Tusting LS, Thwing J, Sinclair D, Fillinger U, Gimnig J, Bonner KE, et al. Mosquito larval source management for controlling malaria. Cochrane Database Syst. Rev. 2013;8:CD008923–CD008923. Tusting LS, Thwing J, Sinclair D, Fillinger U, Gimnig J, Bonner KE, et al. Mosquito larval source management for controlling malaria. Cochrane Database Syst. Rev. 2013;8:CD008923–CD008923.
8.
go back to reference Majambere S, Pinder M, Fillinger U, Ameh D, Conway DJ, Green C, et al. Is mosquito larval source management appropriate for reducing malaria in areas of extensive flooding in the Gambia? A cross-over intervention trial. Am J Trop Med Hyg. 2010;82:176–84.CrossRefPubMedPubMedCentral Majambere S, Pinder M, Fillinger U, Ameh D, Conway DJ, Green C, et al. Is mosquito larval source management appropriate for reducing malaria in areas of extensive flooding in the Gambia? A cross-over intervention trial. Am J Trop Med Hyg. 2010;82:176–84.CrossRefPubMedPubMedCentral
9.
go back to reference Walker K, Lynch M. Contributions of Anopheles larval control to malaria suppression in tropical Africa: review of achievements and potential. Med Vet Entomol. 2007;21:2–21.CrossRefPubMed Walker K, Lynch M. Contributions of Anopheles larval control to malaria suppression in tropical Africa: review of achievements and potential. Med Vet Entomol. 2007;21:2–21.CrossRefPubMed
10.
go back to reference Killeen GF, Fillinger U, Kiche I, Gouagna LC, Knols BGJ. Eradication of Anopheles gambiae from Brazil: lessons for malaria control in Africa? Lancet Infect Dis. 2002;2:618–27.CrossRefPubMed Killeen GF, Fillinger U, Kiche I, Gouagna LC, Knols BGJ. Eradication of Anopheles gambiae from Brazil: lessons for malaria control in Africa? Lancet Infect Dis. 2002;2:618–27.CrossRefPubMed
11.
go back to reference Fillinger U, Lindsay SW. Larval source management for malaria control in Africa: myths and reality. Malar J. 2011;10:10–1186.CrossRef Fillinger U, Lindsay SW. Larval source management for malaria control in Africa: myths and reality. Malar J. 2011;10:10–1186.CrossRef
12.
go back to reference Dambach P, Traore I, Becker N, Kaiser A, Sie A, Sauerborn R. EMIRA: ecologic malaria reduction for Africa–innovative tools for integrated malaria control. Glob Health Action. 2014;7:25908.CrossRefPubMed Dambach P, Traore I, Becker N, Kaiser A, Sie A, Sauerborn R. EMIRA: ecologic malaria reduction for Africa–innovative tools for integrated malaria control. Glob Health Action. 2014;7:25908.CrossRefPubMed
13.
go back to reference Maheu-Giroux M, Castro MC. Cost-effectiveness of larviciding for urban malaria control in Tanzania. Malar J. 2014;13:1–12.CrossRef Maheu-Giroux M, Castro MC. Cost-effectiveness of larviciding for urban malaria control in Tanzania. Malar J. 2014;13:1–12.CrossRef
14.
go back to reference Killeen GF, Fillinger U, Knols BGJ. Advantages of larval control for African malaria vectors: low mobility and behavioural responsiveness of immature mosquito stages allow high effective coverage. Malar J. 2002;1:1–7.CrossRef Killeen GF, Fillinger U, Knols BGJ. Advantages of larval control for African malaria vectors: low mobility and behavioural responsiveness of immature mosquito stages allow high effective coverage. Malar J. 2002;1:1–7.CrossRef
15.
go back to reference Killeen GF, Tanner M, Mukabana WR, Kalongolela MS, Kannady K, Lindsay SW, et al. Habitat targeting for controlling aquatic stages of malaria vectors in Africa. Am J Trop Med Hyg. 2006;74:517–8.PubMed Killeen GF, Tanner M, Mukabana WR, Kalongolela MS, Kannady K, Lindsay SW, et al. Habitat targeting for controlling aquatic stages of malaria vectors in Africa. Am J Trop Med Hyg. 2006;74:517–8.PubMed
16.
go back to reference Moller-Jacobs LL, Murdock CC, Thomas MB. Capacity of mosquitoes to transmit malaria depends on larval environment. Parasit Vectors. 2014;7:1–12.CrossRef Moller-Jacobs LL, Murdock CC, Thomas MB. Capacity of mosquitoes to transmit malaria depends on larval environment. Parasit Vectors. 2014;7:1–12.CrossRef
17.
go back to reference Mwangangi JM, Mbogo CM, Muturi EJ, Nzovu JG, Kabiru EW, Githure JI, et al. Influence of biological and physicochemical characteristics of larval habitats on the body size of Anopheles gambiae mosquitoes (Diptera: Culicidae) along the Kenyan coast. J Vector Borne Dis. 2007;44:122–7.PubMedPubMedCentral Mwangangi JM, Mbogo CM, Muturi EJ, Nzovu JG, Kabiru EW, Githure JI, et al. Influence of biological and physicochemical characteristics of larval habitats on the body size of Anopheles gambiae mosquitoes (Diptera: Culicidae) along the Kenyan coast. J Vector Borne Dis. 2007;44:122–7.PubMedPubMedCentral
18.
go back to reference Isman MB. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol. 2006;51:45–66.CrossRefPubMed Isman MB. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol. 2006;51:45–66.CrossRefPubMed
19.
go back to reference Khater HF. Ecosmart biorational Insecticides: alternative insect control strategies. In: Perveen F, editor. Insectic Adv Integr Pest Manag. Rijeka, Croatia: InTech; 2012. ISBN 979-953-307-667-5. Khater HF. Ecosmart biorational Insecticides: alternative insect control strategies. In: Perveen F, editor. Insectic Adv Integr Pest Manag. Rijeka, Croatia: InTech; 2012. ISBN 979-953-307-667-5.
20.
go back to reference Regnault-Roger C, Vincent C, Arnason JT. Essential oils in insect control: low-risk products in a high-stakes world. Annu Rev Ento. 2011;57:405–24.CrossRef Regnault-Roger C, Vincent C, Arnason JT. Essential oils in insect control: low-risk products in a high-stakes world. Annu Rev Ento. 2011;57:405–24.CrossRef
21.
go back to reference Lee S-H, Oh H-W, Fang Y, An S-B, Park D-S, Song H-H, et al. Identification of plant compounds that disrupt the insect juvenile hormone receptor complex. Proc Natl Acad Sci U S A. 2015;112:1733–8.CrossRefPubMedPubMedCentral Lee S-H, Oh H-W, Fang Y, An S-B, Park D-S, Song H-H, et al. Identification of plant compounds that disrupt the insect juvenile hormone receptor complex. Proc Natl Acad Sci U S A. 2015;112:1733–8.CrossRefPubMedPubMedCentral
22.
go back to reference George D, Finn R, Graham K, Sparagano O. Present and future potential of plant-derived products to control arthropods of veterinary and medical significance. Parasit Vectors. 2014;7:1.CrossRef George D, Finn R, Graham K, Sparagano O. Present and future potential of plant-derived products to control arthropods of veterinary and medical significance. Parasit Vectors. 2014;7:1.CrossRef
23.
go back to reference Carroll SP, Loye J. PMD, a registered botanical mosquito repellent with deet-Like efficacy. J Am Mosq Control Assoc. 2006;22:507–14.CrossRefPubMed Carroll SP, Loye J. PMD, a registered botanical mosquito repellent with deet-Like efficacy. J Am Mosq Control Assoc. 2006;22:507–14.CrossRefPubMed
24.
go back to reference Mdoe FP, Cheng S-S, Msangi S, Nkwengulila G, Chang S-T, Kweka EJ. Activity of Cinnamomum osmophloeum leaf essential oil against Anopheles gambiae ss. Parasit Vectors. 2014;7:209.CrossRefPubMedPubMedCentral Mdoe FP, Cheng S-S, Msangi S, Nkwengulila G, Chang S-T, Kweka EJ. Activity of Cinnamomum osmophloeum leaf essential oil against Anopheles gambiae ss. Parasit Vectors. 2014;7:209.CrossRefPubMedPubMedCentral
26.
go back to reference Imbahale SS, Mukabana WR. Efficacy of neem chippings for mosquito larval control under field conditions. BMC Ecol. 2015;15:1.CrossRef Imbahale SS, Mukabana WR. Efficacy of neem chippings for mosquito larval control under field conditions. BMC Ecol. 2015;15:1.CrossRef
27.
go back to reference AJ M (L), Morgan ED, Nisbet AJ. Azadirachtin, a natural product in insect control. Amsterdam: Elsevier; 2005. p. 117–35. Compr. Mol. Insect Sci. AJ M (L), Morgan ED, Nisbet AJ. Azadirachtin, a natural product in insect control. Amsterdam: Elsevier; 2005. p. 117–35. Compr. Mol. Insect Sci.
28.
go back to reference Ndung’u M, Torto B, Knols BGJ, Hassanali A. Laboratory evaluation of some eastern African Meliaceae as sources of larvicidal botanicals for Anopheles gambiae. Int J Trop Insect Sci. 2004;24:311–8. Ndung’u M, Torto B, Knols BGJ, Hassanali A. Laboratory evaluation of some eastern African Meliaceae as sources of larvicidal botanicals for Anopheles gambiae. Int J Trop Insect Sci. 2004;24:311–8.
29.
go back to reference Kihampa C, Joseph CC, Nkunya MHH, Magesa SM, Hassanali A, Heydenreich M, et al. Larvicidal and IGR activity of extract of Tanzanian plants against malaria vector mosquitoes. J Vector Borne Dis. 2009;46:142–52. Kihampa C, Joseph CC, Nkunya MHH, Magesa SM, Hassanali A, Heydenreich M, et al. Larvicidal and IGR activity of extract of Tanzanian plants against malaria vector mosquitoes. J Vector Borne Dis. 2009;46:142–52.
30.
go back to reference Nyamoita MG. Toxicity of individual and blends of pure phytoecdysteroids isolated from vitex schiliebenii and vitex payos against Anopheles gambiae ss larvae. World J Org Chem. 2013;1:1–5. Nyamoita MG. Toxicity of individual and blends of pure phytoecdysteroids isolated from vitex schiliebenii and vitex payos against Anopheles gambiae ss larvae. World J Org Chem. 2013;1:1–5.
31.
go back to reference Mithöfer A, Boland W. Plant defense against herbivores: chemical aspects. Annu Rev Plant Biol. 2012;63:431–50.CrossRefPubMed Mithöfer A, Boland W. Plant defense against herbivores: chemical aspects. Annu Rev Plant Biol. 2012;63:431–50.CrossRefPubMed
32.
go back to reference Lima MAS, Barros MCP, Pinheiro SM, do Nascimento RF, de Abreu Matos FJ, Silveira ER. Volatile compositions of two asteraceae from the north‐east of Brazil: ageratum conyzoides and acritopappus confertus (Eupatorieae). Flavour Fragr. J. 2005;20:559–61. Lima MAS, Barros MCP, Pinheiro SM, do Nascimento RF, de Abreu Matos FJ, Silveira ER. Volatile compositions of two asteraceae from the north‐east of Brazil: ageratum conyzoides and acritopappus confertus (Eupatorieae). Flavour Fragr. J. 2005;20:559–61.
33.
go back to reference Melo NI, Magalhães LG, Carvalho CE, Wakabayashi KAL, Magalhães LG, Aguiar GP, et al. M. CAE 2011. Schistosomicidal activity of the essential oil of Ageratum conyzoides L. (Asteraceae) against Schistosoma mansoni adult worms. Molecules. 2011;16:762–73.CrossRefPubMed Melo NI, Magalhães LG, Carvalho CE, Wakabayashi KAL, Magalhães LG, Aguiar GP, et al. M. CAE 2011. Schistosomicidal activity of the essential oil of Ageratum conyzoides L. (Asteraceae) against Schistosoma mansoni adult worms. Molecules. 2011;16:762–73.CrossRefPubMed
34.
go back to reference Kamboj A, Saluja A. Ageratum conyzoides L.: a review on its phytochemical and pharmacological profile. Int J Green Pharm. 2008;2:59.CrossRef Kamboj A, Saluja A. Ageratum conyzoides L.: a review on its phytochemical and pharmacological profile. Int J Green Pharm. 2008;2:59.CrossRef
36.
go back to reference Liu XC, Liu ZL. Evaluation of larvicidal activity of the essential oil of ageratum conyzoides L. aerial parts and its major constituents against aedes albopictus. J Entomol Zoolo Stud. 2014;2:345–50. Liu XC, Liu ZL. Evaluation of larvicidal activity of the essential oil of ageratum conyzoides L. aerial parts and its major constituents against aedes albopictus. J Entomol Zoolo Stud. 2014;2:345–50.
37.
go back to reference Saxena RC, Jayashree S, Padma S, Dixit OP. Evaluation of growth disrupting activity of agerantum conyzoides crude extract on Culex quinquefasciatus (Diptera: Culicidae). J Environ Biol. 1994;15:67–74. Saxena RC, Jayashree S, Padma S, Dixit OP. Evaluation of growth disrupting activity of agerantum conyzoides crude extract on Culex quinquefasciatus (Diptera: Culicidae). J Environ Biol. 1994;15:67–74.
38.
go back to reference Saxena A, Saxena RC. Effects of Agerantum conyzoides extract on the developmental stages of malaria vector, Anopheles stephensi (Diptera, Culicidae). J Environ Biol. 1992;13:207–9. Saxena A, Saxena RC. Effects of Agerantum conyzoides extract on the developmental stages of malaria vector, Anopheles stephensi (Diptera, Culicidae). J Environ Biol. 1992;13:207–9.
39.
go back to reference Harborne AJ. Phytochemical methods a guide to modern techniques of plant analysis. 3rd ed. London: chapman and Hall; 1998. p. 302. ISBN: 0‐412‐57270‐2. Harborne AJ. Phytochemical methods a guide to modern techniques of plant analysis. 3rd ed. London: chapman and Hall; 1998. p. 302. ISBN: 0‐412‐57270‐2.
40.
go back to reference WHO. Report of the WHO Informal consultation on the evaluation and testing of insecticides. Geneva: WHO; 1996. World Heal. Organ. WHO. Report of the WHO Informal consultation on the evaluation and testing of insecticides. Geneva: WHO; 1996. World Heal. Organ.
41.
go back to reference Nyamoita MG, Ester I, Zakaria MH, Wilber L, Bwire OJ, Ahmed H. Comparison of the effects of extracts from three Vitex plant species on Anopheles gambiae ss (Diptera: Culicidae) larvae. Acta Trop. 2013;127:199–203.CrossRefPubMed Nyamoita MG, Ester I, Zakaria MH, Wilber L, Bwire OJ, Ahmed H. Comparison of the effects of extracts from three Vitex plant species on Anopheles gambiae ss (Diptera: Culicidae) larvae. Acta Trop. 2013;127:199–203.CrossRefPubMed
42.
go back to reference R Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2013. ISBN 3-900051-07-0, 2013. R Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2013. ISBN 3-900051-07-0, 2013.
43.
44.
go back to reference Borthakur N, Baruah AKS, Bhagat SD. Search for precocenes in Agerantum conyzoides Linn of North East India. J Indian Chem Soc. 1987;64(9):580–1. Borthakur N, Baruah AKS, Bhagat SD. Search for precocenes in Agerantum conyzoides Linn of North East India. J Indian Chem Soc. 1987;64(9):580–1.
45.
go back to reference Nathan SS, Savitha G, George DK, Narmadha A, Suganya L, Chung PG. Efficacy of Melia azedarach L. extract on the malarial vector Anopheles stephensi Liston (Diptera: Culicidae). Bioresour. Technol. 2006;97:1316–23. Nathan SS, Savitha G, George DK, Narmadha A, Suganya L, Chung PG. Efficacy of Melia azedarach L. extract on the malarial vector Anopheles stephensi Liston (Diptera: Culicidae). Bioresour. Technol. 2006;97:1316–23.
46.
go back to reference Nathan SS, Hisham A, Jayakumar G. Larvicidal and growth inhibition of the malaria vector Anopheles stephensi by triterpenes from Dysoxylum malabaricum and Dysoxylum beddomei. Fitoterapia. 2008;79:106–11.CrossRefPubMed Nathan SS, Hisham A, Jayakumar G. Larvicidal and growth inhibition of the malaria vector Anopheles stephensi by triterpenes from Dysoxylum malabaricum and Dysoxylum beddomei. Fitoterapia. 2008;79:106–11.CrossRefPubMed
47.
go back to reference Innocent E, Nkunya MHH, Hassanali A. Larvicidal activity of Kotschya uguenensis plant powders and methanol extracts against Anopheles gambiae ss larvae in the laboratory and in simulated ponds. J Appl Pharm Sci. 2013;3:122. Innocent E, Nkunya MHH, Hassanali A. Larvicidal activity of Kotschya uguenensis plant powders and methanol extracts against Anopheles gambiae ss larvae in the laboratory and in simulated ponds. J Appl Pharm Sci. 2013;3:122.
48.
go back to reference Al‐Sharook Z, Balan K, Jiang Y, Rembold H. Insect growth inhibitors from two tropical Meliaceae: effect of crude seed extracts on mosquito larvae1. J Appl Entomol. 1991;111:425–30.CrossRef Al‐Sharook Z, Balan K, Jiang Y, Rembold H. Insect growth inhibitors from two tropical Meliaceae: effect of crude seed extracts on mosquito larvae1. J Appl Entomol. 1991;111:425–30.CrossRef
49.
go back to reference Govindachari TR, Suresh G, Wesley SD. Insect antifeedant and growth regulating activities of neem seed oil - the role of major tetranortriterpenoids. J Appl Entomol. 2000;124:287–91.CrossRef Govindachari TR, Suresh G, Wesley SD. Insect antifeedant and growth regulating activities of neem seed oil - the role of major tetranortriterpenoids. J Appl Entomol. 2000;124:287–91.CrossRef
50.
go back to reference Martinez SS, Van Emden HF. Growth disruption, abnormalities and mortality of Spodoptera littoralis (Boisduval)(Lepidoptera: Noctuidae) caused by azadirachtin. Neotrop Entomol. 2001;30:113–25.CrossRef Martinez SS, Van Emden HF. Growth disruption, abnormalities and mortality of Spodoptera littoralis (Boisduval)(Lepidoptera: Noctuidae) caused by azadirachtin. Neotrop Entomol. 2001;30:113–25.CrossRef
51.
go back to reference Nathan SS, Kalaivani K, Murugan K. Effects of neem limonoids on the malaria vector Anopheles stephensi Liston (Diptera: Culicidae). Acta Trop. 2005;96:47–55.CrossRefPubMed Nathan SS, Kalaivani K, Murugan K. Effects of neem limonoids on the malaria vector Anopheles stephensi Liston (Diptera: Culicidae). Acta Trop. 2005;96:47–55.CrossRefPubMed
52.
go back to reference Sakr HH, Roshdy SH, El-Seedi HR. Hyptis brevipes (Lamiaceae) extracts strongly inhibit the growth and development of Spodoptera littoralis (Boisd.) larvae (Lepidoptera: Noctuidae). J Appl Pharm Sci. 2013;3:83. Sakr HH, Roshdy SH, El-Seedi HR. Hyptis brevipes (Lamiaceae) extracts strongly inhibit the growth and development of Spodoptera littoralis (Boisd.) larvae (Lepidoptera: Noctuidae). J Appl Pharm Sci. 2013;3:83.
53.
go back to reference Cespedes CL, Molina SC, Muñoz E, Lamilla C, Alarcon J, Palacios SM, et al. The insecticidal, molting disruption and insect growth inhibitory activity of extracts from Condalia microphylla Cav. (Rhamnaceae). Ind Crops Prod. 2013;42:78–86.CrossRef Cespedes CL, Molina SC, Muñoz E, Lamilla C, Alarcon J, Palacios SM, et al. The insecticidal, molting disruption and insect growth inhibitory activity of extracts from Condalia microphylla Cav. (Rhamnaceae). Ind Crops Prod. 2013;42:78–86.CrossRef
54.
go back to reference Varma J, Dubey NK. Prospectives of botanical and microbial products as pesticides of tomorrow. Curr Sci. 1999;76:172–8. Varma J, Dubey NK. Prospectives of botanical and microbial products as pesticides of tomorrow. Curr Sci. 1999;76:172–8.
55.
go back to reference Trigo JR, Campos S, Pereira AM. Presença de alcalóides pirrolizidinicos em Ageratum conyzoides L. Simp. Plantas Med. do Bras. Sao Paulo. (Resumos). 1988. p. 13. Trigo JR, Campos S, Pereira AM. Presença de alcalóides pirrolizidinicos em Ageratum conyzoides L. Simp. Plantas Med. do Bras. Sao Paulo. (Resumos). 1988. p. 13.
56.
go back to reference Ming LC. Ageratum conyzoides: a tropical source of medicinal and agricultural products. Perspect New Crop New Uses. 1999;469–73. Ming LC. Ageratum conyzoides: a tropical source of medicinal and agricultural products. Perspect New Crop New Uses. 1999;469–73.
57.
go back to reference Vyas AV, Mulchandani NB. Polyoxygenated flavones from Ageratum conyzoides. Phytochemistry. 1986;25:2625–7.CrossRef Vyas AV, Mulchandani NB. Polyoxygenated flavones from Ageratum conyzoides. Phytochemistry. 1986;25:2625–7.CrossRef
58.
go back to reference Nijhout HF. Insect hormones. Princeton: Princeton Univ. Press; 1994. p. 280. Nijhout HF. Insect hormones. Princeton: Princeton Univ. Press; 1994. p. 280.
59.
60.
go back to reference Riddiford LM, Ashburner M. Effects of juvenile hormone mimics on larval development and metamorphosis of Drosophila melanogaster. Gen Comp Endocrinol. 1991;82:172–83.CrossRefPubMed Riddiford LM, Ashburner M. Effects of juvenile hormone mimics on larval development and metamorphosis of Drosophila melanogaster. Gen Comp Endocrinol. 1991;82:172–83.CrossRefPubMed
Metadata
Title
Methanolic extract of Agerantum conyzoides exhibited toxicity and growth disruption activities against Anopheles gambiae sensu stricto and Anopheles arabiensis larvae
Authors
Jackson Mbithi Muema
Sospeter Ngoci Njeru
Céline Colombier
Rose Muthoni Marubu
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2016
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-016-1464-7

Other articles of this Issue 1/2016

BMC Complementary Medicine and Therapies 1/2016 Go to the issue