Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2016

Open Access 01-12-2016 | Research article

The role of kaempferol-induced autophagy on differentiation and mineralization of osteoblastic MC3T3-E1 cells

Authors: In-Ryoung Kim, Seong-Eon Kim, Hyun-Su Baek, Bok-Joo Kim, Chul-Hoon Kim, In-Kyo Chung, Bong-Soo Park, Sang-Hun Shin

Published in: BMC Complementary Medicine and Therapies | Issue 1/2016

Login to get access

Abstract

Background

Kaempferol, a kind of flavonol, has been reported to possess various osteogenic biological activities, such as inhibiting bone resorption of osteoclasts and promoting the differentiation and mineralization of preosteoblasts. However, the precise cellular mechanism of action of kaempferol in osteogenesis is elusive.
Autophagy is a major intracellular degradation system, which plays an important role in cell growth, survival, differentiation and homeostasis in mammals. Recent studies showed that autophagy appeared to be involved in the degradation of osteoclasts, osteoblasts and osteocytes, potentially pointing to a new pathogenic mechanism of bone homeostasis and bone marrow disease. The potential correlation between autophagy, osteogenesis and flavonoids is unclear.

Methods

The present study verified that kaempferol promoted osteogenic differentiation and mineralization and that it elevated osteogenic gene expression based on alkaline phosphatase (ALP) activity, alizarin red staining and quantitative PCR. And then we found that kaempferol induced autophagy by acridine orange (AO) and monodansylcadaverine (MDC) staining and autophagy-related protein expression. The correlation between kaempferol-induced autophagy and the osteogenic process was confirmed by the autophagy inhibitor 3-methyladenine (3-MA).

Results

Kaempferol promoted the proliferation, differentiation and mineralization of osteoblasts at a concentration of 10 μM. Kaempferol showed cytotoxic properties at concentrations above 50 μM. Concentrations above 10 μM decreased ALP activity, whereas those up to 10 μM increased ALP activity. Kaempferol at concentrations up to 10 μM also increased the expression of the osteoblast- activated factors RUNX-2, osterix, BMP-2 and collagen I according to RT-PCR analyses. 10 μM or less, the higher of the concentration and over time, kaempferol promoted the activity of osteoblasts. Kaempferol induced autophagy. It also increased the expression of the autophagy-related factors beclin-1, SQSTM1/p62 and the conversion of LC3-II from LC3-I. The application of 3-MA decreased the activity of ALP and the autophagy induced by kaempferol. In the RT-PCR analysis, the expression of RUNX-2, osterix, BMP-2 and collagen I was decreased.

Conclusion

The present study showed that kaempferol stimulated the osteogenic differentiation of cultured osteoblasts by inducing autophagy.
Literature
1.
go back to reference Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423:337–42.CrossRefPubMed Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423:337–42.CrossRefPubMed
3.
go back to reference Ikeda K, Takeshita S. Factors and mechanisms involved in the coupling from bone resorption to formation: how osteoclasts talk to osteoblasts. J Bone Metab. 2014;21:163–7.CrossRefPubMedPubMedCentral Ikeda K, Takeshita S. Factors and mechanisms involved in the coupling from bone resorption to formation: how osteoclasts talk to osteoblasts. J Bone Metab. 2014;21:163–7.CrossRefPubMedPubMedCentral
4.
go back to reference Parfitt AM. Bone remodeling and bone loss: understanding the pathophysiology of osteoporosis. Clin Obstet Gynecol. 1987;30:789–811.CrossRefPubMed Parfitt AM. Bone remodeling and bone loss: understanding the pathophysiology of osteoporosis. Clin Obstet Gynecol. 1987;30:789–811.CrossRefPubMed
6.
go back to reference Córdoba A, Satué M, Gómez‐Florit M, Hierro‐Oliva M, Petzold C, Lyngstadaas SP, González‐Martín ML, Monjo M, Ramis JM. Flavonoid‐modified surfaces: multifunctional bioactive biomaterials with osteopromotive, anti‐inflammatory, and anti‐fibrotic potential. Adv Healthc Mater. 2015;4:540–9.CrossRefPubMed Córdoba A, Satué M, Gómez‐Florit M, Hierro‐Oliva M, Petzold C, Lyngstadaas SP, González‐Martín ML, Monjo M, Ramis JM. Flavonoid‐modified surfaces: multifunctional bioactive biomaterials with osteopromotive, anti‐inflammatory, and anti‐fibrotic potential. Adv Healthc Mater. 2015;4:540–9.CrossRefPubMed
7.
go back to reference Zhang N, Ying M-D, Wu Y-P, Zhou Z-H, Ye Z-M, Li H, Lin D-S. Hyperoside, a flavonoid compound, inhibits proliferation and stimulates osteogenic differentiation of human osteosarcoma cells. PLoS One. 2014;9:e98973.CrossRefPubMedPubMedCentral Zhang N, Ying M-D, Wu Y-P, Zhou Z-H, Ye Z-M, Li H, Lin D-S. Hyperoside, a flavonoid compound, inhibits proliferation and stimulates osteogenic differentiation of human osteosarcoma cells. PLoS One. 2014;9:e98973.CrossRefPubMedPubMedCentral
8.
go back to reference Lago J, Toledo-Arruda A, Mernak M, Barrosa K, Martins M, Tibério I, Prado C. Structure-activity association of flavonoids in lung diseases. Molecules. 2014;19:3570–95.CrossRefPubMed Lago J, Toledo-Arruda A, Mernak M, Barrosa K, Martins M, Tibério I, Prado C. Structure-activity association of flavonoids in lung diseases. Molecules. 2014;19:3570–95.CrossRefPubMed
9.
go back to reference Croft KD. The chemistry and biological effects of flavonoids and phenolic acids. Ann N Y Acad Sci. 1998;854:435–42.CrossRefPubMed Croft KD. The chemistry and biological effects of flavonoids and phenolic acids. Ann N Y Acad Sci. 1998;854:435–42.CrossRefPubMed
10.
go back to reference Dai J, Li Y, Zhou H, Chen J, Chen M, Xiao Z. Genistein promotion of osteogenic differentiation through BMP2/SMAD5/RUNX2 signaling. Int J Biol Sci. 2013;9:1089–98.CrossRefPubMedPubMedCentral Dai J, Li Y, Zhou H, Chen J, Chen M, Xiao Z. Genistein promotion of osteogenic differentiation through BMP2/SMAD5/RUNX2 signaling. Int J Biol Sci. 2013;9:1089–98.CrossRefPubMedPubMedCentral
11.
go back to reference Ma XN, Zhou J, Ge BF, Zhen P, Ma HP, Shi WG, Cheng K, Xian CJ, Chen KM. Icariin induces osteoblast differentiation and mineralization without dexamethasone in vitro. Planta Med. 2013;79:1501–8.CrossRefPubMed Ma XN, Zhou J, Ge BF, Zhen P, Ma HP, Shi WG, Cheng K, Xian CJ, Chen KM. Icariin induces osteoblast differentiation and mineralization without dexamethasone in vitro. Planta Med. 2013;79:1501–8.CrossRefPubMed
12.
go back to reference Satue M, Arriero Mdel M, Monjo M, Ramis JM. Quercitrin and taxifolin stimulate osteoblast differentiation in MC3T3-E1 cells and inhibit osteoclastogenesis in RAW 264.7 cells. Biochem Pharmacol. 2013;86:1476–86.CrossRefPubMed Satue M, Arriero Mdel M, Monjo M, Ramis JM. Quercitrin and taxifolin stimulate osteoblast differentiation in MC3T3-E1 cells and inhibit osteoclastogenesis in RAW 264.7 cells. Biochem Pharmacol. 2013;86:1476–86.CrossRefPubMed
13.
go back to reference Sharan K, Siddiqui JA, Swarnkar G, Maurya R, Chattopadhyay N. Role of phytochemicals in the prevention of menopausal bone loss: evidence from in vitro and in vivo, human interventional and pharma-cokinetic studies. Curr Med Chem. 2009;16:1138–57.CrossRefPubMed Sharan K, Siddiqui JA, Swarnkar G, Maurya R, Chattopadhyay N. Role of phytochemicals in the prevention of menopausal bone loss: evidence from in vitro and in vivo, human interventional and pharma-cokinetic studies. Curr Med Chem. 2009;16:1138–57.CrossRefPubMed
14.
go back to reference Huang L, Yagura T, Chen S. Sedative activity of hexane extract of Keampferia galanga L. and its active compounds. J Ethnopharmacol. 2008;120:123–5.CrossRefPubMed Huang L, Yagura T, Chen S. Sedative activity of hexane extract of Keampferia galanga L. and its active compounds. J Ethnopharmacol. 2008;120:123–5.CrossRefPubMed
15.
go back to reference Wattel A, Kamel S, Mentaverri R, Lorget F, Prouillet C, Petit JP, Fardelonne P, Brazier M. Potent inhibitory effect of naturally occurring flavonoids quercetin and kaempferol on in vitro osteoclastic bone resorption. Biochem Pharmacol. 2003;65:35–42.CrossRefPubMed Wattel A, Kamel S, Mentaverri R, Lorget F, Prouillet C, Petit JP, Fardelonne P, Brazier M. Potent inhibitory effect of naturally occurring flavonoids quercetin and kaempferol on in vitro osteoclastic bone resorption. Biochem Pharmacol. 2003;65:35–42.CrossRefPubMed
16.
go back to reference Miyake M, Arai N, Ushio S, Iwaki K, Ikeda M, Kurimoto M. Promoting effect of kaempferol on the differentiation and mineralization of murine pre-osteoblastic cell line MC3T3-E1. Biosci Biotechnol Biochem. 2003;67:1199–205.CrossRefPubMed Miyake M, Arai N, Ushio S, Iwaki K, Ikeda M, Kurimoto M. Promoting effect of kaempferol on the differentiation and mineralization of murine pre-osteoblastic cell line MC3T3-E1. Biosci Biotechnol Biochem. 2003;67:1199–205.CrossRefPubMed
17.
go back to reference Prouillet C, Maziere JC, Maziere C, Wattel A, Brazier M, Kamel S. Stimulatory effect of naturally occurring flavonols quercetin and kaempferol on alkaline phosphatase activity in MG-63 human osteoblasts through ERK and estrogen receptor pathway. Biochem Pharmacol. 2004;67:1307–13.CrossRefPubMed Prouillet C, Maziere JC, Maziere C, Wattel A, Brazier M, Kamel S. Stimulatory effect of naturally occurring flavonols quercetin and kaempferol on alkaline phosphatase activity in MG-63 human osteoblasts through ERK and estrogen receptor pathway. Biochem Pharmacol. 2004;67:1307–13.CrossRefPubMed
19.
go back to reference Ha SW, Weitzmann MN, Beck Jr GR. Bioactive silica nanoparticles promote osteoblast differentiation through stimulation of autophagy and direct association with LC3 and p62. ACS Nano. 2014;8:5898–910.CrossRefPubMedPubMedCentral Ha SW, Weitzmann MN, Beck Jr GR. Bioactive silica nanoparticles promote osteoblast differentiation through stimulation of autophagy and direct association with LC3 and p62. ACS Nano. 2014;8:5898–910.CrossRefPubMedPubMedCentral
21.
go back to reference Maeda T, Matsunuma A, Kawane T, Horiuchi N. Simvastatin promotes osteoblast differentiation and mineralization in MC3T3-E1 cells. Biochem Biophys Res Commun. 2001;280:874–7. http://dx.doi.org/10.1006/bbrc.2000.4232.CrossRefPubMed Maeda T, Matsunuma A, Kawane T, Horiuchi N. Simvastatin promotes osteoblast differentiation and mineralization in MC3T3-E1 cells. Biochem Biophys Res Commun. 2001;280:874–7. http://​dx.​doi.​org/​10.​1006/​bbrc.​2000.​4232.​CrossRefPubMed
22.
go back to reference Biederbick A, Kern H, Elsässer H. Monodansylcadaverine (MDC) is a specific in vivo marker for autophagic vacuoles. Eur J Cell Biol. 1995;66:3–14.PubMed Biederbick A, Kern H, Elsässer H. Monodansylcadaverine (MDC) is a specific in vivo marker for autophagic vacuoles. Eur J Cell Biol. 1995;66:3–14.PubMed
23.
go back to reference Paglin S, Hollister T, Delohery T, Hackett N, McMahill M, Sphicas E, Domingo D, Yahalom J. A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles. Cancer Res. 2001;61:439–44.PubMed Paglin S, Hollister T, Delohery T, Hackett N, McMahill M, Sphicas E, Domingo D, Yahalom J. A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles. Cancer Res. 2001;61:439–44.PubMed
24.
go back to reference Amic D, Davidovic-Amic D, Beslo D, Rastija V, Lucic B, Trinajstic N. SAR and QSAR of the antioxidant activity of flavonoids. Curr Med Chem. 2007;14:827–45.CrossRefPubMed Amic D, Davidovic-Amic D, Beslo D, Rastija V, Lucic B, Trinajstic N. SAR and QSAR of the antioxidant activity of flavonoids. Curr Med Chem. 2007;14:827–45.CrossRefPubMed
25.
go back to reference Srivastava S, Bankar R, Roy P. Assessment of the role of flavonoids for inducing osteoblast differentiation in isolated mouse bone marrow derived mesenchymal stem cells. Phytomedicine. 2013;20:683–90. http://dx.doi.org/10.1016/j.phymed.2013.03.001.CrossRefPubMed Srivastava S, Bankar R, Roy P. Assessment of the role of flavonoids for inducing osteoblast differentiation in isolated mouse bone marrow derived mesenchymal stem cells. Phytomedicine. 2013;20:683–90. http://​dx.​doi.​org/​10.​1016/​j.​phymed.​2013.​03.​001.​CrossRefPubMed
28.
go back to reference Liu F, Fang F, Yuan H, Yang D, Chen Y, Williams L, Goldstein SA, Krebsbach PH, Guan JL. Suppression of autophagy by FIP200 deletion leads to osteopenia in mice through the inhibition of osteoblast terminal differentiation. J Bone Miner Res. 2013;28:2414–30. doi:10.1002/jbmr.1971.CrossRefPubMedPubMedCentral Liu F, Fang F, Yuan H, Yang D, Chen Y, Williams L, Goldstein SA, Krebsbach PH, Guan JL. Suppression of autophagy by FIP200 deletion leads to osteopenia in mice through the inhibition of osteoblast terminal differentiation. J Bone Miner Res. 2013;28:2414–30. doi:10.​1002/​jbmr.​1971.CrossRefPubMedPubMedCentral
29.
go back to reference Liberal J, Francisco V, Costa G, Figueirinha A, Amaral MT, Marques C, Girão H, Lopes MC, Cruz MT, Batista MT. Bioactivity of Fragaria vesca leaves through inflammation, proteasome and autophagy modulation. J Ethnopharmacol. 2014;158:113–22.CrossRefPubMed Liberal J, Francisco V, Costa G, Figueirinha A, Amaral MT, Marques C, Girão H, Lopes MC, Cruz MT, Batista MT. Bioactivity of Fragaria vesca leaves through inflammation, proteasome and autophagy modulation. J Ethnopharmacol. 2014;158:113–22.CrossRefPubMed
30.
go back to reference Aiyer HS, Warri AM, Woode DR, Hilakivi-Clarke L, Clarke R. Influence of berry polyphenols on receptor signaling and cell-death pathways: implications for breast cancer prevention. J Agric Food Chem. 2012;60:5693–708.CrossRefPubMedPubMedCentral Aiyer HS, Warri AM, Woode DR, Hilakivi-Clarke L, Clarke R. Influence of berry polyphenols on receptor signaling and cell-death pathways: implications for breast cancer prevention. J Agric Food Chem. 2012;60:5693–708.CrossRefPubMedPubMedCentral
31.
go back to reference Filomeni G, Graziani I, De Zio D, Dini L, Centonze D, Rotilio G, Ciriolo MR. Neuroprotection of kaempferol by autophagy in models of rotenone-mediated acute toxicity: possible implications for Parkinson’s disease. Neurobiol Aging. 2012;33:767–85.CrossRefPubMed Filomeni G, Graziani I, De Zio D, Dini L, Centonze D, Rotilio G, Ciriolo MR. Neuroprotection of kaempferol by autophagy in models of rotenone-mediated acute toxicity: possible implications for Parkinson’s disease. Neurobiol Aging. 2012;33:767–85.CrossRefPubMed
32.
go back to reference Quarles LD, Yohay DA, Lever LW, Caton R, Wenstrup RJ. Distinct proliferative and differentiated stages of murine MC3T3-E1 cells in culture: an in vitro model of osteoblast development. J Bone Miner Res. 1992;7:683–92.CrossRefPubMed Quarles LD, Yohay DA, Lever LW, Caton R, Wenstrup RJ. Distinct proliferative and differentiated stages of murine MC3T3-E1 cells in culture: an in vitro model of osteoblast development. J Bone Miner Res. 1992;7:683–92.CrossRefPubMed
33.
go back to reference Podder B, Song KS, Song H-Y, Kim Y-S. Cytoprotective effect of kaempferol on paraquat-exposed BEAS-2B cells via modulating expression of MUC5AC. Biol Pharm Bull. 2014;37:1486–94.CrossRefPubMed Podder B, Song KS, Song H-Y, Kim Y-S. Cytoprotective effect of kaempferol on paraquat-exposed BEAS-2B cells via modulating expression of MUC5AC. Biol Pharm Bull. 2014;37:1486–94.CrossRefPubMed
34.
go back to reference Guo AJ, Choi RC, Zheng KY, Chen VP, Dong TT, Wang Z-T, Vollmer G, Lau DT, Tsim KW-k. Kaempferol as a flavonoid induces osteoblastic differentiation via estrogen receptor signaling. Chin Med. 2012;7:1–7.CrossRef Guo AJ, Choi RC, Zheng KY, Chen VP, Dong TT, Wang Z-T, Vollmer G, Lau DT, Tsim KW-k. Kaempferol as a flavonoid induces osteoblastic differentiation via estrogen receptor signaling. Chin Med. 2012;7:1–7.CrossRef
35.
go back to reference Trivedi R, Kumar S, Kumar A, Siddiqui JA, Swarnkar G, Gupta V, Kendurker A, Dwivedi AK, Romero JR, Chattopadhyay N. Kaempferol has osteogenic effect in ovariectomized adult Sprague–Dawley rats. Mol Cell Endocrinol. 2008;289:85–93.CrossRefPubMed Trivedi R, Kumar S, Kumar A, Siddiqui JA, Swarnkar G, Gupta V, Kendurker A, Dwivedi AK, Romero JR, Chattopadhyay N. Kaempferol has osteogenic effect in ovariectomized adult Sprague–Dawley rats. Mol Cell Endocrinol. 2008;289:85–93.CrossRefPubMed
36.
go back to reference Chin A, Yang Y, Chai L, Wong RW, Rabie AB. Effects of medicinal herb salvia miltiorrhiza on osteoblastic cells in vitro. J Orthop Res. 2011;29:1059–63.CrossRefPubMed Chin A, Yang Y, Chai L, Wong RW, Rabie AB. Effects of medicinal herb salvia miltiorrhiza on osteoblastic cells in vitro. J Orthop Res. 2011;29:1059–63.CrossRefPubMed
38.
go back to reference Zheng YT, Shahnazari S, Brech A, Lamark T, Johansen T, Brumell JH. The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. J Immunol. 2009;183:5909–16.CrossRefPubMed Zheng YT, Shahnazari S, Brech A, Lamark T, Johansen T, Brumell JH. The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. J Immunol. 2009;183:5909–16.CrossRefPubMed
Metadata
Title
The role of kaempferol-induced autophagy on differentiation and mineralization of osteoblastic MC3T3-E1 cells
Authors
In-Ryoung Kim
Seong-Eon Kim
Hyun-Su Baek
Bok-Joo Kim
Chul-Hoon Kim
In-Kyo Chung
Bong-Soo Park
Sang-Hun Shin
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2016
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-016-1320-9

Other articles of this Issue 1/2016

BMC Complementary Medicine and Therapies 1/2016 Go to the issue