Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2016

Open Access 01-12-2016 | Research article

RETRACTED ARTICLE: Herbal formula GAPT prevents beta amyloid deposition induced Ca2+/Calmodulin-dependent protein kinase II and Ca2+/Calmodulin-dependent protein phosphatase 2B imbalance in APPV717I mice

Authors: Jing Shi, Xuekai Zhang, Long Yin, Mingqing Wei, Jingnian Ni, Ting Li, Pengwen Wang, Jinzhou Tian, Yongyan Wang

Published in: BMC Complementary Medicine and Therapies | Issue 1/2016

Login to get access

Abstract

Background

Synaptic dysfunction is one of the pathological characteristics of Alzheimer's disease (AD), which is directly related to the progressive decline of cognitive function. CaMKII and CaN have been found to play important roles in memory processes and synaptic transmission. So present study aimed to elucidate relationships between CaMKII, CaN and cognitive decline in APPV717I mice, and to reveal whether the cognitive improving effects of GAPT is conducted through rebalance CaMKII and CaN.

Methods

Three-month-old-male APPV717I mice were randomly divided into ten groups (n = 12 per group) and received intragastrically administrated vehicle, donepezil or different doses of herbal formula GAPT for 8 or 4 months. Three-month-old male C57BL/6 J mice was set as vehicle control.

Results

Immunohistochemistry analysis showed that there were CaMKII expression decrease in the CA1 region of APPV717I transgenic mice, while the CaMKII expression of donepezil or GAPT treated transgenic mice were all increased. And there were CaN expression increase in the brain cortex of APPV717I transgenic mice, while there were decrease of CaN expression in donepezil or GAPT treated transgenic group. Western blot analysis showed the similar expression pattern without significant difference.

Conclusion

GAPT extract have showed effectiveness in activating the expression of CaMKII and inhibiting the expression of CaN either before or after the formation of amyloid plaques in the brain of APPV717I transgenic mice, which may in certain way alleviated neuron synaptic dysfunction in AD.
Literature
2.
go back to reference Davies CA, Mann DMA, Sumpter PQ, Yates PO. A quantitative morphometric analysis of the neuronal and synaptic content of the frontal and temporal cortex in patients with Alzheimer's disease. J Neurol Sci. 1987;78(2):151–64.PubMed Davies CA, Mann DMA, Sumpter PQ, Yates PO. A quantitative morphometric analysis of the neuronal and synaptic content of the frontal and temporal cortex in patients with Alzheimer's disease. J Neurol Sci. 1987;78(2):151–64.PubMed
3.
go back to reference Blennow K, Bogdanovic N, Alafuzoff I, Ekman R, Davidsson P. Synaptic pathology in Alzheimer's disease: Relation to severity of dementia, but not to senile plaques, neurofibrillary tangles, or the ApoE4 allele. J Neural Transm. 1996;103(5):603–18.PubMed Blennow K, Bogdanovic N, Alafuzoff I, Ekman R, Davidsson P. Synaptic pathology in Alzheimer's disease: Relation to severity of dementia, but not to senile plaques, neurofibrillary tangles, or the ApoE4 allele. J Neural Transm. 1996;103(5):603–18.PubMed
4.
go back to reference Ingelsson M, Fukumoto H, Newell KL, Growdon JH, Hedley-Whyte ET, Frosch MP, Albert MS, Hyman BT, Irizarry MC. Early Abeta accumulation and progressive synaptic loss, gliosis, and tangle formation in AD brain. Neurology. 2004;62(6):925–31.PubMed Ingelsson M, Fukumoto H, Newell KL, Growdon JH, Hedley-Whyte ET, Frosch MP, Albert MS, Hyman BT, Irizarry MC. Early Abeta accumulation and progressive synaptic loss, gliosis, and tangle formation in AD brain. Neurology. 2004;62(6):925–31.PubMed
5.
go back to reference Bliss TVP, Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 1993;361(6407):31–9.PubMed Bliss TVP, Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 1993;361(6407):31–9.PubMed
6.
go back to reference Kennedy MB. Regulation of synaptic transmission in the central nervous system: Long-term potentiation. Cell. 1989;59(5):777–87.PubMed Kennedy MB. Regulation of synaptic transmission in the central nervous system: Long-term potentiation. Cell. 1989;59(5):777–87.PubMed
7.
go back to reference Nicoll RA, Malenka RC. Contrasting properties of two forms of long-term potentiation in the hippocampus. Nature. 1995;377(6545):115–8.PubMed Nicoll RA, Malenka RC. Contrasting properties of two forms of long-term potentiation in the hippocampus. Nature. 1995;377(6545):115–8.PubMed
8.
go back to reference Stevens CF. A million dollar question: Does LTP = Memory? Neuron. 1998;20(1):1–2.PubMed Stevens CF. A million dollar question: Does LTP = Memory? Neuron. 1998;20(1):1–2.PubMed
9.
go back to reference Lisman J, Schulman H, Cline H. The molecular basis of CaMKII function in synaptic and behavioural memory. Nat Rev Neurosci. 2002;3(3):175–90.PubMed Lisman J, Schulman H, Cline H. The molecular basis of CaMKII function in synaptic and behavioural memory. Nat Rev Neurosci. 2002;3(3):175–90.PubMed
10.
go back to reference Silva A, Stevens C, Tonegawa S, Wang Y. Deficient hippocampal long-term potentiation in alpha-calcium-calmodulin kinase II mutant mice. Science. 1992;257(5067):201–6.PubMed Silva A, Stevens C, Tonegawa S, Wang Y. Deficient hippocampal long-term potentiation in alpha-calcium-calmodulin kinase II mutant mice. Science. 1992;257(5067):201–6.PubMed
11.
go back to reference Soderling TR. Calcium/calmodulin-dependent protein kinase II: role in learning and memory. Mol Cell Biochem. 1993;127(1):93–101.PubMed Soderling TR. Calcium/calmodulin-dependent protein kinase II: role in learning and memory. Mol Cell Biochem. 1993;127(1):93–101.PubMed
12.
go back to reference Griffith LC. Calcium/Calmodulin-dependent protein Kinase II: an unforgettable Kinase. J Neurosci. 2004;24(39):8391–3.PubMedPubMedCentral Griffith LC. Calcium/Calmodulin-dependent protein Kinase II: an unforgettable Kinase. J Neurosci. 2004;24(39):8391–3.PubMedPubMedCentral
13.
go back to reference Stevens CF, Tonegawa S, Wang Y. The role of calcium calmodulin kinase II in three forms of synaptic plasticity. Curr Biol. 1994;4(8):687–93.PubMed Stevens CF, Tonegawa S, Wang Y. The role of calcium calmodulin kinase II in three forms of synaptic plasticity. Curr Biol. 1994;4(8):687–93.PubMed
14.
go back to reference Mansuy IM. Calcineurin in memory and bidirectional plasticity. Biochem Biophys Res Commun. 2003;311(4):1195–208.PubMed Mansuy IM. Calcineurin in memory and bidirectional plasticity. Biochem Biophys Res Commun. 2003;311(4):1195–208.PubMed
15.
go back to reference Hara MR, Snyder SH. Cell signaling and neuronal death. Annu Rev Pharmacol Toxicol. 2007;47(1):117–41.PubMed Hara MR, Snyder SH. Cell signaling and neuronal death. Annu Rev Pharmacol Toxicol. 2007;47(1):117–41.PubMed
16.
go back to reference Kennedy MB, Bennett MK, Bulleit RF, Erondu NE, Jennings VR, Miller SG, Molloy SS, Patton BL, Schenker LJ. Structure and regulation of type II calcium/calmodulin-dependent protein kinase in central nervous system neurons. Cold Spring Harb Symp Quant Biol. 1990;55:101–10.PubMed Kennedy MB, Bennett MK, Bulleit RF, Erondu NE, Jennings VR, Miller SG, Molloy SS, Patton BL, Schenker LJ. Structure and regulation of type II calcium/calmodulin-dependent protein kinase in central nervous system neurons. Cold Spring Harb Symp Quant Biol. 1990;55:101–10.PubMed
17.
go back to reference Anderson M, Braun A, Schulman H, Premack B. Multifunctional Ca2+/calmodulin-dependent protein kinase mediates Ca(2+)-induced enhancement of the L-type Ca2+ current in rabbit ventricular myocytes. Circ Res. 1994;75(5):854–61.PubMed Anderson M, Braun A, Schulman H, Premack B. Multifunctional Ca2+/calmodulin-dependent protein kinase mediates Ca(2+)-induced enhancement of the L-type Ca2+ current in rabbit ventricular myocytes. Circ Res. 1994;75(5):854–61.PubMed
18.
go back to reference Neal Waxham M, Malenka RC, Kelly PT, Mauk MD. Calcium/calmodulin-dependent protein kinase II regulates hippocampal synaptic transmission. Brain Res. 1993;609(1–2):1–8. Neal Waxham M, Malenka RC, Kelly PT, Mauk MD. Calcium/calmodulin-dependent protein kinase II regulates hippocampal synaptic transmission. Brain Res. 1993;609(1–2):1–8.
19.
go back to reference Ouimet CC, McGuinness TL, Greengard P. Immunocytochemical localization of calcium/calmodulin-dependent protein kinase II in rat brain. Proc Natl Acad Sci U S A. 1984;81(17):5604–8.PubMedPubMedCentral Ouimet CC, McGuinness TL, Greengard P. Immunocytochemical localization of calcium/calmodulin-dependent protein kinase II in rat brain. Proc Natl Acad Sci U S A. 1984;81(17):5604–8.PubMedPubMedCentral
20.
go back to reference Erondu NE, Kennedy MB. Regional distribution of type II Ca2+/calmodulin-dependent protein kinase in rat brain. J Neurosci. 1985;5(12):3270–7.PubMedPubMedCentral Erondu NE, Kennedy MB. Regional distribution of type II Ca2+/calmodulin-dependent protein kinase in rat brain. J Neurosci. 1985;5(12):3270–7.PubMedPubMedCentral
21.
go back to reference Fukunaga K, Goto S, Miyamoto E. Immunohistochemical localization of Ca2+/Calmodulin-dependent protein Kinase II in Rat brain and various tissues. J Neurochem. 1988;51(4):1070–8.PubMed Fukunaga K, Goto S, Miyamoto E. Immunohistochemical localization of Ca2+/Calmodulin-dependent protein Kinase II in Rat brain and various tissues. J Neurochem. 1988;51(4):1070–8.PubMed
22.
go back to reference Peng J, Kim MJ, Cheng D, Duong DM, Gygi SP, Sheng M. Semiquantitative proteomic analysis of rat forebrain postsynaptic density fractions by mass spectrometry. J Biol Chem. 2004;279(20):21003–11.PubMed Peng J, Kim MJ, Cheng D, Duong DM, Gygi SP, Sheng M. Semiquantitative proteomic analysis of rat forebrain postsynaptic density fractions by mass spectrometry. J Biol Chem. 2004;279(20):21003–11.PubMed
23.
go back to reference Rich DP, Cdlbran RJ, Schworer CM, Soderling TR. Regulatory properties of calcium/calmodulin-dependent protein Kinase II in rat brain postsynaptic densities. J Neurochem. 1989;53(3):807–16.PubMed Rich DP, Cdlbran RJ, Schworer CM, Soderling TR. Regulatory properties of calcium/calmodulin-dependent protein Kinase II in rat brain postsynaptic densities. J Neurochem. 1989;53(3):807–16.PubMed
24.
go back to reference Fukunaga K, Stoppini L, Miyamoto E, Muller D. Long-term potentiation is associated with an increased activity of Ca2+/calmodulin-dependent protein kinase II. J Biol Chem. 1993;268(11):7863–7.PubMed Fukunaga K, Stoppini L, Miyamoto E, Muller D. Long-term potentiation is associated with an increased activity of Ca2+/calmodulin-dependent protein kinase II. J Biol Chem. 1993;268(11):7863–7.PubMed
25.
go back to reference Ito I, Hidaka H, Sugiyama H. Effects of KN-62, a specific inhibitor of calcium/calmodulin-dependent protein kinase II, on long-term potentiation in the rat hippocampus. Neurosci Lett. 1991;121(1–2):119–21. Ito I, Hidaka H, Sugiyama H. Effects of KN-62, a specific inhibitor of calcium/calmodulin-dependent protein kinase II, on long-term potentiation in the rat hippocampus. Neurosci Lett. 1991;121(1–2):119–21.
26.
go back to reference Malinow R, Schulman H, Tsien R. Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP. Science. 1989;245(4920):862–6.PubMed Malinow R, Schulman H, Tsien R. Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP. Science. 1989;245(4920):862–6.PubMed
27.
go back to reference Silva A, Paylor R, Wehner J, Tonegawa S. Impaired spatial learning in alpha-calcium-calmodulin kinase II mutant mice. Science. 1992;257(5067):206–11.PubMed Silva A, Paylor R, Wehner J, Tonegawa S. Impaired spatial learning in alpha-calcium-calmodulin kinase II mutant mice. Science. 1992;257(5067):206–11.PubMed
28.
go back to reference Shirke AM, Malinow R. Mechanisms of potentiation by calcium-calmodulin kinase ii of postsynaptic sensitivity in rat hippocampal CA1 Neurons. J Neurophysiol. 1997;78(5):2682–92.PubMed Shirke AM, Malinow R. Mechanisms of potentiation by calcium-calmodulin kinase ii of postsynaptic sensitivity in rat hippocampal CA1 Neurons. J Neurophysiol. 1997;78(5):2682–92.PubMed
29.
go back to reference Lledo PM, Hjelmstad GO, Mukherji S, Soderling TR, Malenka RC, Nicoll RA. Calcium/calmodulin-dependent kinase II and long-term potentiation enhance synaptic transmission by the same mechanism. Proc Natl Acad Sci. 1995;92(24):11175–9.PubMedPubMedCentral Lledo PM, Hjelmstad GO, Mukherji S, Soderling TR, Malenka RC, Nicoll RA. Calcium/calmodulin-dependent kinase II and long-term potentiation enhance synaptic transmission by the same mechanism. Proc Natl Acad Sci. 1995;92(24):11175–9.PubMedPubMedCentral
30.
go back to reference Poncer JC, Esteban JA, Malinow R. Multiple Mechanisms for the potentiation of AMPA receptor-mediated transmission by α-ca2+/calmodulin-dependent protein kinase II. J Neurosci. 2002;22(11):4406–11.PubMedPubMedCentral Poncer JC, Esteban JA, Malinow R. Multiple Mechanisms for the potentiation of AMPA receptor-mediated transmission by α-ca2+/calmodulin-dependent protein kinase II. J Neurosci. 2002;22(11):4406–11.PubMedPubMedCentral
31.
go back to reference Matsui H, Itano T, Etoh S, Tokuda M, Wang JH, Hatase O. Demonstration of different regional distributions of calcineurin subunits using monoclonal antibodies. Adv Exp Med Biol. 1989;255:369–75.PubMed Matsui H, Itano T, Etoh S, Tokuda M, Wang JH, Hatase O. Demonstration of different regional distributions of calcineurin subunits using monoclonal antibodies. Adv Exp Med Biol. 1989;255:369–75.PubMed
32.
go back to reference Foster TC, Sharrow KM, Masse JR, Norris CM, Kumar A. Calcineurin links Ca2+ dysregulation with brain aging. J Neurosci. 2001;21(11):4066–73.PubMedPubMedCentral Foster TC, Sharrow KM, Masse JR, Norris CM, Kumar A. Calcineurin links Ca2+ dysregulation with brain aging. J Neurosci. 2001;21(11):4066–73.PubMedPubMedCentral
33.
go back to reference Dineley KT, Hogan D, Zhang W-R, Taglialatela G. Acute inhibition of calcineurin restores associative learning and memory in Tg2576 APP transgenic mice. Neurobiol Learn Mem. 2007;88(2):217–24.PubMedPubMedCentral Dineley KT, Hogan D, Zhang W-R, Taglialatela G. Acute inhibition of calcineurin restores associative learning and memory in Tg2576 APP transgenic mice. Neurobiol Learn Mem. 2007;88(2):217–24.PubMedPubMedCentral
34.
go back to reference Zeng H, Chattarji S, Barbarosie M, Rondi-Reig L, Philpot BD, Miyakawa T, Bear MF, Tonegawa S. Forebrain-specific calcineurin knockout selectively impairs bidirectional synaptic plasticity and working/episodic-like memory. Cell. 2001;107(5):617–29.PubMed Zeng H, Chattarji S, Barbarosie M, Rondi-Reig L, Philpot BD, Miyakawa T, Bear MF, Tonegawa S. Forebrain-specific calcineurin knockout selectively impairs bidirectional synaptic plasticity and working/episodic-like memory. Cell. 2001;107(5):617–29.PubMed
35.
go back to reference Taglialatela G, Hogan D, Zhang W-R, Dineley KT. Intermediate- and long-term recognition memory deficits in Tg2576 mice are reversed with acute calcineurin inhibition. Behav Brain Res. 2009;200(1):95–9.PubMedPubMedCentral Taglialatela G, Hogan D, Zhang W-R, Dineley KT. Intermediate- and long-term recognition memory deficits in Tg2576 mice are reversed with acute calcineurin inhibition. Behav Brain Res. 2009;200(1):95–9.PubMedPubMedCentral
36.
go back to reference Malleret G, Haditsch U, Genoux D, Jones MW, Bliss TVP, Vanhoose AM, Weitlauf C, Kandel ER, Winder DG, Mansuy IM. Inducible and reversible enhancement of learning, memory, and long-term potentiation by genetic inhibition of calcineurin. Cell. 2001;104(5):675–86.PubMed Malleret G, Haditsch U, Genoux D, Jones MW, Bliss TVP, Vanhoose AM, Weitlauf C, Kandel ER, Winder DG, Mansuy IM. Inducible and reversible enhancement of learning, memory, and long-term potentiation by genetic inhibition of calcineurin. Cell. 2001;104(5):675–86.PubMed
37.
go back to reference Lian Q, Ladner CJ, Magnuson D, Lee JM. Selective changes of calcineurin (protein phosphatase 2b) activity in Alzheimer's disease cerebral cortex. Exp Neurol. 2001;167(1):158–65.PubMed Lian Q, Ladner CJ, Magnuson D, Lee JM. Selective changes of calcineurin (protein phosphatase 2b) activity in Alzheimer's disease cerebral cortex. Exp Neurol. 2001;167(1):158–65.PubMed
38.
go back to reference Ladner CJ, Czech J, Maurice J, Lorens SA, Lee JM. Reduction of calcineurin enzymatic activity in Alzheimer's disease: correlation with neuropathologic changes. J Neuropathol Exp Neurol. 1996;55(8):924–31.PubMed Ladner CJ, Czech J, Maurice J, Lorens SA, Lee JM. Reduction of calcineurin enzymatic activity in Alzheimer's disease: correlation with neuropathologic changes. J Neuropathol Exp Neurol. 1996;55(8):924–31.PubMed
39.
go back to reference Celsi F, Svedberg M, Unger C, Cotman CW, Carrì MT, Ottersen OP, Nordberg A, Torp R. Beta-amyloid causes downregulation of calcineurin in neurons through induction of oxidative stress. Neurobiol Dis. 2007;26(2):342–52.PubMed Celsi F, Svedberg M, Unger C, Cotman CW, Carrì MT, Ottersen OP, Nordberg A, Torp R. Beta-amyloid causes downregulation of calcineurin in neurons through induction of oxidative stress. Neurobiol Dis. 2007;26(2):342–52.PubMed
40.
go back to reference Liu F, Grundke-Iqbal I, Iqbal K, Oda Y, Tomizawa K, Gong CX. Truncation and activation of calcineurin a by calpain i in alzheimer disease brain. J Biol Chem. 2005;280(45):37755–62.PubMed Liu F, Grundke-Iqbal I, Iqbal K, Oda Y, Tomizawa K, Gong CX. Truncation and activation of calcineurin a by calpain i in alzheimer disease brain. J Biol Chem. 2005;280(45):37755–62.PubMed
41.
go back to reference Norris CM, Kadish I, Blalock EM, Chen KC, Thibault V, Porter NM, Landfield PW, Kraner SD. Calcineurin triggers reactive/inflammatory processes in astrocytes and is upregulated in aging and Alzheimer's models. J Neurosci. 2005;25(18):4649–58.PubMedPubMedCentral Norris CM, Kadish I, Blalock EM, Chen KC, Thibault V, Porter NM, Landfield PW, Kraner SD. Calcineurin triggers reactive/inflammatory processes in astrocytes and is upregulated in aging and Alzheimer's models. J Neurosci. 2005;25(18):4649–58.PubMedPubMedCentral
42.
go back to reference Yamin G. NMDA receptor-dependent signaling pathways that underlie amyloid β-protein disruption of LTP in the hippocampus. J Neurosci Res. 2009;87(8):1729–36.PubMed Yamin G. NMDA receptor-dependent signaling pathways that underlie amyloid β-protein disruption of LTP in the hippocampus. J Neurosci Res. 2009;87(8):1729–36.PubMed
43.
go back to reference Tian J, Shi J, Zhang L, Yin J, Hu Q, Xu Y, Wang R, et al. GEPT extract reduces Abeta deposition by regulating the balance between production and degradation of Abeta in APPV717I transgenic mice. Curr Alzheimer Res. 2009;6(2):118–31. Tian J, Shi J, Zhang L, Yin J, Hu Q, Xu Y, Wang R, et al. GEPT extract reduces Abeta deposition by regulating the balance between production and degradation of Abeta in APPV717I transgenic mice. Curr Alzheimer Res. 2009;6(2):118–31.
44.
go back to reference Tian J, Xu Y, Sheng S, Shi J, Yin J, Wang Y. Influence of GETO extract on myelin sheath structure and myelin basic protein content in the brain with AD model. Alzheimers Dement. 2006;2(3):s601. Tian J, Xu Y, Sheng S, Shi J, Yin J, Wang Y. Influence of GETO extract on myelin sheath structure and myelin basic protein content in the brain with AD model. Alzheimers Dement. 2006;2(3):s601.
45.
go back to reference Miao Y. Part 5: a randomized, double-blind and parallel control study of GEPT extract in the treatment of amnestic mild cognitive impairment, PhD thesis. Beijing: Beijing University of Chinese Medicine; 2008. p. 95–117. Miao Y. Part 5: a randomized, double-blind and parallel control study of GEPT extract in the treatment of amnestic mild cognitive impairment, PhD thesis. Beijing: Beijing University of Chinese Medicine; 2008. p. 95–117.
46.
go back to reference Sturchler-Pierrat C, Abramowski D, Duke M, Wiederhold K-H, Mistl C, Rothacher S, et al. Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc Natl Acad Sci U S A. 1997;94(24):13287–92. Sturchler-Pierrat C, Abramowski D, Duke M, Wiederhold K-H, Mistl C, Rothacher S, et al. Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc Natl Acad Sci U S A. 1997;94(24):13287–92.
47.
go back to reference Dewachter I, Van Dorpe J, Smeijers L, Gilis M, Kuiperi C, Laenen I, Caluwaerts N, Moechars D, Checler F, Vanderstichele H, et al. Aging increased amyloid peptide and caused amyloid plaques in brain of old app/v717i transgenic mice by a different mechanism than mutant presenilin1. J Neurosci. 2000;20(17):6452–8.PubMedPubMedCentral Dewachter I, Van Dorpe J, Smeijers L, Gilis M, Kuiperi C, Laenen I, Caluwaerts N, Moechars D, Checler F, Vanderstichele H, et al. Aging increased amyloid peptide and caused amyloid plaques in brain of old app/v717i transgenic mice by a different mechanism than mutant presenilin1. J Neurosci. 2000;20(17):6452–8.PubMedPubMedCentral
48.
go back to reference Johnson-Wood K, Lee M, Motter R, Hu K, Gordon G, Barbour R, Khan K, Gordon M, Tan H, Games D, et al. Amyloid precursor protein processing and Aβ42 deposition in a transgenic mouse model of Alzheimer disease. Proc Natl Acad Sci U S A. 1997;94(4):1550–5.PubMedPubMedCentral Johnson-Wood K, Lee M, Motter R, Hu K, Gordon G, Barbour R, Khan K, Gordon M, Tan H, Games D, et al. Amyloid precursor protein processing and Aβ42 deposition in a transgenic mouse model of Alzheimer disease. Proc Natl Acad Sci U S A. 1997;94(4):1550–5.PubMedPubMedCentral
49.
go back to reference Dewachter I, Reversé D, Caluwaerts N, Ris L, Kuipéri C, Van den Haute C, Spittaels K, Umans L, Serneels L, Thiry E, et al. Neuronal deficiency of presenilin 1 inhibits amyloid plaque formation and corrects hippocampal long-term potentiation but not a cognitive defect of amyloid precursor protein [V717I] transgenic mice. J Neurosci. 2002;22(9):3445–53.PubMedPubMedCentral Dewachter I, Reversé D, Caluwaerts N, Ris L, Kuipéri C, Van den Haute C, Spittaels K, Umans L, Serneels L, Thiry E, et al. Neuronal deficiency of presenilin 1 inhibits amyloid plaque formation and corrects hippocampal long-term potentiation but not a cognitive defect of amyloid precursor protein [V717I] transgenic mice. J Neurosci. 2002;22(9):3445–53.PubMedPubMedCentral
50.
go back to reference Tian J, Zhu AH, Zhong J. The effectiveness of GETO in the treatment of mild cognitive impairment in community elderly, A follow-up study on a randomized, single-blind control of GETO pills in treatment of memory disorder in elderly people with MCI in a Beijing community. [Article in Chinese]. Zhongguo Zhong Yao Za Zhi. 2003;28(10):987–91.PubMed Tian J, Zhu AH, Zhong J. The effectiveness of GETO in the treatment of mild cognitive impairment in community elderly, A follow-up study on a randomized, single-blind control of GETO pills in treatment of memory disorder in elderly people with MCI in a Beijing community. [Article in Chinese]. Zhongguo Zhong Yao Za Zhi. 2003;28(10):987–91.PubMed
51.
go back to reference Amada N, Aihara K, Ravid R, Horie M. Reduction of NR1 and phosphorylated Ca2+/calmodulin-dependent protein kinase II levels in Alzheimer's disease. Neuroreport. 2005;16(16):1809–13.PubMed Amada N, Aihara K, Ravid R, Horie M. Reduction of NR1 and phosphorylated Ca2+/calmodulin-dependent protein kinase II levels in Alzheimer's disease. Neuroreport. 2005;16(16):1809–13.PubMed
52.
go back to reference Srivareerat M, Tran TT, Alzoubi KH, Alkadhi KA. Chronic psychosocial stress exacerbates impairment of cognition and long-term potentiation in β-amyloid rat model of Alzheimer’s disease. Biol Psychiatry. 2009;65(11):918–26.PubMed Srivareerat M, Tran TT, Alzoubi KH, Alkadhi KA. Chronic psychosocial stress exacerbates impairment of cognition and long-term potentiation in β-amyloid rat model of Alzheimer’s disease. Biol Psychiatry. 2009;65(11):918–26.PubMed
53.
go back to reference Chen Q-S, Wei W-Z, Shimahara T, Xie C-W. Alzheimer amyloid [beta]-peptide inhibits the late phase of long-term potentiation through calcineurin-dependent mechanisms in the hippocampal dentate gyrus. Neurobiol Learn Mem. 2002;77(3):354–71.PubMed Chen Q-S, Wei W-Z, Shimahara T, Xie C-W. Alzheimer amyloid [beta]-peptide inhibits the late phase of long-term potentiation through calcineurin-dependent mechanisms in the hippocampal dentate gyrus. Neurobiol Learn Mem. 2002;77(3):354–71.PubMed
54.
go back to reference Zhao D, Watson JB, Xie CW. Amyloid β prevents activation of calcium/calmodulin-dependent protein kinase ii and ampa receptor phosphorylation during hippocampal long-term potentiation. J Neurophysiol. 2004;92(5):2853–8.PubMed Zhao D, Watson JB, Xie CW. Amyloid β prevents activation of calcium/calmodulin-dependent protein kinase ii and ampa receptor phosphorylation during hippocampal long-term potentiation. J Neurophysiol. 2004;92(5):2853–8.PubMed
55.
go back to reference Simonian NA, Elvhage T, Czernik AJ, Greengard P, Hyman BT. Calcium/calmodulin-dependent protein kinase II immunostaining is preserved in Alzheimer's disease hippocampal neurons. Brain Res. 1994;657(1–2):294–9.PubMed Simonian NA, Elvhage T, Czernik AJ, Greengard P, Hyman BT. Calcium/calmodulin-dependent protein kinase II immunostaining is preserved in Alzheimer's disease hippocampal neurons. Brain Res. 1994;657(1–2):294–9.PubMed
56.
go back to reference Tian J, Shi J, Zhang X, Wang Y. Herbal therapy: a new pathway for the treatment of Alzheimer's disease. Alzheimers Res Ther. 2010;2(5):30.PubMedPubMedCentral Tian J, Shi J, Zhang X, Wang Y. Herbal therapy: a new pathway for the treatment of Alzheimer's disease. Alzheimers Res Ther. 2010;2(5):30.PubMedPubMedCentral
Metadata
Title
RETRACTED ARTICLE: Herbal formula GAPT prevents beta amyloid deposition induced Ca2+/Calmodulin-dependent protein kinase II and Ca2+/Calmodulin-dependent protein phosphatase 2B imbalance in APPV717I mice
Authors
Jing Shi
Xuekai Zhang
Long Yin
Mingqing Wei
Jingnian Ni
Ting Li
Pengwen Wang
Jinzhou Tian
Yongyan Wang
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2016
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-016-1144-7

Other articles of this Issue 1/2016

BMC Complementary Medicine and Therapies 1/2016 Go to the issue