Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2016

Open Access 01-12-2015 | Research article

α-glucosidase and glycation inhibitory effects of costus speciosus leaves

Authors: Handunge Kumudu Irani Perera, Walgama Kankanamlage Vindhya Kalpani Premadasa, Jeyakumaran Poongunran

Published in: BMC Complementary Medicine and Therapies | Issue 1/2016

Login to get access

Abstract

Background

Hyperglycaemia is a salient feature of poorly controlled diabetes mellitus. Rate of protein glycation is increased with hyperglycaemia leading to long term complications of diabetes. One approach of controlling blood glucose in diabetes targets at reducing the postprandial spikes of blood glucose. The objectives of this study were to assess the in vitro inhibitory effects of Costus speciosus (COS) leaves on α-amylase and α-glucosidase activities, fructosamine formation, protein glycation and glycation-induced protein cross-linking.

Methods

Methanol extracts of COS leaves were used. Inhibitory effects on enzyme activities were measured using porcine pancreatic α-amylase and α-glucosidase from Saccharomyces cerevisiae in the presence of COS extract. Percentage inhibition of the enzymes and the IC50 values were determined. In vitro protein glycation inhibitory effect of COS leaves on early and late glycation products were measured using bovine serum albumin or chicken egg lysozyme with fructose. Nitroblue tetrazolium was used to assess the relative concentration of fructosamine and polyacrylamide gel electrophoresis was used to assess the degree of glycation and protein cross-linking in the reaction mixtures.

Results

α-Glucosidase inhibitory activity was detected in COS leaves with a IC50 of 67.5 μg/ml which was significantly lower than the IC50 value of Acarbose (p < 0.01). Amylase inhibitory effects occurred at a comparatively higher concentration of extract with a IC50 of 5.88 mg/ml which was significantly higher than the IC50 value of Acarbose (p < 0.01). COS (250 μg/ml) demonstrated inhibitory effects on fructosamine formation and glycation induced protein cross-linking which were in par with 1 mg/ml aminoguanidine were detected.

Conclusion

Methanol extracts of COS leaves demonstrated in vitro inhibitory activities on α-glucosidase, fructosamine formation, glycation and glycation induced protein cross-linking.
These findings provide scientific evidence to support the use of COS leaves for hypoglycemic effects with an added advantage in slowing down protein glycation.
Literature
2.
go back to reference Meeprom A, Sompong W, Chan CB, Adisakwattana S. Isoferulic acid, a new anti-glycation agent, inhibits fructose-and glucose-mediated protein glycation in vitro. Molecules. 2013;18(6):6439–54.PubMedCrossRef Meeprom A, Sompong W, Chan CB, Adisakwattana S. Isoferulic acid, a new anti-glycation agent, inhibits fructose-and glucose-mediated protein glycation in vitro. Molecules. 2013;18(6):6439–54.PubMedCrossRef
3.
go back to reference Sadowska-Bartosz I, Bartosz G. Prevention of protein glycation by natural compounds. Molecules. 2015;20(2):3309–34.PubMedCrossRef Sadowska-Bartosz I, Bartosz G. Prevention of protein glycation by natural compounds. Molecules. 2015;20(2):3309–34.PubMedCrossRef
4.
go back to reference Aronson D. Cross-linking of glycated collagen in the pathogenesis of arterial and myocardial stiffening of aging and diabetes. J Hypertens. 2003;21(1):3–12.PubMedCrossRef Aronson D. Cross-linking of glycated collagen in the pathogenesis of arterial and myocardial stiffening of aging and diabetes. J Hypertens. 2003;21(1):3–12.PubMedCrossRef
5.
go back to reference Goh SY, Cooper ME. The role of advanced glycation end products in progression and complications of diabetes. J Clin Endocrinol Metab. 2008;93(4):1143–52.PubMedCrossRef Goh SY, Cooper ME. The role of advanced glycation end products in progression and complications of diabetes. J Clin Endocrinol Metab. 2008;93(4):1143–52.PubMedCrossRef
6.
8.
go back to reference Li J, Liu D, Sun L, Lu Y, Zhang Z. Advanced glycation end products and neurodegenerative diseases: mechanisms and perspective. J Neurol Sci. 2012;317(1):1–5.PubMedCrossRef Li J, Liu D, Sun L, Lu Y, Zhang Z. Advanced glycation end products and neurodegenerative diseases: mechanisms and perspective. J Neurol Sci. 2012;317(1):1–5.PubMedCrossRef
9.
go back to reference Sheard NF, Clark NG, Brand-Miller JC, Franz MJ, Pi-Sunyer FX, Mayer-Davis E, et al. Dietary carbohydrate (Amount and Type) in the prevention and management of diabetes a statement by the American diabetes association. Diabetes Care. 2004;27(9):2266–71.PubMedCrossRef Sheard NF, Clark NG, Brand-Miller JC, Franz MJ, Pi-Sunyer FX, Mayer-Davis E, et al. Dietary carbohydrate (Amount and Type) in the prevention and management of diabetes a statement by the American diabetes association. Diabetes Care. 2004;27(9):2266–71.PubMedCrossRef
10.
go back to reference Mahomoodally MF, Subratty AH, Gurib-Fakim A, Choudhary MI, Nahar Khan S. Traditional medicinal herbs and food plants have the potential to inhibit key carbohydrate hydrolyzing enzymes in vitro and reduce postprandial blood glucose peaks in vivo. The Scientific World J. 2012; doi:10.1100/2012/285284. Mahomoodally MF, Subratty AH, Gurib-Fakim A, Choudhary MI, Nahar Khan S. Traditional medicinal herbs and food plants have the potential to inhibit key carbohydrate hydrolyzing enzymes in vitro and reduce postprandial blood glucose peaks in vivo. The Scientific World J. 2012; doi:10.​1100/​2012/​285284.
11.
go back to reference Olaokun OO, McGaw LJ, Eloff JN, Naidoo V. Evaluation of the inhibition of carbohydrate hydrolysing enzymes, antioxidant activity and polyphenolic content of extracts of ten African Ficus species (Moraceae) used traditionally to treat diabetes. BMC Complementary and Alternative Medicine. 2013;13(1):94–103.PubMedPubMedCentralCrossRef Olaokun OO, McGaw LJ, Eloff JN, Naidoo V. Evaluation of the inhibition of carbohydrate hydrolysing enzymes, antioxidant activity and polyphenolic content of extracts of ten African Ficus species (Moraceae) used traditionally to treat diabetes. BMC Complementary and Alternative Medicine. 2013;13(1):94–103.PubMedPubMedCentralCrossRef
12.
go back to reference Sales PM, Souza PM, Simeoni LA, Magalhães PO, Silveira D. α-Amylase inhibitors: a review of raw material and isolated compounds from plant source. J Pharm Pharm Sci. 2012;15(1):141–83.PubMed Sales PM, Souza PM, Simeoni LA, Magalhães PO, Silveira D. α-Amylase inhibitors: a review of raw material and isolated compounds from plant source. J Pharm Pharm Sci. 2012;15(1):141–83.PubMed
13.
14.
go back to reference Grover JK, Yadav S, Vitas V. Medicinal plants of India with antidiabetic potential. J Ethnopharmacol. 2002;81(1):81–100.PubMedCrossRef Grover JK, Yadav S, Vitas V. Medicinal plants of India with antidiabetic potential. J Ethnopharmacol. 2002;81(1):81–100.PubMedCrossRef
15.
go back to reference Ediriweera ERHSS, Ratnasooriya WD. A review on herbs used in treatment of diabetes mellitus by Sri Lankan ayurvedic and traditional physicians. Ayu. 2009;30(4):373–91. Ediriweera ERHSS, Ratnasooriya WD. A review on herbs used in treatment of diabetes mellitus by Sri Lankan ayurvedic and traditional physicians. Ayu. 2009;30(4):373–91.
16.
go back to reference Jung M, Park M, Lee CH, Kang Y, Kang ES, Kim SK. Antidiabetic agents from medicinal plants. Curr Med Chem. 2006;13:1203–18.PubMedCrossRef Jung M, Park M, Lee CH, Kang Y, Kang ES, Kim SK. Antidiabetic agents from medicinal plants. Curr Med Chem. 2006;13:1203–18.PubMedCrossRef
17.
go back to reference Modak M, Dixit P, Londhe J, Ghaskadbi S, Devasagayam TPA. Indian herbs and herbal drugs used for the treatment of diabetes. J Clin Biochem Nutr. 2007;40(3):163–73.PubMedPubMedCentralCrossRef Modak M, Dixit P, Londhe J, Ghaskadbi S, Devasagayam TPA. Indian herbs and herbal drugs used for the treatment of diabetes. J Clin Biochem Nutr. 2007;40(3):163–73.PubMedPubMedCentralCrossRef
18.
go back to reference Rani AS, Sulakshana G, Patnaik S. Costus speciosus, An antidiabetic plant-review. Fons Scientia Journal of Pharmacy Research. 2012;1(3):52–3. Rani AS, Sulakshana G, Patnaik S. Costus speciosus, An antidiabetic plant-review. Fons Scientia Journal of Pharmacy Research. 2012;1(3):52–3.
19.
go back to reference Pawar VA, Pawar PR. Costus speciosus: an important medicinal plant. International Journal of Science and Research. 2014;3(7):28–33. Pawar VA, Pawar PR. Costus speciosus: an important medicinal plant. International Journal of Science and Research. 2014;3(7):28–33.
20.
go back to reference Samarakoon KW, Lakmal HC, Kim SY, Jeon YJ. Electron spin resonance spectroscopic measurement of antioxidant activity of organic solvent extracts derived from the methanolic extracts of Sri Lankan thebu leaves (Costus speciosus). Journal of the National Science Foundation of Sri Lanka. 2014;42(3):209–16.CrossRef Samarakoon KW, Lakmal HC, Kim SY, Jeon YJ. Electron spin resonance spectroscopic measurement of antioxidant activity of organic solvent extracts derived from the methanolic extracts of Sri Lankan thebu leaves (Costus speciosus). Journal of the National Science Foundation of Sri Lanka. 2014;42(3):209–16.CrossRef
21.
go back to reference Subasinghe HWAS, Hettihewa LM, Gunawardena S, Liyanage T. Methanol and water extracts of Costus speciosus (j.könig) sm. leaves reverse the high-fat-diet induced peripheral insulin resistance in experimental Wistar rats. International Research Journal of Pharmacy. 2014;5(2):44–9.CrossRef Subasinghe HWAS, Hettihewa LM, Gunawardena S, Liyanage T. Methanol and water extracts of Costus speciosus (j.könig) sm. leaves reverse the high-fat-diet induced peripheral insulin resistance in experimental Wistar rats. International Research Journal of Pharmacy. 2014;5(2):44–9.CrossRef
22.
go back to reference Subasinghe HWAS, Hettihewa LM, Gunawardena S, Liyanage T. Evaluation of aqueous extract of Costus speciosus(J.König)Sm.leaf for hepatic and renal toxicities: biochemical and histopathological perspectives. European Journal of Pharmaceutical and Medical Research. 2015;2(4):1–12. Subasinghe HWAS, Hettihewa LM, Gunawardena S, Liyanage T. Evaluation of aqueous extract of Costus speciosus(J.König)Sm.leaf for hepatic and renal toxicities: biochemical and histopathological perspectives. European Journal of Pharmaceutical and Medical Research. 2015;2(4):1–12.
23.
go back to reference Girgis SM, Shoman TMT, Kassem SM, Ezz El-Din A, Abdel-Aziz KB. Potential Protective effect of Costus speciosus or its nanoparticles on streptozotocin-induced genotoxicity and histopathological alterations in rats. Journal of Nutrition & Food Sciences. 2015;S3:002. doi:10.4172/2155-9600.1000S3002. Girgis SM, Shoman TMT, Kassem SM, Ezz El-Din A, Abdel-Aziz KB. Potential Protective effect of Costus speciosus or its nanoparticles on streptozotocin-induced genotoxicity and histopathological alterations in rats. Journal of Nutrition & Food Sciences. 2015;S3:002. doi:10.​4172/​2155-9600.​1000S3002.
24.
go back to reference Medagama AB, Bandara R, Abeysekera RA, Imbulpitiya B, Pushpakumari T. Use of complementary and alternative medicines (CAMs) among type 2 diabetes patients in Sri Lanka: a cross sectional survey. BMC Complementary and Alternative Medicine. 2014;14(1):374. doi:10.1186/1472-6882-14-374.PubMedPubMedCentralCrossRef Medagama AB, Bandara R, Abeysekera RA, Imbulpitiya B, Pushpakumari T. Use of complementary and alternative medicines (CAMs) among type 2 diabetes patients in Sri Lanka: a cross sectional survey. BMC Complementary and Alternative Medicine. 2014;14(1):374. doi:10.​1186/​1472-6882-14-374.PubMedPubMedCentralCrossRef
25.
go back to reference Vishalakshi DD, Asna U. Nutrient profile and antioxidant components of Costus Speciosus Sm, and Costus ignes Nak. Indian Journal of Natural Products and Resources. 2010;1:116–8. Vishalakshi DD, Asna U. Nutrient profile and antioxidant components of Costus Speciosus Sm, and Costus ignes Nak. Indian Journal of Natural Products and Resources. 2010;1:116–8.
26.
go back to reference Gavillán-Suárez J, Aguilar-Perez A, Rivera-Ortiz N, Rodríguez-Tirado K, Figueroa-Cuilan W, Morales-Santiago L, et al. Chemical profile and in vivo ypoglycemic effects of Syzygium jambos, Costus speciosus and Tapeinochilos ananassae plant extracts used as diabetes adjuvants in Puerto Rico. BMC Complementary and Alternative Medicine. 2015;15:244. doi:10.1186/s12906-015-0772-7. Gavillán-Suárez J, Aguilar-Perez A, Rivera-Ortiz N, Rodríguez-Tirado K, Figueroa-Cuilan W, Morales-Santiago L, et al. Chemical profile and in vivo ypoglycemic effects of Syzygium jambos, Costus speciosus and Tapeinochilos ananassae plant extracts used as diabetes adjuvants in Puerto Rico. BMC Complementary and Alternative Medicine. 2015;15:244. doi:10.​1186/​s12906-015-0772-7.
27.
go back to reference Revathy J, Abdullah SS, Kumar PS. Antidiabetic effect of Costus Speciosus rhizome extract in alloxan induced albino rats. Journal of Chemistry and Biochemistry. 2014;2(1):13–22. Revathy J, Abdullah SS, Kumar PS. Antidiabetic effect of Costus Speciosus rhizome extract in alloxan induced albino rats. Journal of Chemistry and Biochemistry. 2014;2(1):13–22.
28.
go back to reference Ali HA, Almaghrabi OA, Afifi ME. Molecular mechanisms of anti-hyperglycemic effects of Costus speciosus extract in streptozotocin-induced diabetic rats. Saudi Medical Journal. 2014;35(12):1501–6.PubMedPubMedCentral Ali HA, Almaghrabi OA, Afifi ME. Molecular mechanisms of anti-hyperglycemic effects of Costus speciosus extract in streptozotocin-induced diabetic rats. Saudi Medical Journal. 2014;35(12):1501–6.PubMedPubMedCentral
29.
go back to reference Bavarva JH, Narasimhacharya AVRL. Antihyperglycemic and hypolipidemic effects of Costus speciosus in alloxan induced diabetic rats. Phytother Res. 2008;22(5):620–6.PubMedCrossRef Bavarva JH, Narasimhacharya AVRL. Antihyperglycemic and hypolipidemic effects of Costus speciosus in alloxan induced diabetic rats. Phytother Res. 2008;22(5):620–6.PubMedCrossRef
30.
go back to reference Rajesh MS, Harish MS, Sathyaprakash RJ, Shetty AR, Shivananda TN. “Antihyperglycemic activity of the various extracts of Costus speciosus rhizomes”. Jof Natural Remedies. 2009;9(2):235–41. Rajesh MS, Harish MS, Sathyaprakash RJ, Shetty AR, Shivananda TN. “Antihyperglycemic activity of the various extracts of Costus speciosus rhizomes”. Jof Natural Remedies. 2009;9(2):235–41.
31.
go back to reference Poongunran J, Perera HKI, Fernando WIT, Jayasinghe L, Sivakanesan R. α-Glucosidase and α-amylase inhibitory activities of nine Sri Lankan antidiabetic plants. British J Pharmaceutical Res. 2015;7(5):365–74.CrossRef Poongunran J, Perera HKI, Fernando WIT, Jayasinghe L, Sivakanesan R. α-Glucosidase and α-amylase inhibitory activities of nine Sri Lankan antidiabetic plants. British J Pharmaceutical Res. 2015;7(5):365–74.CrossRef
32.
go back to reference Geethalakshmi R, Sarada DVL, Marimuthu P, Ramasamy K. α-Amylase inhibitory activity of Trianthema decandra L. Int J Biotechnol Biochemistry. 2010;6(3):369–76. Geethalakshmi R, Sarada DVL, Marimuthu P, Ramasamy K. α-Amylase inhibitory activity of Trianthema decandra L. Int J Biotechnol Biochemistry. 2010;6(3):369–76.
33.
go back to reference Bernfeld P. Amylases alpha and beta, in Methods in enzymlogy, Volume 1 (Academic Press, New York). Methods Enzymol. 1955;1:149–58.CrossRef Bernfeld P. Amylases alpha and beta, in Methods in enzymlogy, Volume 1 (Academic Press, New York). Methods Enzymol. 1955;1:149–58.CrossRef
34.
go back to reference Elya B, Basah K, Munim A, Yuliastuti W, Bangun A, Septiana EK. Screening of α-glucosidase inhibitory activity from some plants of Apocynaceae, Clusiaceae, Euphorbiaceae, and Rubiaceae. Journal of Biomedicine and Biotechnology. 2012; doi:10.1155/2012/281078. Elya B, Basah K, Munim A, Yuliastuti W, Bangun A, Septiana EK. Screening of α-glucosidase inhibitory activity from some plants of Apocynaceae, Clusiaceae, Euphorbiaceae, and Rubiaceae. Journal of Biomedicine and Biotechnology. 2012; doi:10.​1155/​2012/​281078.
35.
go back to reference Wijetunge DCR, Perera HKI. A novel in vitro method to detect inhibitors of protein glycation. Asian Journal of Medical Sciences. 2014;5(3):15–21. Wijetunge DCR, Perera HKI. A novel in vitro method to detect inhibitors of protein glycation. Asian Journal of Medical Sciences. 2014;5(3):15–21.
36.
go back to reference Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259):680–5.PubMedCrossRef Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259):680–5.PubMedCrossRef
37.
go back to reference Perera HKI, Ranasinghe HASK. A simple method to detect plant based inhibitors of glycation induced protein cross-linking. Asian Journal of Medical Sciences. 2015;6(1):28–33. Perera HKI, Ranasinghe HASK. A simple method to detect plant based inhibitors of glycation induced protein cross-linking. Asian Journal of Medical Sciences. 2015;6(1):28–33.
38.
go back to reference Dasgupta B, Pandey VB. A new Indian source of diosgenin (Costus speciosus). Experientia. 1970;26(5):475–6.PubMedCrossRef Dasgupta B, Pandey VB. A new Indian source of diosgenin (Costus speciosus). Experientia. 1970;26(5):475–6.PubMedCrossRef
39.
go back to reference Srivastava S, Singh P, Mishra G, Jha KK, Khosa RL. Costus speciosus (Keukand): a review. Der Pharmacia Sinica. 2011;2(1):118–28. Srivastava S, Singh P, Mishra G, Jha KK, Khosa RL. Costus speciosus (Keukand): a review. Der Pharmacia Sinica. 2011;2(1):118–28.
40.
go back to reference Naidu PB, Ponmurugan P, Begum MS, Mohan K, Meriga B, RavindarNaik R, et al. Diosgenin reorganises hyperglycaemia and distorted tissue lipid profile in high‐fat diet-streptozotocin‐induced diabetic rats. J Sci Food Agric. 2015;95(15):3177–82.PubMedCrossRef Naidu PB, Ponmurugan P, Begum MS, Mohan K, Meriga B, RavindarNaik R, et al. Diosgenin reorganises hyperglycaemia and distorted tissue lipid profile in high‐fat diet-streptozotocin‐induced diabetic rats. J Sci Food Agric. 2015;95(15):3177–82.PubMedCrossRef
41.
go back to reference Eliza J, Daisy P, Ignacimuthu S, Duraipandiyan V. Antidiabetic and antilipidemic effect of eremanthin from Costus speciosus (Koen.) Sm., in STZ-induced diabetic rats. Chem Biol Interact. 2009;182(1):67–72.PubMedCrossRef Eliza J, Daisy P, Ignacimuthu S, Duraipandiyan V. Antidiabetic and antilipidemic effect of eremanthin from Costus speciosus (Koen.) Sm., in STZ-induced diabetic rats. Chem Biol Interact. 2009;182(1):67–72.PubMedCrossRef
42.
go back to reference Eliza J, Daisy P, Ignacimuthu S, Duraipandiyan V. Normoglycemic and hypolipidemic effect of costunolide isolated from Costus speciosus (Koen ex. Retz.) Sm. in streptozotocin-induced diabetic rats. Chem Biol Interact. 2009;79(2):329–34.CrossRef Eliza J, Daisy P, Ignacimuthu S, Duraipandiyan V. Normoglycemic and hypolipidemic effect of costunolide isolated from Costus speciosus (Koen ex. Retz.) Sm. in streptozotocin-induced diabetic rats. Chem Biol Interact. 2009;79(2):329–34.CrossRef
43.
go back to reference Mosihuzzaman M, Nahar N, Ali L, Rokeya B, Khan AK, Nur EAM, et al. Hypoglycemic effects of three plants from eastern Himalayan belt. Diabetes Research. 1994;26(3):127–38.PubMed Mosihuzzaman M, Nahar N, Ali L, Rokeya B, Khan AK, Nur EAM, et al. Hypoglycemic effects of three plants from eastern Himalayan belt. Diabetes Research. 1994;26(3):127–38.PubMed
44.
go back to reference Jothivel NPS, Appachi M, Singaravel S, Rasilingam D, Deivasigamani K, Thangavel S. Anti-diabetic activity of methanol leaf extract of Costus pictus D. Don in alloxan-induced diabetic rats. Journal of Health Sciences. 2007;53(6):655–63.CrossRef Jothivel NPS, Appachi M, Singaravel S, Rasilingam D, Deivasigamani K, Thangavel S. Anti-diabetic activity of methanol leaf extract of Costus pictus D. Don in alloxan-induced diabetic rats. Journal of Health Sciences. 2007;53(6):655–63.CrossRef
45.
go back to reference Devi VD, Asna U. Possible Hypoglycemic Attributes of Morus indica 1. and Costus speciosus: An in vitro Study. Malaysian Journal of Nutrition. 2015;21(1):83–91. Devi VD, Asna U. Possible Hypoglycemic Attributes of Morus indica 1. and Costus speciosus: An in vitro Study. Malaysian Journal of Nutrition. 2015;21(1):83–91.
46.
go back to reference Dearlove RP, Greenspan P, Hartle DK, Swanson RB, Hargrove JL. Inhibition of protein glycation by extracts of culinary herbs and spices. J Med Food. 2008;11(2):275–81.PubMedCrossRef Dearlove RP, Greenspan P, Hartle DK, Swanson RB, Hargrove JL. Inhibition of protein glycation by extracts of culinary herbs and spices. J Med Food. 2008;11(2):275–81.PubMedCrossRef
47.
go back to reference Eliza J, Daisy P, Ignacimuthu S. Antioxidant activity of costunolide and eremanthin isolated from Costus speciosus (Koen ex. Retz) Sm. Chem Biol Interact. 2010;188(3):467–72.PubMedCrossRef Eliza J, Daisy P, Ignacimuthu S. Antioxidant activity of costunolide and eremanthin isolated from Costus speciosus (Koen ex. Retz) Sm. Chem Biol Interact. 2010;188(3):467–72.PubMedCrossRef
48.
go back to reference Majumdar M, Parihar PS. Antibacterial, anti-oxidant and antiglycatbion potential of Costus pictus from southern region, India. Asian J Plant Sci Res. 2012;2(2):95–101. Majumdar M, Parihar PS. Antibacterial, anti-oxidant and antiglycatbion potential of Costus pictus from southern region, India. Asian J Plant Sci Res. 2012;2(2):95–101.
49.
go back to reference Nair SV, Hettihewa M, Rupasinghe HP. Apoptotic and inhibitory effects on cell proliferation of hepatocellular carcinoma HepG2 cells by methanol leaf extract of Costus speciosus. BioMed Research International. 2014; doi:10.1155/2014/637098. Nair SV, Hettihewa M, Rupasinghe HP. Apoptotic and inhibitory effects on cell proliferation of hepatocellular carcinoma HepG2 cells by methanol leaf extract of Costus speciosus. BioMed Research International. 2014; doi:10.​1155/​2014/​637098.
Metadata
Title
α-glucosidase and glycation inhibitory effects of costus speciosus leaves
Authors
Handunge Kumudu Irani Perera
Walgama Kankanamlage Vindhya Kalpani Premadasa
Jeyakumaran Poongunran
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2016
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-015-0982-z

Other articles of this Issue 1/2016

BMC Complementary Medicine and Therapies 1/2016 Go to the issue