Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2015

Open Access 01-12-2015 | Research article

Inhibitory effect of herbal medicines and their trapping abilities against methylglyoxal-derived advanced glycation end-products

Authors: Weerachat Sompong, Sirichai Adisakwattana

Published in: BMC Complementary Medicine and Therapies | Issue 1/2015

Login to get access

Abstract

Background

Methylglyoxal (MG) is one of the most reactive glycating agents, which result the formation of advanced glycation end-products (AGEs) that have been implicated in the progression of age-related diseases. Inhibition of MG-induced AGE formation is the imperative approach for alleviating diabetic complications. The objective of this study was to investigate the MG-trapping abilities of herbal medicines and their inhibitory activities on the formation of MG-derived AGEs.

Methods

The aqueous extract of herbal medicines was measured for the content of total phenolic compounds and the antioxidant activity by Folin-Ciocalteu assay and the 1,1-diphenyl 2-picrylhydrazyl (DPPH) radical scavenging activity, respectively. The extracts were investigated the MG-trapping ability by high performance liquid chromatography (HPLC). The extracts were incubated with BSA and MG at 37 °C for 1 day. The formation of MG-derived AGEs was measured.

Results

Total phenolic compounds of eleven herbal medicines showed marked variations, ranging from 12.16 to 272.36 mg gallic acid equivalents/g extract. All extracts (1 mg/mL) markedly exhibited the DPPH radical scavenging activity (0.31–73.52 %) and the MG-trapping abilities (13.97–58.97 %). In addition, they also inhibited the formation of MG-derived AGEs by 4.01–79.98 %. The results demonstrated that Rhinacanthus nasutus, Syzygium aromaticum, and Phyllanthus amarus were the potent inhibitors against the formation of MG-derived AGEs. The positive correlations between the contents of phenolics and % MG trapping (r = 0.912, p < 0.01) and % inhibition of MG-derived AGEs (r = 0.716, p < 0.01) were observed in the study. Furthermore, there was a moderate positive correlation between % MG trapping and % inhibition of MG-derived AGEs (r =0.584, p < 0.01).

Conclusions

Rhinacanthus nasutus, Syzygium aromaticum, and Phyllanthus amarus could reduce the formation of MG-derived AGEs through their MG-trapping abilities. These findings are relevant for focusing on potential herbal medicines to prevent or ameliorate AGE-mediated diabetic complications.
Literature
1.
go back to reference Goh SG, Rusli BN, Khalid BA. Evolution of diabetes management in the 21st century: the contribution of quality of life measurement in Asians. Asia Pac J Clin Nutr. 2015;24:190–8.PubMed Goh SG, Rusli BN, Khalid BA. Evolution of diabetes management in the 21st century: the contribution of quality of life measurement in Asians. Asia Pac J Clin Nutr. 2015;24:190–8.PubMed
2.
go back to reference Poulsen MW, Hedegaard RV, Andersen JM, de Courten B, Bügel S, Nielsen J, et al. Advanced glycation endproducts in food and their effects on health. Food Chem Toxicol. 2013;60:10–37.CrossRefPubMed Poulsen MW, Hedegaard RV, Andersen JM, de Courten B, Bügel S, Nielsen J, et al. Advanced glycation endproducts in food and their effects on health. Food Chem Toxicol. 2013;60:10–37.CrossRefPubMed
4.
go back to reference Nemet I, Varga-Defterdarović L, Turk Z. Methylglyoxal in food and living organisms. Mol Nutr Food Res. 2006;50:1105–17.CrossRefPubMed Nemet I, Varga-Defterdarović L, Turk Z. Methylglyoxal in food and living organisms. Mol Nutr Food Res. 2006;50:1105–17.CrossRefPubMed
5.
go back to reference Odani H, Shinzato T, Matsumoto Y, Usami J, Maeda K. Increase in three alpha, beta-dicarbonyl compound levels in human uremic plasma: specific in vivo determination of intermediates in advanced Maillard reaction. Biochem Biophys Res Commun. 1999;256:89–93.CrossRefPubMed Odani H, Shinzato T, Matsumoto Y, Usami J, Maeda K. Increase in three alpha, beta-dicarbonyl compound levels in human uremic plasma: specific in vivo determination of intermediates in advanced Maillard reaction. Biochem Biophys Res Commun. 1999;256:89–93.CrossRefPubMed
6.
go back to reference Lapolla A, Flamini R, Dalla Vedova A, Senesi A, Reitano R, Fedele D, et al. Glyoxal and methylglyoxal levels in diabetic patients: quantitative determination by a new GC/MS method. Clin Chem Lab Med. 2003;41:1166–73.CrossRefPubMed Lapolla A, Flamini R, Dalla Vedova A, Senesi A, Reitano R, Fedele D, et al. Glyoxal and methylglyoxal levels in diabetic patients: quantitative determination by a new GC/MS method. Clin Chem Lab Med. 2003;41:1166–73.CrossRefPubMed
7.
go back to reference Price CL, Knight SC. Advanced glycation: a novel outlook on atherosclerosis. Curr Pharm Des. 2007;13:3681–7.CrossRefPubMed Price CL, Knight SC. Advanced glycation: a novel outlook on atherosclerosis. Curr Pharm Des. 2007;13:3681–7.CrossRefPubMed
8.
go back to reference Richard JP. Mechanism for the formation of methylglyoxal from triosephosphates. Biochem Soc Trans. 1993;21:549–53.CrossRefPubMed Richard JP. Mechanism for the formation of methylglyoxal from triosephosphates. Biochem Soc Trans. 1993;21:549–53.CrossRefPubMed
9.
go back to reference Guerin-Dubourg A, Catan A, Bourdon E, Rondeau P. Structural modifications of human albumin in diabetes. Diabetes Metab. 2012;38:171–8.CrossRefPubMed Guerin-Dubourg A, Catan A, Bourdon E, Rondeau P. Structural modifications of human albumin in diabetes. Diabetes Metab. 2012;38:171–8.CrossRefPubMed
10.
go back to reference Kang JH. Oxidative damage of DNA induced by methylglyoxal in vitro. Toxicol Lett. 2003;145:181–7.CrossRefPubMed Kang JH. Oxidative damage of DNA induced by methylglyoxal in vitro. Toxicol Lett. 2003;145:181–7.CrossRefPubMed
11.
go back to reference Freedman BI, Wuerth JP, Cartwright K, Bain RP, Dippe S, Hershon K, et al. Design and baseline characteristics for the aminoguanidine Clinical Trial in Overt Type 2 Diabetic Nephropathy (ACTION II). Control Clin Trials. 1999;20:493–510.CrossRefPubMed Freedman BI, Wuerth JP, Cartwright K, Bain RP, Dippe S, Hershon K, et al. Design and baseline characteristics for the aminoguanidine Clinical Trial in Overt Type 2 Diabetic Nephropathy (ACTION II). Control Clin Trials. 1999;20:493–510.CrossRefPubMed
12.
go back to reference Elosta A, Ghous T, Ahmed N. Natural products as anti-glycation agents: possible therapeutic potential for diabetic complications. Curr Diabetes Rev. 2012;8:92–108.CrossRefPubMed Elosta A, Ghous T, Ahmed N. Natural products as anti-glycation agents: possible therapeutic potential for diabetic complications. Curr Diabetes Rev. 2012;8:92–108.CrossRefPubMed
13.
go back to reference Sham TT, Chan CO, Wang YH, Yang JM, Mok DK, Chan SW. A review on the traditional Chinese medicinal herbs and formulae with hypolipidemic effect. Biomed Res Int. 2014;2014:925302.PubMedCentralCrossRefPubMed Sham TT, Chan CO, Wang YH, Yang JM, Mok DK, Chan SW. A review on the traditional Chinese medicinal herbs and formulae with hypolipidemic effect. Biomed Res Int. 2014;2014:925302.PubMedCentralCrossRefPubMed
14.
go back to reference Parikh NH, Parikh PK, Kothari C. Indigenous plant medicines for health care: treatment of diabetes mellitus and hyperlipidemia. Chin J Nat Med. 2014;12:335–44.PubMed Parikh NH, Parikh PK, Kothari C. Indigenous plant medicines for health care: treatment of diabetes mellitus and hyperlipidemia. Chin J Nat Med. 2014;12:335–44.PubMed
15.
go back to reference Falcão HS, Mariath IR, Diniz MF, Batista LM, Barbosa-Filho JM. Plants of the American continent with antiulcer activity. Phytomedicine. 2008;15:132–46.CrossRefPubMed Falcão HS, Mariath IR, Diniz MF, Batista LM, Barbosa-Filho JM. Plants of the American continent with antiulcer activity. Phytomedicine. 2008;15:132–46.CrossRefPubMed
16.
go back to reference Recio MC, Andujar I, Rios JL. Anti-inflammatory agents from plants: progress and potential. Curr Med Chem. 2012;19:2088–103.CrossRefPubMed Recio MC, Andujar I, Rios JL. Anti-inflammatory agents from plants: progress and potential. Curr Med Chem. 2012;19:2088–103.CrossRefPubMed
17.
go back to reference Benalla W, Bellahcen S, Bnouham M. Antidiabetic medicinal plants as a source of alpha glucosidase inhibitors. Curr Diabetes Rev. 2010;6:247–54.CrossRefPubMed Benalla W, Bellahcen S, Bnouham M. Antidiabetic medicinal plants as a source of alpha glucosidase inhibitors. Curr Diabetes Rev. 2010;6:247–54.CrossRefPubMed
18.
go back to reference Chusak C, Thilavech T, Adisakwattana S. Consumption of Mesona chinensis attenuates postprandial glucose and improves antioxidant status induced by a high carbohydrate meal in overweight subjects. Am J Chin Med. 2014;42:315–36.CrossRefPubMed Chusak C, Thilavech T, Adisakwattana S. Consumption of Mesona chinensis attenuates postprandial glucose and improves antioxidant status induced by a high carbohydrate meal in overweight subjects. Am J Chin Med. 2014;42:315–36.CrossRefPubMed
19.
go back to reference Adisakwattana S, Jiphimai P, Prutanopajai P, Chanathong B, Sapwarobol S, Ariyapitipan T. Evaluation of alpha-glucosidase, alpha-amylase and protein glycation inhibitory activities of edible plants. Int J Food Sci Nutr. 2010;61:295–305. Adisakwattana S, Jiphimai P, Prutanopajai P, Chanathong B, Sapwarobol S, Ariyapitipan T. Evaluation of alpha-glucosidase, alpha-amylase and protein glycation inhibitory activities of edible plants. Int J Food Sci Nutr. 2010;61:295–305.
20.
go back to reference Hou G-Y, Wang L, Liu S, Songa F-R, Liu, Z-Q. Inhibitory effect of eleven herbal extracts on advanced glycation end-products formation and aldose reductase activity. Chinese Chem Lett. 2014;25:1039-43. Hou G-Y, Wang L, Liu S, Songa F-R, Liu, Z-Q. Inhibitory effect of eleven herbal extracts on advanced glycation end-products formation and aldose reductase activity. Chinese Chem Lett. 2014;25:1039-43.
21.
go back to reference Varghese GK, Bose LV, Habtemariam S. Antidiabetic components of Cassia alata leaves: identification through α-glucosidase inhibition studies. Pharm Biol. 2013;51:345–9.CrossRefPubMed Varghese GK, Bose LV, Habtemariam S. Antidiabetic components of Cassia alata leaves: identification through α-glucosidase inhibition studies. Pharm Biol. 2013;51:345–9.CrossRefPubMed
22.
go back to reference Arsiningtyas IS, Gunawan-Puteri MD, Kato E, Kawabata J. Identification of α-glucosidase inhibitors from the leaves of Pluchea indica (L.) Less., a traditional Indonesian herb: promotion of natural product use. Nat Prod Res. 2014;28:1350–3.CrossRefPubMed Arsiningtyas IS, Gunawan-Puteri MD, Kato E, Kawabata J. Identification of α-glucosidase inhibitors from the leaves of Pluchea indica (L.) Less., a traditional Indonesian herb: promotion of natural product use. Nat Prod Res. 2014;28:1350–3.CrossRefPubMed
23.
go back to reference Lekshmi RK, Divya BT, Mini S. Cissus quadrangularis extract attenuates hyperglycaemia-mediated oxidative stress in streptozotocin-induced diabetic rats. Redox Rep. 2014;19:214–20.CrossRefPubMed Lekshmi RK, Divya BT, Mini S. Cissus quadrangularis extract attenuates hyperglycaemia-mediated oxidative stress in streptozotocin-induced diabetic rats. Redox Rep. 2014;19:214–20.CrossRefPubMed
24.
go back to reference Aritajat S, Wutteerapol S, Saenphet K. Anti-diabetic effect of Thunbergia laurifolia Linn. aqueous extract. Southeast Asian J Trop Med Public Health. 2004;35 Suppl 2:53–8.PubMed Aritajat S, Wutteerapol S, Saenphet K. Anti-diabetic effect of Thunbergia laurifolia Linn. aqueous extract. Southeast Asian J Trop Med Public Health. 2004;35 Suppl 2:53–8.PubMed
25.
go back to reference Babu TH, Tiwari AK, Rao VR, Ali AZ, Rao JM, Babu KS. A new prenylated isoflavone from Derris scandens Benth. J Asian Nat Prod Res. 2010;12:634–8.CrossRefPubMed Babu TH, Tiwari AK, Rao VR, Ali AZ, Rao JM, Babu KS. A new prenylated isoflavone from Derris scandens Benth. J Asian Nat Prod Res. 2010;12:634–8.CrossRefPubMed
26.
go back to reference Adeneye AA. The leaf and seed aqueous extract of Phyllanthus amarus improves insulin resistance diabetes in experimental animal studies. J Ethnopharmacol. 2012;144:705–11.CrossRefPubMed Adeneye AA. The leaf and seed aqueous extract of Phyllanthus amarus improves insulin resistance diabetes in experimental animal studies. J Ethnopharmacol. 2012;144:705–11.CrossRefPubMed
27.
go back to reference Tamil IG, Dineshkumar B, Nandhakumar M, Senthilkumar M, Mitra A. In vitro study on α-amylase inhibitory activity of an Indian medicinal plant, Phyllanthus amarus. Indian J Pharmacol. 2010;42:280–2.PubMedCentralCrossRefPubMed Tamil IG, Dineshkumar B, Nandhakumar M, Senthilkumar M, Mitra A. In vitro study on α-amylase inhibitory activity of an Indian medicinal plant, Phyllanthus amarus. Indian J Pharmacol. 2010;42:280–2.PubMedCentralCrossRefPubMed
28.
go back to reference Visweswara Rao P, Madhavi K, Dhananjaya Naidu M, Gan SH. Rhinacanthus nasutus ameliorates cytosolic and mitochondrial enzyme levels in streptozotocin-induced diabetic rats. Evid Based Complement Alternat Med. 2013;2013:486047.PubMedCentralPubMed Visweswara Rao P, Madhavi K, Dhananjaya Naidu M, Gan SH. Rhinacanthus nasutus ameliorates cytosolic and mitochondrial enzyme levels in streptozotocin-induced diabetic rats. Evid Based Complement Alternat Med. 2013;2013:486047.PubMedCentralPubMed
29.
go back to reference Mäkynen K, Jitsaardkul S, Tachasamran P, Sakai N, Puranachoti S, Nirojsinlapachai N, et al. Cultivar variations in antioxidant and antihyperlipidemic properties of pomelo pulp (Citrus grandis [L.] Osbeck) in Thailand. Food Chem. 2013;139:735–43.CrossRefPubMed Mäkynen K, Jitsaardkul S, Tachasamran P, Sakai N, Puranachoti S, Nirojsinlapachai N, et al. Cultivar variations in antioxidant and antihyperlipidemic properties of pomelo pulp (Citrus grandis [L.] Osbeck) in Thailand. Food Chem. 2013;139:735–43.CrossRefPubMed
30.
go back to reference Sang S, Shao X, Bai N, Lo CY, Yang CS, Ho CT. Tea polyphenol (−)-epigallocatechin-3-gallate: a new trapping agent of reactive dicarbonyl species. Chem Res Toxicol. 2007;20:1862–70.CrossRefPubMed Sang S, Shao X, Bai N, Lo CY, Yang CS, Ho CT. Tea polyphenol (−)-epigallocatechin-3-gallate: a new trapping agent of reactive dicarbonyl species. Chem Res Toxicol. 2007;20:1862–70.CrossRefPubMed
31.
go back to reference Sadowska-Bartosz I, Galiniak S, Bartosz G. Kinetics of glycoxidation of bovine serum albumin by methylglyoxal and glyoxal and its prevention by various compounds. Molecules. 2014;19:4880–96.CrossRefPubMed Sadowska-Bartosz I, Galiniak S, Bartosz G. Kinetics of glycoxidation of bovine serum albumin by methylglyoxal and glyoxal and its prevention by various compounds. Molecules. 2014;19:4880–96.CrossRefPubMed
32.
go back to reference Thornalley PJ, Battah S, Ahmed N, Karachalias N, Agalou S, Babaei-Jadidi R, et al. Quantitative screening of advanced glycation endproducts in cellular and extracellular proteins by tandem mass spectrometry. Biochem J. 2003;375(Pt 3):581–92.PubMedCentralCrossRefPubMed Thornalley PJ, Battah S, Ahmed N, Karachalias N, Agalou S, Babaei-Jadidi R, et al. Quantitative screening of advanced glycation endproducts in cellular and extracellular proteins by tandem mass spectrometry. Biochem J. 2003;375(Pt 3):581–92.PubMedCentralCrossRefPubMed
33.
go back to reference Berlanga J, Cibrian D, Guillén I, Freyre F, Alba JS, Lopez-Saura P, et al. Methylglyoxal administration induces diabetes-like microvascular changes and perturbs the healing process of cutaneous wounds. Clin Sci (Lond). 2005;109:83–95.CrossRef Berlanga J, Cibrian D, Guillén I, Freyre F, Alba JS, Lopez-Saura P, et al. Methylglyoxal administration induces diabetes-like microvascular changes and perturbs the healing process of cutaneous wounds. Clin Sci (Lond). 2005;109:83–95.CrossRef
34.
go back to reference Stopper H, Schinzel R, Sebekova K, Heidland A. Genotoxicity of advanced glycation end products in mammalian cells. Cancer Lett. 2003;190:151–6.CrossRefPubMed Stopper H, Schinzel R, Sebekova K, Heidland A. Genotoxicity of advanced glycation end products in mammalian cells. Cancer Lett. 2003;190:151–6.CrossRefPubMed
35.
go back to reference Bourajjaj M, Stehouwer CD, van Hinsbergh VW, Schalkwijk CG. Role of methylglyoxal adducts in the development of vascular complications in diabetes mellitus. Biochem Soc Trans. 2003;31(Pt 6):1400–2.CrossRefPubMed Bourajjaj M, Stehouwer CD, van Hinsbergh VW, Schalkwijk CG. Role of methylglyoxal adducts in the development of vascular complications in diabetes mellitus. Biochem Soc Trans. 2003;31(Pt 6):1400–2.CrossRefPubMed
36.
go back to reference Mesías M, Navarro M, Gökmen V, Morales FJ. Antiglycative effect of fruit and vegetable seed extracts: inhibition of AGE formation and carbonyl-trapping abilities. J Sci Food Agric. 2013;93:2037–44.CrossRefPubMed Mesías M, Navarro M, Gökmen V, Morales FJ. Antiglycative effect of fruit and vegetable seed extracts: inhibition of AGE formation and carbonyl-trapping abilities. J Sci Food Agric. 2013;93:2037–44.CrossRefPubMed
37.
go back to reference Wang W, Yagiz Y, Buran TJ, do Nascimento Nunes C, Gu W. Phytochemicals from berries and grapes inhibited the formation of advanced glycation end‐products by scavenging reactive carbonyls. Food Int Res. 2011;44:2666–73.CrossRef Wang W, Yagiz Y, Buran TJ, do Nascimento Nunes C, Gu W. Phytochemicals from berries and grapes inhibited the formation of advanced glycation end‐products by scavenging reactive carbonyls. Food Int Res. 2011;44:2666–73.CrossRef
38.
go back to reference Yoon SR, Shim SM. Inhibitory effect of polyphenols in Houttuynia cordata on advanced glycation end-products (AGEs) by trapping methylglyoxal. LWT-Food Sci Technol. 2015;61:158–63.CrossRef Yoon SR, Shim SM. Inhibitory effect of polyphenols in Houttuynia cordata on advanced glycation end-products (AGEs) by trapping methylglyoxal. LWT-Food Sci Technol. 2015;61:158–63.CrossRef
39.
go back to reference Peng X, Cheng KW, Ma J, Chen B, Ho CT, Lo C, et al. Cinnamon bark proanthocyanidins as reactive carbonyl scavengers to prevent the formation of advanced glycation end-products. J Agric Food Chem. 2008;56:1907–11.CrossRefPubMed Peng X, Cheng KW, Ma J, Chen B, Ho CT, Lo C, et al. Cinnamon bark proanthocyanidins as reactive carbonyl scavengers to prevent the formation of advanced glycation end-products. J Agric Food Chem. 2008;56:1907–11.CrossRefPubMed
40.
go back to reference Lv L, Shao X, Wang L, Huang D, Ho CT, Sang S. Stilbene glucoside from Polygonum multiflorum Thunb.: a novel natural inhibitor of advanced glycation end product formation by trapping of methylglyoxal. J Agric Food Chem. 2010;58(4):2239–45.CrossRefPubMed Lv L, Shao X, Wang L, Huang D, Ho CT, Sang S. Stilbene glucoside from Polygonum multiflorum Thunb.: a novel natural inhibitor of advanced glycation end product formation by trapping of methylglyoxal. J Agric Food Chem. 2010;58(4):2239–45.CrossRefPubMed
41.
go back to reference Shao X, Bai N, He K, Ho CT, Yang CS, Sang S. Apple polyphenols, phloretin and phloridzin: new trapping agents of reactive dicarbonyl species. Chem Res Toxicol. 2008;21:2042–50.CrossRefPubMed Shao X, Bai N, He K, Ho CT, Yang CS, Sang S. Apple polyphenols, phloretin and phloridzin: new trapping agents of reactive dicarbonyl species. Chem Res Toxicol. 2008;21:2042–50.CrossRefPubMed
42.
go back to reference Shao X, Chen H, Zhu Y, Sedighi R, Ho CT, Sang S. Essential Structural Requirements and Additive Effects for Flavonoids to Scavenge Methylglyoxal. J Agric Food Chem. 2014;62:3202–10.CrossRef Shao X, Chen H, Zhu Y, Sedighi R, Ho CT, Sang S. Essential Structural Requirements and Additive Effects for Flavonoids to Scavenge Methylglyoxal. J Agric Food Chem. 2014;62:3202–10.CrossRef
43.
go back to reference Sun Z, Peng X, Liu J, Fan KW, Wang M, Chen F. Inhibitory effects of microalgal extracts on the formation of advanced glycation end-products (AGEs). Food Chem. 2010;120:261–7.CrossRef Sun Z, Peng X, Liu J, Fan KW, Wang M, Chen F. Inhibitory effects of microalgal extracts on the formation of advanced glycation end-products (AGEs). Food Chem. 2010;120:261–7.CrossRef
44.
go back to reference Povichit N, Phrutivorapongkul A, Suttajit M, Chaiyasut CC, Leelapornpisid P. Phenolic content and in vitro inhibitory effects on oxidation and protein glycation of some Thai medicinal plants. Pak J Pharmaceut Sci. 2010;23:403–8. Povichit N, Phrutivorapongkul A, Suttajit M, Chaiyasut CC, Leelapornpisid P. Phenolic content and in vitro inhibitory effects on oxidation and protein glycation of some Thai medicinal plants. Pak J Pharmaceut Sci. 2010;23:403–8.
45.
46.
go back to reference Suantawee T, Wesarachanon K, Anantsuphasak K, Daenphetploy T, Thien-Ngern S, Thilavech T, et al. Protein glycation inhibitory activity and antioxidant capacity of clove extract. J Food Sci Technol. 2015;52:3843–50.PubMed Suantawee T, Wesarachanon K, Anantsuphasak K, Daenphetploy T, Thien-Ngern S, Thilavech T, et al. Protein glycation inhibitory activity and antioxidant capacity of clove extract. J Food Sci Technol. 2015;52:3843–50.PubMed
47.
go back to reference Micali S, Sighinolfi MC, Celia A, De Stefani S, Grande M, Cicero AF, et al. Can Phyllanthus niruri affect the efficacy of extracorporeal shock wave lithotripsy for renal stones? A randomized, prospective, long-term study. J Urol. 2006;176:1020–2.CrossRefPubMed Micali S, Sighinolfi MC, Celia A, De Stefani S, Grande M, Cicero AF, et al. Can Phyllanthus niruri affect the efficacy of extracorporeal shock wave lithotripsy for renal stones? A randomized, prospective, long-term study. J Urol. 2006;176:1020–2.CrossRefPubMed
48.
go back to reference Adedapo AA, Ofuegbe SO. The evaluation of the hypoglycemic effect of soft drink leaf extract of Phyllanthus amarus (Euphorbiaceae) in rats. J Basic Clin Physiol Pharmacol. 2014;25(1):47–57.CrossRefPubMed Adedapo AA, Ofuegbe SO. The evaluation of the hypoglycemic effect of soft drink leaf extract of Phyllanthus amarus (Euphorbiaceae) in rats. J Basic Clin Physiol Pharmacol. 2014;25(1):47–57.CrossRefPubMed
49.
go back to reference Kodama O, Ichikawa H, Akatsuka T, Santisopasri V, Kato A, Hayashi Y. Isolation and identification of an antifungal naphthopyran derivative from Rhinacanthus nasutus. J Nat Prod. 1993;56:292–4.CrossRefPubMed Kodama O, Ichikawa H, Akatsuka T, Santisopasri V, Kato A, Hayashi Y. Isolation and identification of an antifungal naphthopyran derivative from Rhinacanthus nasutus. J Nat Prod. 1993;56:292–4.CrossRefPubMed
50.
go back to reference Wu CH, Huang SM, Lin JA, Yen GC. Inhibition of advanced glycation endproduct formation by foodstuffs. Food Func. 2011;2:224–34.CrossRef Wu CH, Huang SM, Lin JA, Yen GC. Inhibition of advanced glycation endproduct formation by foodstuffs. Food Func. 2011;2:224–34.CrossRef
Metadata
Title
Inhibitory effect of herbal medicines and their trapping abilities against methylglyoxal-derived advanced glycation end-products
Authors
Weerachat Sompong
Sirichai Adisakwattana
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2015
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-015-0897-8

Other articles of this Issue 1/2015

BMC Complementary Medicine and Therapies 1/2015 Go to the issue