Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2015

Open Access 01-12-2015 | Research article

Medicinal value of asiaticoside for Alzheimer’s disease as assessed using single-molecule-detection fluorescence correlation spectroscopy, laser-scanning microscopy, transmission electron microscopy, and in silico docking

Authors: Shahdat Hossain, Michio Hashimoto, Masanori Katakura, Abdullah Al Mamun, Osamu Shido

Published in: BMC Complementary Medicine and Therapies | Issue 1/2015

Login to get access

Abstract

Background

Identifying agents that inhibit amyloid beta peptide (Aβ) aggregation is the ultimate goal for slowing Alzheimer’s disease (AD) progression. This study investigated whether the glycoside asiaticoside inhibits Aβ1–42 fibrillation in vitro.

Methods

Fluorescence correlation spectroscopy (FCS), evaluating the Brownian diffusion times of moving particles in a small confocal volume at the single-molecule level, was used. If asiaticoside inhibits early Aβ1–42 fibrillation steps, more Aβs would remain free and rapidly diffuse in the confocal volume. In contrast, “weaker or no inhibition” permits a greater number of Aβs to polymerize into oligomers, leading to fibers and gives rise to slow diffusion times in the solution. Trace amounts of 5-carboxytetramethylrhodamine (TAMRA)-labeled Aβ1–42 in the presence of excess unlabeled Aβ1–42 (10 μM) was used as a fluorescent probe. Steady-state and kinetic-Thioflavin T (ThT) fluorospectroscopy, laser-scanning fluorescence microscopy (LSM), and transmission electron microscopy (TEM) were also used to monitor fibrillation. Binding of asiaticoside with Aβ1–42 at the atomic level was computationally examined using the Molegro Virtual Docker and PatchDock.

Results

With 1 h of incubation time for aggregation, FCS data analysis revealed that the diffusion time of TAMRA-Aβ1–42 was 208 ± 4 μs, which decreased to 164 ± 8.0 μs in the presence of asiaticoside, clearly indicating that asiaticoside inhibited the early stages Aβ1–42 of fibrillation, leaving more free Aβs in the solution and permitting their rapid diffusion in the confocal volume. The inhibitory effects were also evidenced by reduced fiber formation as assessed by steady-state and kinetic ThT fluorospectroscopy, LSM, and TEM. Asiaticoside elongated the lag phase of Aβ1–42 fibrillation, indicating the formation of smaller amyloid species were impaired in the presence of asiaticoside. Molecular docking revealed that asiaticoside binds with amyloid intra- and inter-molecular amino acid residues, which are responsible for β-sheet formation and longitudinal extension of fibrils.

Conclusion

Finally, asiaticoside prevents amyloidogenesis that precedes neurodegeneration in patients with Alzheimer’s disease.
Literature
2.
go back to reference Seubert P, Vigo-Pelfrey C, Esch F, Lee M, Dovey H, Davis D, et al. Isolation and quantification of soluble Alzheimer’s β-peptide from biological fluids. Nature. 1992;359(24 Sep):325–7.CrossRefPubMed Seubert P, Vigo-Pelfrey C, Esch F, Lee M, Dovey H, Davis D, et al. Isolation and quantification of soluble Alzheimer’s β-peptide from biological fluids. Nature. 1992;359(24 Sep):325–7.CrossRefPubMed
3.
go back to reference Iwatsubo T, Odaka A, Suzuki N, Mizusawa H, Nukina N, Ihar Y. Visualization of Aβ 42(43) and Aβ40 in senile plaques with end-specific Aβ monoclonals: Evidence that an initially deposited species is Aβ 42(43). Neuron. 1994;13(1):45–53.CrossRefPubMed Iwatsubo T, Odaka A, Suzuki N, Mizusawa H, Nukina N, Ihar Y. Visualization of Aβ 42(43) and Aβ40 in senile plaques with end-specific Aβ monoclonals: Evidence that an initially deposited species is Aβ 42(43). Neuron. 1994;13(1):45–53.CrossRefPubMed
4.
go back to reference Diwan PC, Karwande I, Singh AK. Anti-anxiety profile of mandukparni Centella asiatica Linn in animals. Fitoterapia. 1991;62:255–7. Diwan PC, Karwande I, Singh AK. Anti-anxiety profile of mandukparni Centella asiatica Linn in animals. Fitoterapia. 1991;62:255–7.
5.
go back to reference Bown D. Encyclopaedia of Herbs and their Uses. London, UK: Dorling Kindersley. p. 361–65 Bown D. Encyclopaedia of Herbs and their Uses. London, UK: Dorling Kindersley. p. 361–65
6.
go back to reference Chevallier A. The encyclopedia of medicinal plants. London, UK: Dorling Kindersley; 1996. p. 257. Chevallier A. The encyclopedia of medicinal plants. London, UK: Dorling Kindersley; 1996. p. 257.
7.
go back to reference Hashimoto M, Hossain S, Shimada T, Sugioka K, Yamasaki H, Fujii Y, et al. Docosahexaenoic acid provides protection from impairment of learning ability in Alzheimer’s disease model rats. J Neurochem. 2002;81:1084–91.CrossRefPubMed Hashimoto M, Hossain S, Shimada T, Sugioka K, Yamasaki H, Fujii Y, et al. Docosahexaenoic acid provides protection from impairment of learning ability in Alzheimer’s disease model rats. J Neurochem. 2002;81:1084–91.CrossRefPubMed
8.
go back to reference Hashimoto M, Shahdat HM, Yamashita S, Katakura M, Tanabe Y, Fujiwara H, et al. Docosahexaenoic acid disrupts in vitro amyloid beta(1–40) fibrillation and concomitantly inhibits amyloid levels in cerebral cortex of Alzheimer’s disease model rats. J Neurochem. 2008;107:1634–46.CrossRefPubMed Hashimoto M, Shahdat HM, Yamashita S, Katakura M, Tanabe Y, Fujiwara H, et al. Docosahexaenoic acid disrupts in vitro amyloid beta(1–40) fibrillation and concomitantly inhibits amyloid levels in cerebral cortex of Alzheimer’s disease model rats. J Neurochem. 2008;107:1634–46.CrossRefPubMed
9.
go back to reference Kapoor L. Handbook of Ayurvedic medicinal plants. Boca Raton, Fla, USA: CRC Press; 1990. Kapoor L. Handbook of Ayurvedic medicinal plants. Boca Raton, Fla, USA: CRC Press; 1990.
10.
go back to reference Mook-Jung I, Shin JE, Yun SH, Huh K, Koh JY, Park HK, et al. Protective effects of asiaticoside derivatives against beta-amyloid neurotoxicity. J Neurosci Res. 1999;58:417–25.CrossRefPubMed Mook-Jung I, Shin JE, Yun SH, Huh K, Koh JY, Park HK, et al. Protective effects of asiaticoside derivatives against beta-amyloid neurotoxicity. J Neurosci Res. 1999;58:417–25.CrossRefPubMed
11.
go back to reference De Souza ND, Shah V, Desai PD, Inamdar PK, AD’Sa A, Ammonamanchi R, et al. 2, 3, 23-Trihydroxy-urs-12-ene and its Derivatives, Processes for their Preparation and their Use (1990); European Patent 383, A2. De Souza ND, Shah V, Desai PD, Inamdar PK, AD’Sa A, Ammonamanchi R, et al. 2, 3, 23-Trihydroxy-urs-12-ene and its Derivatives, Processes for their Preparation and their Use (1990); European Patent 383, A2.
12.
go back to reference Edelstein SJ, Schaad O, Changeux JP. Single binding versus single channel recordings: a new approach to study ionotropic receptors. Biochemistry. 1997;36:13755–60.CrossRefPubMed Edelstein SJ, Schaad O, Changeux JP. Single binding versus single channel recordings: a new approach to study ionotropic receptors. Biochemistry. 1997;36:13755–60.CrossRefPubMed
13.
go back to reference Haupts U, Maiti S, Schwille P, Webb WW. Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy. Proc Natl Acad Sci U S A. 1998;95:13573–8.CrossRefPubMedPubMedCentral Haupts U, Maiti S, Schwille P, Webb WW. Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy. Proc Natl Acad Sci U S A. 1998;95:13573–8.CrossRefPubMedPubMedCentral
14.
go back to reference Piehler J. New methodologies for measuring protein interaction in vivo and in vitro. Curr Opin Struct Biol. 2005;15:4–14.CrossRefPubMed Piehler J. New methodologies for measuring protein interaction in vivo and in vitro. Curr Opin Struct Biol. 2005;15:4–14.CrossRefPubMed
15.
go back to reference Hossain S, Grande M, Ahmadkhanov G, Pramanik A. Binding of the Alzheimer amyloid beta-peptide to neuronal cell membranes by fluorescence correlation spectroscopy. Exp Mol Pathol. 2007;82:169–74.CrossRefPubMed Hossain S, Grande M, Ahmadkhanov G, Pramanik A. Binding of the Alzheimer amyloid beta-peptide to neuronal cell membranes by fluorescence correlation spectroscopy. Exp Mol Pathol. 2007;82:169–74.CrossRefPubMed
16.
go back to reference Tjernberg L, Pramanik A, Björling S, Thyberg P, Thyberg J, Nordsted C, et al. Amyloid β-peptide polymerization studied by fluorescence correlation spectroscopy. Chem Biol. 1999;6:53–62.CrossRefPubMed Tjernberg L, Pramanik A, Björling S, Thyberg P, Thyberg J, Nordsted C, et al. Amyloid β-peptide polymerization studied by fluorescence correlation spectroscopy. Chem Biol. 1999;6:53–62.CrossRefPubMed
17.
go back to reference Cavasotto CN, A bagyan RA. Protein flexibility in ligand docking and virtual screening to protein kinases. J Mol Biol. 2004;12:209–25.CrossRef Cavasotto CN, A bagyan RA. Protein flexibility in ligand docking and virtual screening to protein kinases. J Mol Biol. 2004;12:209–25.CrossRef
18.
go back to reference Schoichet BK. Virtual screening of chemical libraries. Nature. 2004;43:862–5.CrossRef Schoichet BK. Virtual screening of chemical libraries. Nature. 2004;43:862–5.CrossRef
19.
go back to reference Koppen H. Virtual screening – what does it us? Curr Opin Drug Disc Dev. 2009;12:397–407. Koppen H. Virtual screening – what does it us? Curr Opin Drug Disc Dev. 2009;12:397–407.
21.
go back to reference Hossain S, Hashimoto M, Katakura M, Miwa K, Shimada T, Shido O. Mechanism of docosahexaenoic acid-induced inhibition of in vitro Abeta1-42 fibrillation and Abeta1-42-induced toxicity in SH-S5Y5 cells. J Neurochem. 2009;111(2):568–79.CrossRefPubMed Hossain S, Hashimoto M, Katakura M, Miwa K, Shimada T, Shido O. Mechanism of docosahexaenoic acid-induced inhibition of in vitro Abeta1-42 fibrillation and Abeta1-42-induced toxicity in SH-S5Y5 cells. J Neurochem. 2009;111(2):568–79.CrossRefPubMed
22.
23.
go back to reference Thomsen R, Christensen MH. MolDock: a new technique for high-accuracy molecular docking. J Med Chem. 2006;49(11):3315–21.CrossRefPubMed Thomsen R, Christensen MH. MolDock: a new technique for high-accuracy molecular docking. J Med Chem. 2006;49(11):3315–21.CrossRefPubMed
24.
go back to reference Lührs T, Ritter C, Adrian M, Riek-Loher D, Bohrmann B, Döbeli H, et al. 3D structure of Alzheimer’s amyloid-beta (1–42) fibrils. Proc Natl Acad Sci U S A. 2005;102(48):17342–7.CrossRefPubMedPubMedCentral Lührs T, Ritter C, Adrian M, Riek-Loher D, Bohrmann B, Döbeli H, et al. 3D structure of Alzheimer’s amyloid-beta (1–42) fibrils. Proc Natl Acad Sci U S A. 2005;102(48):17342–7.CrossRefPubMedPubMedCentral
26.
go back to reference Dosztányi Z, Mészáros B, Simon I. ANCHOR: web server for predicting protein binding regions in disordered proteins. Bioinformatics. 2009;25(20):2745–6.CrossRefPubMedPubMedCentral Dosztányi Z, Mészáros B, Simon I. ANCHOR: web server for predicting protein binding regions in disordered proteins. Bioinformatics. 2009;25(20):2745–6.CrossRefPubMedPubMedCentral
27.
go back to reference Garbuzynskiy SO, Lobanov MY, Galzitskaya OV. Fold Amyloid: a method of prediction of amyloidogenic regions from protein sequence. Bioinformatics. 2010;26(Oxford, England):326–32.CrossRefPubMed Garbuzynskiy SO, Lobanov MY, Galzitskaya OV. Fold Amyloid: a method of prediction of amyloidogenic regions from protein sequence. Bioinformatics. 2010;26(Oxford, England):326–32.CrossRefPubMed
28.
go back to reference Conchillo-Sole O, de Groot NS, Aviles FX, Vendrell J, Daura X, Ventura S. AGGRESCAN: a server for the prediction and evaluation of “hot spots” of aggregation in polypeptides. BMC Bioinformatics. 2007;8(65):1–17. Conchillo-Sole O, de Groot NS, Aviles FX, Vendrell J, Daura X, Ventura S. AGGRESCAN: a server for the prediction and evaluation of “hot spots” of aggregation in polypeptides. BMC Bioinformatics. 2007;8(65):1–17.
29.
go back to reference Fang Y, Gao S, Ta D, Middaugh CR, Fang J. Identification of properties important to protein aggregation using feature selection. BMC Bioinformatics. 2013;14:314. doi:10.1186/1471-2105-14-314.CrossRefPubMedPubMedCentral Fang Y, Gao S, Ta D, Middaugh CR, Fang J. Identification of properties important to protein aggregation using feature selection. BMC Bioinformatics. 2013;14:314. doi:10.1186/1471-2105-14-314.CrossRefPubMedPubMedCentral
30.
go back to reference Kawabata T. Detection of multi-scale pockets on protein surfaces using mathematical morphology. Proteins. 2010;78(5):1195–221.CrossRefPubMed Kawabata T. Detection of multi-scale pockets on protein surfaces using mathematical morphology. Proteins. 2010;78(5):1195–221.CrossRefPubMed
31.
go back to reference Laurie ATR, Jackson RM. Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites. Bioinformatics. 2005;21(9):1908–16.CrossRefPubMed Laurie ATR, Jackson RM. Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites. Bioinformatics. 2005;21(9):1908–16.CrossRefPubMed
32.
go back to reference Chenm H-L, Zhou H-X. Prediction of interface residues in protein-protein complexes by a consensus neural network method: test against NMR data. Proteins. 2005;61(1):21–35.CrossRef Chenm H-L, Zhou H-X. Prediction of interface residues in protein-protein complexes by a consensus neural network method: test against NMR data. Proteins. 2005;61(1):21–35.CrossRef
33.
go back to reference Darnell SJ, Page D, Mitchell JC. Automated decision-tree approach to predicting protein protein interaction hot spots. Proteins. 2007;68(4):813–23.CrossRefPubMed Darnell SJ, Page D, Mitchell JC. Automated decision-tree approach to predicting protein protein interaction hot spots. Proteins. 2007;68(4):813–23.CrossRefPubMed
34.
go back to reference Zhu X, Mitchell JC. KFC2: a knowledge-based hot spot prediction method based on interface solvation, atomic density and plasticity features. Proteins. 2011;79(9):2671–83.CrossRefPubMed Zhu X, Mitchell JC. KFC2: a knowledge-based hot spot prediction method based on interface solvation, atomic density and plasticity features. Proteins. 2011;79(9):2671–83.CrossRefPubMed
35.
go back to reference Duhovny D, Nussinov R, Wolfson HJ. Efficient unbound docking of rigid molecules. In: Guigó R, Gusfield D, et al., editors. Proceedings of the 2′nd Workshop on Algorithms in Bioinformatics(WABI) Rome, Italy, Lecture Notes in Computer Science (LNCS) 2452. Berlin Heidelberg: Springer Verlag; 2002. p. 185–200. Duhovny D, Nussinov R, Wolfson HJ. Efficient unbound docking of rigid molecules. In: Guigó R, Gusfield D, et al., editors. Proceedings of the 2′nd Workshop on Algorithms in Bioinformatics(WABI) Rome, Italy, Lecture Notes in Computer Science (LNCS) 2452. Berlin Heidelberg: Springer Verlag; 2002. p. 185–200.
36.
go back to reference Mamun AA, Hashimoto M, Katakura M, Matsuzaki K, Hossain S, Arai H, et al. Neuroprotective effect of madecassoside evaluated using amyloid Β1-42-mediated in vitro and in vivo alzheimer’s disease models. Intl J Indigenous Med Plants. 2014;47(2):1669–82. Mamun AA, Hashimoto M, Katakura M, Matsuzaki K, Hossain S, Arai H, et al. Neuroprotective effect of madecassoside evaluated using amyloid Β1-42-mediated in vitro and in vivo alzheimer’s disease models. Intl J Indigenous Med Plants. 2014;47(2):1669–82.
37.
go back to reference Greenwald J, Riek R. Biology of Amyloid: structure, function, and regulation. Structure (Review). 2010;8(10):1244–60.CrossRef Greenwald J, Riek R. Biology of Amyloid: structure, function, and regulation. Structure (Review). 2010;8(10):1244–60.CrossRef
38.
go back to reference Ehrnhoefer D, Bieschke J, Boeddrich A, Herbst M, Masino L, Lurz R, et al. EGCG redirects amyloidogenic polypeptides into unstructured off-pathway oligomers. Nat Struct Mol Biol. 2008;15:558–66.CrossRefPubMed Ehrnhoefer D, Bieschke J, Boeddrich A, Herbst M, Masino L, Lurz R, et al. EGCG redirects amyloidogenic polypeptides into unstructured off-pathway oligomers. Nat Struct Mol Biol. 2008;15:558–66.CrossRefPubMed
39.
go back to reference Soumyanath A, Zhong YP, Gold SA, Yu X, Koop DR, Bourdette D, et al. Centella asiatica accelerates nerve regeneration upon oral administration and contains multiple active fractions increasing neurite elongation in-vitro. J Pharm Pharmacol. 2005;57(3):1221–9.CrossRefPubMed Soumyanath A, Zhong YP, Gold SA, Yu X, Koop DR, Bourdette D, et al. Centella asiatica accelerates nerve regeneration upon oral administration and contains multiple active fractions increasing neurite elongation in-vitro. J Pharm Pharmacol. 2005;57(3):1221–9.CrossRefPubMed
40.
go back to reference Wanakhachornkrai O, Pongrakhananon V, Chunhacha P, Wanasuntronwong A, Vattanajun A, Tantisira B, et al. Neuritogenic effect of standardized extract of Centella asiatica ECa233 on human neuroblastoma cells. BMC Complement Altern Med. 2013;13:204.CrossRefPubMedPubMedCentral Wanakhachornkrai O, Pongrakhananon V, Chunhacha P, Wanasuntronwong A, Vattanajun A, Tantisira B, et al. Neuritogenic effect of standardized extract of Centella asiatica ECa233 on human neuroblastoma cells. BMC Complement Altern Med. 2013;13:204.CrossRefPubMedPubMedCentral
41.
go back to reference Dhanasekaran M, Holcomb LA, Hitt AR, Tharakan B, Porter JW, Young KA, et al. Centella asiatica extract selectively decreases amyloid β levels in hippocampus of Alzheimer’s disease animal model. Phytother Res. 2009;23(1):14–9.CrossRefPubMed Dhanasekaran M, Holcomb LA, Hitt AR, Tharakan B, Porter JW, Young KA, et al. Centella asiatica extract selectively decreases amyloid β levels in hippocampus of Alzheimer’s disease animal model. Phytother Res. 2009;23(1):14–9.CrossRefPubMed
42.
go back to reference Kirschner DA, Abraham C, Selkoe DJ. X-ray diffraction from intraneuronal paired helical filaments and extraneuronal amyloid fibers in Alzheimer disease indicates cross-beta conformation. Proc Natl Acad Sci U S A. 1986;83(2):503–7.CrossRefPubMedPubMedCentral Kirschner DA, Abraham C, Selkoe DJ. X-ray diffraction from intraneuronal paired helical filaments and extraneuronal amyloid fibers in Alzheimer disease indicates cross-beta conformation. Proc Natl Acad Sci U S A. 1986;83(2):503–7.CrossRefPubMedPubMedCentral
Metadata
Title
Medicinal value of asiaticoside for Alzheimer’s disease as assessed using single-molecule-detection fluorescence correlation spectroscopy, laser-scanning microscopy, transmission electron microscopy, and in silico docking
Authors
Shahdat Hossain
Michio Hashimoto
Masanori Katakura
Abdullah Al Mamun
Osamu Shido
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2015
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-015-0620-9

Other articles of this Issue 1/2015

BMC Complementary Medicine and Therapies 1/2015 Go to the issue