Skip to main content
Top
Published in: BMC Oral Health 1/2024

Open Access 01-12-2024 | Caries | Research

Detecting white spot lesions on post-orthodontic oral photographs using deep learning based on the YOLOv5x algorithm: a pilot study

Authors: Pelin Senem Ozsunkar, Duygu Çelİk Özen, Ahmed Z Abdelkarim, Sacide Duman, Mehmet Uğurlu, Mehmet Rıdvan Demİr, Batuhan Kuleli, Özer Çelİk, Busra Seda Imamoglu, Ibrahim Sevki Bayrakdar, Suayip Burak Duman

Published in: BMC Oral Health | Issue 1/2024

Login to get access

Abstract

Background

Deep learning model trained on a large image dataset, can be used to detect and discriminate targets with similar but not identical appearances. The aim of this study is to evaluate the post-training performance of the CNN-based YOLOv5x algorithm in the detection of white spot lesions in post-orthodontic oral photographs using the limited data available and to make a preliminary study for fully automated models that can be clinically integrated in the future.

Methods

A total of 435 images in JPG format were uploaded into the CranioCatch labeling software and labeled white spot lesions. The labeled images were resized to 640 × 320 while maintaining their aspect ratio before model training. The labeled images were randomly divided into three groups (Training:349 images (1589 labels), Validation:43 images (181 labels), Test:43 images (215 labels)). YOLOv5x algorithm was used to perform deep learning. The segmentation performance of the tested model was visualized and analyzed using ROC analysis and a confusion matrix. True Positive (TP), False Positive (FP), and False Negative (FN) values were determined.

Results

Among the test group images, there were 133 TPs, 36 FPs, and 82 FNs. The model’s performance metrics include precision, recall, and F1 score values of detecting white spot lesions were 0.786, 0.618, and 0.692. The AUC value obtained from the ROC analysis was 0.712. The mAP value obtained from the Precision-Recall curve graph was 0.425.

Conclusions

The model’s accuracy and sensitivity in detecting white spot lesions remained lower than expected for practical application, but is a promising and acceptable detection rate compared to previous study. The current study provides a preliminary insight to further improved by increasing the dataset for training, and applying modifications to the deep learning algorithm.

Clinical revelance

Deep learning systems can help clinicians to distinguish white spot lesions that may be missed during visual inspection.
Appendix
Available only for authorised users
Literature
1.
go back to reference Guzmán-Armstrong S, Chalmers J, Warren JJ. White spot lesions: prevention and treatment. Am J Orthod Dentofac Orthop. 2010;138(06):690–6.CrossRef Guzmán-Armstrong S, Chalmers J, Warren JJ. White spot lesions: prevention and treatment. Am J Orthod Dentofac Orthop. 2010;138(06):690–6.CrossRef
2.
go back to reference Mizrahi E. Surface distribution of enamel opacities following orthodontic treatment. Am J Orthod Dentofac Orthop. 1983;84:323–31.CrossRef Mizrahi E. Surface distribution of enamel opacities following orthodontic treatment. Am J Orthod Dentofac Orthop. 1983;84:323–31.CrossRef
3.
go back to reference Pitts N. Diagnostic tools and measurements impact on appropriate care. Comm Dent Oral Epidemiol. 1997;25:24–35.CrossRef Pitts N. Diagnostic tools and measurements impact on appropriate care. Comm Dent Oral Epidemiol. 1997;25:24–35.CrossRef
4.
go back to reference Khanagar SB, Al-Ehaideb A, Maganur PC, Vishwanathaiah S, Patil S, Baeshen HA, Sarode SC, Bhandi S. Developments, application, and performance of artificial intelligence in dentistry- a systematic review. J Dent Sci. 2021;16(1):508–22.CrossRefPubMed Khanagar SB, Al-Ehaideb A, Maganur PC, Vishwanathaiah S, Patil S, Baeshen HA, Sarode SC, Bhandi S. Developments, application, and performance of artificial intelligence in dentistry- a systematic review. J Dent Sci. 2021;16(1):508–22.CrossRefPubMed
5.
go back to reference Grischke J, Johannsmeier L, Eich L, Griga L, Haddadin S. Dentronics: towards robotics and artificial intelligence in dentistry. Dent Mater. 2020;36(6):765–78.CrossRefPubMed Grischke J, Johannsmeier L, Eich L, Griga L, Haddadin S. Dentronics: towards robotics and artificial intelligence in dentistry. Dent Mater. 2020;36(6):765–78.CrossRefPubMed
6.
go back to reference Askar H, Krois J, Rohrer C, Mertens S, Elhennawy K, Ottolenghi L, Mazur M, Paris S, Schwendicke F. Detecting white spot lesions on dental photography using deep learning: a pilot study. J Dent. 2021;107:103615.CrossRefPubMed Askar H, Krois J, Rohrer C, Mertens S, Elhennawy K, Ottolenghi L, Mazur M, Paris S, Schwendicke F. Detecting white spot lesions on dental photography using deep learning: a pilot study. J Dent. 2021;107:103615.CrossRefPubMed
7.
go back to reference Redmon J, Divvala S, Girshick R, Farhadi A. You Only Look Once: Unified, Real-Time Object Detection. IEEE Conference on Computer Vision and Pattern Recognition (CVPR).2016;27–30. Redmon J, Divvala S, Girshick R, Farhadi A. You Only Look Once: Unified, Real-Time Object Detection. IEEE Conference on Computer Vision and Pattern Recognition (CVPR).2016;27–30.
8.
go back to reference Warin K, Limprasert W, Suebnukarn S, Jinaporntham S, Jantana P, Vicharueang S. AI-based analysis of oral lesions using novel deep convolutional neural networks for early detection of oral cancer. PLoS ONE. 2022;17(8):e0273508.CrossRefPubMedPubMedCentral Warin K, Limprasert W, Suebnukarn S, Jinaporntham S, Jantana P, Vicharueang S. AI-based analysis of oral lesions using novel deep convolutional neural networks for early detection of oral cancer. PLoS ONE. 2022;17(8):e0273508.CrossRefPubMedPubMedCentral
9.
go back to reference Warin K, Limprasert W, Suebnukarn S, Inglam S, Jantana P, Vicharueang S. Assessment of deep convolutional neural network models for mandibular fracture detection in panoramic radiographs. Int J Oral Maxillofac Surg. 2022;51(11):1488–94.CrossRefPubMed Warin K, Limprasert W, Suebnukarn S, Inglam S, Jantana P, Vicharueang S. Assessment of deep convolutional neural network models for mandibular fracture detection in panoramic radiographs. Int J Oral Maxillofac Surg. 2022;51(11):1488–94.CrossRefPubMed
10.
go back to reference Eşer G, Duman ŞB, Bayrakdar İŞ, Çelik Ö. Classification of Temporomandibular Joint Osteoarthritis on Cone-Beam computed tomography images using Artificial Intelligence System. J Rehabil. 2023;50(9):758–66.CrossRef Eşer G, Duman ŞB, Bayrakdar İŞ, Çelik Ö. Classification of Temporomandibular Joint Osteoarthritis on Cone-Beam computed tomography images using Artificial Intelligence System. J Rehabil. 2023;50(9):758–66.CrossRef
11.
go back to reference Ding B, Zhang Z, Liang Y, Wang W, Hao S, Meng Z, Guan L, Hu Y, Guo B, Zhao R. Detection of dental caries in oral photographs taken by mobile phones based on the YOLOv3 algorithm. Ann Transl Med. 2021; 9(21). Ding B, Zhang Z, Liang Y, Wang W, Hao S, Meng Z, Guan L, Hu Y, Guo B, Zhao R. Detection of dental caries in oral photographs taken by mobile phones based on the YOLOv3 algorithm. Ann Transl Med. 2021; 9(21).
12.
go back to reference Thanh MTG, Van Toan N, Ngoc VTN, Tra NT, Giap CN, Nguyen DM. Deep learning application in Dental Caries Detection using intraoral photos taken by smartphones. Appl Sci. 2022;12(11):5504.CrossRef Thanh MTG, Van Toan N, Ngoc VTN, Tra NT, Giap CN, Nguyen DM. Deep learning application in Dental Caries Detection using intraoral photos taken by smartphones. Appl Sci. 2022;12(11):5504.CrossRef
13.
go back to reference Gibson E, Hu Y, Huisman HJ, Barratt DC. Designing image segmentation studies: statistical power, sample size and reference standard quality. Med Image Anal. 2017;42:44–59.CrossRefPubMedPubMedCentral Gibson E, Hu Y, Huisman HJ, Barratt DC. Designing image segmentation studies: statistical power, sample size and reference standard quality. Med Image Anal. 2017;42:44–59.CrossRefPubMedPubMedCentral
14.
go back to reference Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. Hillsdale, NJ: L. Erlbaum Associates; 1988. Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. Hillsdale, NJ: L. Erlbaum Associates; 1988.
15.
go back to reference Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig L, Lijmer JG, Moher D, Rennie D, De Vet HC. STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies. BMJ. 2015;351:h5527.CrossRefPubMedPubMedCentral Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig L, Lijmer JG, Moher D, Rennie D, De Vet HC. STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies. BMJ. 2015;351:h5527.CrossRefPubMedPubMedCentral
16.
go back to reference Mongan J, Moy L, Kahn CE. Checklist for artificial intelligence in medical imaging (CLAIM): a guide for authors and reviewers. Radiol Artif Intell. 2020;2:e200029.CrossRefPubMedPubMedCentral Mongan J, Moy L, Kahn CE. Checklist for artificial intelligence in medical imaging (CLAIM): a guide for authors and reviewers. Radiol Artif Intell. 2020;2:e200029.CrossRefPubMedPubMedCentral
17.
go back to reference Thanh MTG, Van Toan N, Toan DTT, Thang NP, Dong NQ, Dung NT, Hang PTT, Anh LQ, Tra NT, Ngoc VTN. Diagnostic value of fluorescence methods, visual inspection and photographic visual examination in initial caries lesion: a systematic review and Meta-analysis. Dent J. 2021;9(3):30.CrossRef Thanh MTG, Van Toan N, Toan DTT, Thang NP, Dong NQ, Dung NT, Hang PTT, Anh LQ, Tra NT, Ngoc VTN. Diagnostic value of fluorescence methods, visual inspection and photographic visual examination in initial caries lesion: a systematic review and Meta-analysis. Dent J. 2021;9(3):30.CrossRef
18.
go back to reference Girshick R, Fast R-CNN. IEEE International Conference on Computer Vision. New York: IEEE Computer Society, 2015:1440-8. Girshick R, Fast R-CNN. IEEE International Conference on Computer Vision. New York: IEEE Computer Society, 2015:1440-8.
19.
go back to reference Wang X, Wang X, Hu C, Dai F, Xing J, Wang E, Du Z, Wang L, Guo W. Study on the detection of defoliation effect of an improved YOLOv5x cotton. Agriculture. 2022;12(10):1583.CrossRef Wang X, Wang X, Hu C, Dai F, Xing J, Wang E, Du Z, Wang L, Guo W. Study on the detection of defoliation effect of an improved YOLOv5x cotton. Agriculture. 2022;12(10):1583.CrossRef
20.
go back to reference Tanriver G, Soluk Tekkesin M, Ergen O. Automated detection and classification of oral lesions using deep learning to detect oral potentially malignant disorders. Cancers. 2021;13(11):2766.CrossRefPubMedPubMedCentral Tanriver G, Soluk Tekkesin M, Ergen O. Automated detection and classification of oral lesions using deep learning to detect oral potentially malignant disorders. Cancers. 2021;13(11):2766.CrossRefPubMedPubMedCentral
21.
go back to reference Schönewolf J, Meyer O, Engels P, Schlickenrieder A, Hickel R, Gruhn V, Hesenius M, Kühnisch J. Artificial intelligence-based diagnostics of molar-incisor-hypomineralization (MIH) on intraoral photographs. Clin Oral Investig. 2022;26(9):5923–30.CrossRefPubMedPubMedCentral Schönewolf J, Meyer O, Engels P, Schlickenrieder A, Hickel R, Gruhn V, Hesenius M, Kühnisch J. Artificial intelligence-based diagnostics of molar-incisor-hypomineralization (MIH) on intraoral photographs. Clin Oral Investig. 2022;26(9):5923–30.CrossRefPubMedPubMedCentral
22.
go back to reference Skaare AB, Maseng Aas AL, Wang NJ. Enamel defects in permanent incisors after trauma to primary predecessors: inter-observer agreement based on photographs. Dent Traumatol. 2013;29(2):79–83.CrossRefPubMed Skaare AB, Maseng Aas AL, Wang NJ. Enamel defects in permanent incisors after trauma to primary predecessors: inter-observer agreement based on photographs. Dent Traumatol. 2013;29(2):79–83.CrossRefPubMed
23.
go back to reference Costacurta M, Benavoli D, Arcudi G, Docimo R. Oral and dental signs of child abuse and neglect. ORAL Implantol. 2015;8(2):68. Costacurta M, Benavoli D, Arcudi G, Docimo R. Oral and dental signs of child abuse and neglect. ORAL Implantol. 2015;8(2):68.
24.
go back to reference Boye U, Willasey A, Walsh T, Tickle M, Pretty IA. Comparison of an intra-oral photographic caries assessment with an established visual caries assessment method for use in dental epidemiological studies of children. Community Dent Oral Epidemiol. 2013;41(6):526–33.CrossRefPubMed Boye U, Willasey A, Walsh T, Tickle M, Pretty IA. Comparison of an intra-oral photographic caries assessment with an established visual caries assessment method for use in dental epidemiological studies of children. Community Dent Oral Epidemiol. 2013;41(6):526–33.CrossRefPubMed
25.
go back to reference Gasparik C, Grecu AG, Culic B, Badea ME, Dudea D. Shade-matching performance using a new light-correcting device. J Esthet Restor Dent. 2015;27(5):285–92.CrossRefPubMed Gasparik C, Grecu AG, Culic B, Badea ME, Dudea D. Shade-matching performance using a new light-correcting device. J Esthet Restor Dent. 2015;27(5):285–92.CrossRefPubMed
26.
go back to reference Chen Y, Lee W, Ferretti GA, Slayton RL, Nelson S. Agreement between photographic and clinical examinations in detecting developmental defects of enamel in infants. J Public Health Dent. 2013;73(3):204–9.CrossRefPubMedPubMedCentral Chen Y, Lee W, Ferretti GA, Slayton RL, Nelson S. Agreement between photographic and clinical examinations in detecting developmental defects of enamel in infants. J Public Health Dent. 2013;73(3):204–9.CrossRefPubMedPubMedCentral
27.
go back to reference Bayındır F. Dijital Dental Fotoğrafcılık-I. Ata Uni Dis Hek Fak Derg. 2015;25(3):434–40. Bayındır F. Dijital Dental Fotoğrafcılık-I. Ata Uni Dis Hek Fak Derg. 2015;25(3):434–40.
28.
go back to reference Neuhaus KW, Graf M, Lussi A, Katsaros C. Late infiltration of postorthodontic white-spot lesions. J Orofac Orthop. 2010;71(6):442–47.CrossRefPubMed Neuhaus KW, Graf M, Lussi A, Katsaros C. Late infiltration of postorthodontic white-spot lesions. J Orofac Orthop. 2010;71(6):442–47.CrossRefPubMed
29.
go back to reference Nuvvula S, Mallineni S. Remote management of dental problems in children during and post the COVID-19 pandemic outbreak: a teledentistry approach. Dent Med Probl. 2021;58(2):237–41.CrossRefPubMed Nuvvula S, Mallineni S. Remote management of dental problems in children during and post the COVID-19 pandemic outbreak: a teledentistry approach. Dent Med Probl. 2021;58(2):237–41.CrossRefPubMed
30.
Metadata
Title
Detecting white spot lesions on post-orthodontic oral photographs using deep learning based on the YOLOv5x algorithm: a pilot study
Authors
Pelin Senem Ozsunkar
Duygu Çelİk Özen
Ahmed Z Abdelkarim
Sacide Duman
Mehmet Uğurlu
Mehmet Rıdvan Demİr
Batuhan Kuleli
Özer Çelİk
Busra Seda Imamoglu
Ibrahim Sevki Bayrakdar
Suayip Burak Duman
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Oral Health / Issue 1/2024
Electronic ISSN: 1472-6831
DOI
https://doi.org/10.1186/s12903-024-04262-1

Other articles of this Issue 1/2024

BMC Oral Health 1/2024 Go to the issue