Skip to main content
Top
Published in: BMC Oral Health 1/2021

Open Access 01-12-2021 | Streptococci | Research article

Evaluation of the risk factors of dental caries in children with very low birth weight and normal birth weight

Authors: Romana Koberova, Vladimira Radochova, Jana Zemankova, Lenka Ryskova, Zdeněk Broukal, Vlasta Merglova

Published in: BMC Oral Health | Issue 1/2021

Login to get access

Abstract

Background

Health problems of premature infants can affect both general and oral health. The enamel defects, poor dietary and oral hygiene habits may predispose these children to dental caries. This study was conducted to assess the impact of very low birth weight and prematurity on caries risk in early childhood.

Methods

The study cohort consists of 189 of one year old infants. Anamnestic data were obtained from hospital records, feeding practice, bed-time sugar drinks and oral hygiene onset from questionnaires. Saliva samples of children and their mothers were collected for the detection of cariogenic pathogens.

Results

VLBW newborns had significantly shorter gestation age (29.6 vs. 38.8)) and lower mean birthweight (1124 g vs 3315 g) compared to NBW ones (p < 0.0001). Statistical significance has been found in the presence of early morbidity (p < 0.0001) and regular medication intake (p = 0.007). VLBW children got more frequently sweetened drinks during the day and night (p = 0.007). Regular oral hygiene practice was more frequent in full term group (p = 0.002). There was statistical difference in the presence of enamel hypoplasia in VLBW children (p = 0.033) but no statistical difference in the presence of hypomineralization (p = 0.0736) in comparison to NBW individuals. Proportional representation and count of S. mutans did not reveal statistical difference neither in both groups of children (p = 0.484) nor in both groups of mothers (p = 0.385).

Conclusions

The study confirmed anamnestic and medical differences between both groups. The proportional representation and count of S. mutans did not reveal statistical difference neither in VLBW and NBW children, nor in their mothers.
Literature
1.
go back to reference American Academy of Pediatrics. Committee on fetus and newborn. Nomenclature for duration of gestation, birth weight and intra-uterine growth. Pediatrics. 1967;39:935–9. American Academy of Pediatrics. Committee on fetus and newborn. Nomenclature for duration of gestation, birth weight and intra-uterine growth. Pediatrics. 1967;39:935–9.
2.
go back to reference Brogårdh-Roth S, Stjernqvist K, Matsson L, Klingberg G. Parental perspectives on preterm children’s oral health behaviour and experience of dental care during preschool and early school years. Int J Paediatr Dent. 2009;19:243–50.PubMed Brogårdh-Roth S, Stjernqvist K, Matsson L, Klingberg G. Parental perspectives on preterm children’s oral health behaviour and experience of dental care during preschool and early school years. Int J Paediatr Dent. 2009;19:243–50.PubMed
3.
go back to reference Corrêa-Faria P, Martins-Júnior PA, Vieira-Andrade RG, Oliveira-Ferreira F, Marques LS, Ramos-Jorge ML. Developmental defects of enamel in primary teeth: prevalence and associated factors. Int J Paediatr Dent. 2013;23:173–9.PubMed Corrêa-Faria P, Martins-Júnior PA, Vieira-Andrade RG, Oliveira-Ferreira F, Marques LS, Ramos-Jorge ML. Developmental defects of enamel in primary teeth: prevalence and associated factors. Int J Paediatr Dent. 2013;23:173–9.PubMed
4.
go back to reference Velló MA, Martínez-Costa C, Catalá M, Fons J, Brines J, Guijarro-Martínez R. Prenatal and neonatal risk factors for the development of enamel defects in low birth weight children. Oral Dis. 2010;16:257–62.PubMed Velló MA, Martínez-Costa C, Catalá M, Fons J, Brines J, Guijarro-Martínez R. Prenatal and neonatal risk factors for the development of enamel defects in low birth weight children. Oral Dis. 2010;16:257–62.PubMed
5.
go back to reference Davenport ES, Litenas C, Barbayiannis P, Williams CES. The effects of diet, breast-feeding and weaning on caries risk for pre-term and low birth weight children. Int J Paediatr Dent. 2004;14:251–9.PubMed Davenport ES, Litenas C, Barbayiannis P, Williams CES. The effects of diet, breast-feeding and weaning on caries risk for pre-term and low birth weight children. Int J Paediatr Dent. 2004;14:251–9.PubMed
6.
go back to reference Wan AK, Seow WK, Purdie DM, Bird PS, Walsh LJ, Tudehope DI. Oral colonization of Streptococcus mutans in six-month-old predentate infants. J Dent Res. 2001;80:2060–5.PubMed Wan AK, Seow WK, Purdie DM, Bird PS, Walsh LJ, Tudehope DI. Oral colonization of Streptococcus mutans in six-month-old predentate infants. J Dent Res. 2001;80:2060–5.PubMed
7.
go back to reference Ushida N, Ishihara K, Kobayashi N, Matsukubo T, Yakushiji M, Okuda K. Initial acquisition and transmission of Streptococcus mutans from Japanese mothers to children. Pediatr Dent J. 2009;19:98–105. Ushida N, Ishihara K, Kobayashi N, Matsukubo T, Yakushiji M, Okuda K. Initial acquisition and transmission of Streptococcus mutans from Japanese mothers to children. Pediatr Dent J. 2009;19:98–105.
8.
go back to reference An epidemiological index of developmental defects of dental enamel (DDE Index). Commission on Oral Health, Research and Epidemiology. Int Dent J. 1982;32:159–67. An epidemiological index of developmental defects of dental enamel (DDE Index). Commission on Oral Health, Research and Epidemiology. Int Dent J. 1982;32:159–67.
9.
go back to reference Hohoff A, Rabe H, Ehmer U, Harms E. Palatal development of preterm and low birthweight infants compared to term infants – What do we know? Part 3: discussion and conclusion. Head Face Med. 2005;1:10.PubMedPubMedCentral Hohoff A, Rabe H, Ehmer U, Harms E. Palatal development of preterm and low birthweight infants compared to term infants – What do we know? Part 3: discussion and conclusion. Head Face Med. 2005;1:10.PubMedPubMedCentral
10.
go back to reference Burt BA, Pai S. Does low birthweight increase the risk of caries? A systematic review J Dent Educ. 2001;65:1024–7.PubMed Burt BA, Pai S. Does low birthweight increase the risk of caries? A systematic review J Dent Educ. 2001;65:1024–7.PubMed
11.
go back to reference Gravina DBL, Cruvinel VRN, Azevedo TDPL, de Toledo OA, Bezerra ACB. Prevalence of dental caries in children born prematurely or at full term. Braz Oral Res. 2006;20:353–7.PubMed Gravina DBL, Cruvinel VRN, Azevedo TDPL, de Toledo OA, Bezerra ACB. Prevalence of dental caries in children born prematurely or at full term. Braz Oral Res. 2006;20:353–7.PubMed
12.
go back to reference Schüler IM, Haberstroh S, Dawczynski K, Lehmann T, Heinrich-Weltzien R. Dental caries and developmental defects of enamel in the primary dentition of preterm infants: case-control observational study. Caries Res. 2018;52:22–31.PubMed Schüler IM, Haberstroh S, Dawczynski K, Lehmann T, Heinrich-Weltzien R. Dental caries and developmental defects of enamel in the primary dentition of preterm infants: case-control observational study. Caries Res. 2018;52:22–31.PubMed
13.
go back to reference Sajjadian N, Shajari H, Jahadi R, Barakat MG, Sajjadian A. Relationship between birth weight and time of first deciduous tooth eruption in 143 consecutively born infants. Pediatr Neonatol. 2010;51:235–7.PubMed Sajjadian N, Shajari H, Jahadi R, Barakat MG, Sajjadian A. Relationship between birth weight and time of first deciduous tooth eruption in 143 consecutively born infants. Pediatr Neonatol. 2010;51:235–7.PubMed
14.
go back to reference Viscardi RM, Romberg E, Abrams RG. Delayed primary tooth eruption in premature infants: relationship to neonatal factors. Pediatr Dent. 1994;16:23–8.PubMed Viscardi RM, Romberg E, Abrams RG. Delayed primary tooth eruption in premature infants: relationship to neonatal factors. Pediatr Dent. 1994;16:23–8.PubMed
15.
go back to reference Seow WK, Humphrys C, Mahanonda R, Tudehope DI. Dental eruption in low birth-weight prematurely born children: a controlled study. Pediatr Dent. 1988;10:39–42.PubMed Seow WK, Humphrys C, Mahanonda R, Tudehope DI. Dental eruption in low birth-weight prematurely born children: a controlled study. Pediatr Dent. 1988;10:39–42.PubMed
16.
go back to reference Berkowitz RJ, Hollan G, Moxham B. Oral anatomy, embryology and histology. 3rd ed. Chicago: Mosby; 2002. Berkowitz RJ, Hollan G, Moxham B. Oral anatomy, embryology and histology. 3rd ed. Chicago: Mosby; 2002.
17.
go back to reference Aine L, Backström MC, Mäki R, Kuusela AL, Koivisto AM, Ikonen RS, et al. Enamel defects in primary and permanent teeth of children born prematurely. J Oral Pathol Med. 2000;29:403–9.PubMed Aine L, Backström MC, Mäki R, Kuusela AL, Koivisto AM, Ikonen RS, et al. Enamel defects in primary and permanent teeth of children born prematurely. J Oral Pathol Med. 2000;29:403–9.PubMed
18.
go back to reference Sabel N, Klingberg G, Dietz W, Nietzsche S, Norén JG. Polarized light and scanning electron microscopic investigation of enamel hypoplasia in primary teeth. Int J Paediatr Dent. 2010;20:31–6.PubMed Sabel N, Klingberg G, Dietz W, Nietzsche S, Norén JG. Polarized light and scanning electron microscopic investigation of enamel hypoplasia in primary teeth. Int J Paediatr Dent. 2010;20:31–6.PubMed
19.
go back to reference de Cortines AA, O, Corrêa-Faria P, Paulsson L, Costa PS, Costa LR, . Developmental defects of enamel in the deciduous incisors of infants born preterm: Prospective cohort. Oral Dis. 2019;25:543–9.PubMed de Cortines AA, O, Corrêa-Faria P, Paulsson L, Costa PS, Costa LR, . Developmental defects of enamel in the deciduous incisors of infants born preterm: Prospective cohort. Oral Dis. 2019;25:543–9.PubMed
20.
go back to reference Berkowitz RJ. Mutans streptococci: acquisition and transmission. Pediatr Dent. 2006;28:106–9; discussion 192–198. Berkowitz RJ. Mutans streptococci: acquisition and transmission. Pediatr Dent. 2006;28:106–9; discussion 192–198.
21.
go back to reference Könönen E, Kanervo A, Takala A, Asikainen S, Jousimies-Somer H. Establishment of oral anaerobes during the first year of life. J Dent Res. 1999;78:1634–9.PubMed Könönen E, Kanervo A, Takala A, Asikainen S, Jousimies-Somer H. Establishment of oral anaerobes during the first year of life. J Dent Res. 1999;78:1634–9.PubMed
22.
go back to reference Makhoul IR, Sujov P, Ardekian L, Kassis I, Smolkin T, Abu-Elnaa’j I, et al. Factors influencing oral colonization in premature infants. Isr Med Assoc J IMAJ. 2002;4:98–102. Makhoul IR, Sujov P, Ardekian L, Kassis I, Smolkin T, Abu-Elnaa’j I, et al. Factors influencing oral colonization in premature infants. Isr Med Assoc J IMAJ. 2002;4:98–102.
23.
go back to reference Li Y, Caufield PW, Dasanayake AP, Wiener HW, Vermund SH. Mode of delivery and other maternal factors influence the acquisition of Streptococcus mutans in infants. J Dent Res. 2005;84:806–11.PubMed Li Y, Caufield PW, Dasanayake AP, Wiener HW, Vermund SH. Mode of delivery and other maternal factors influence the acquisition of Streptococcus mutans in infants. J Dent Res. 2005;84:806–11.PubMed
24.
go back to reference Thakur R, Singh MG, Chaudhary S, Manuja N. Effect of mode of delivery and feeding practices on acquisition of oral Streptococcus mutans in infants. Int J Paediatr Dent. 2012;22:197–202.PubMed Thakur R, Singh MG, Chaudhary S, Manuja N. Effect of mode of delivery and feeding practices on acquisition of oral Streptococcus mutans in infants. Int J Paediatr Dent. 2012;22:197–202.PubMed
25.
go back to reference Nelun Barfod M, Magnusson K, Lexner MO, Blomqvist S, Dahlén G, Twetman S. Oral microflora in infants delivered vaginally and by caesarean section. Int J Paediatr Dent. 2011;21:401–6.PubMed Nelun Barfod M, Magnusson K, Lexner MO, Blomqvist S, Dahlén G, Twetman S. Oral microflora in infants delivered vaginally and by caesarean section. Int J Paediatr Dent. 2011;21:401–6.PubMed
26.
go back to reference Seow WK, Lam JHC, Tsang AKL, Holcombe T, Bird PS. Oral Streptococcus species in pre-term and full-term children - a longitudinal study. Int J Paediatr Dent. 2009;19:406–11.PubMed Seow WK, Lam JHC, Tsang AKL, Holcombe T, Bird PS. Oral Streptococcus species in pre-term and full-term children - a longitudinal study. Int J Paediatr Dent. 2009;19:406–11.PubMed
27.
go back to reference Wan AKL, Seow WK, Purdie DM, Bird PS, Walsh LJ, Tudehope DI. A longitudinal study of Streptococcus mutans colonization in infants after tooth eruption. J Dent Res. 2003;82:504–8.PubMed Wan AKL, Seow WK, Purdie DM, Bird PS, Walsh LJ, Tudehope DI. A longitudinal study of Streptococcus mutans colonization in infants after tooth eruption. J Dent Res. 2003;82:504–8.PubMed
28.
go back to reference Plonka KA, Pukallus ML, Barnett AG, Walsh LJ, Holcombe TF, Seow WK. A longitudinal study comparing mutans streptococci and lactobacilli colonisation in dentate children aged 6 to 24 months. Caries Res. 2012;46:385–93.PubMed Plonka KA, Pukallus ML, Barnett AG, Walsh LJ, Holcombe TF, Seow WK. A longitudinal study comparing mutans streptococci and lactobacilli colonisation in dentate children aged 6 to 24 months. Caries Res. 2012;46:385–93.PubMed
29.
go back to reference Merglova V, Koberova-Ivancakova R, Broukal Z, Dort J. The presence of cariogenic and periodontal pathogens in the oral cavity of one-year-old infants delivered pre-term with very low birthweights: a case control study. BMC Oral Health. 2014;14:109.PubMedPubMedCentral Merglova V, Koberova-Ivancakova R, Broukal Z, Dort J. The presence of cariogenic and periodontal pathogens in the oral cavity of one-year-old infants delivered pre-term with very low birthweights: a case control study. BMC Oral Health. 2014;14:109.PubMedPubMedCentral
30.
go back to reference Fujiwara T, Sasada E, Mima N, Ooshima T. Caries prevalence and salivary mutans streptococci in 0-2-year-old children of Japan. Community Dent Oral Epidemiol. 1991;19:151–4.PubMed Fujiwara T, Sasada E, Mima N, Ooshima T. Caries prevalence and salivary mutans streptococci in 0-2-year-old children of Japan. Community Dent Oral Epidemiol. 1991;19:151–4.PubMed
31.
go back to reference Roeters FJ, van der Hoeven JS, Burgersdijk RC, Schaeken MJ. Lactobacilli, mutants streptococci and dental caries: a longitudinal study in 2-year-old children up to the age of 5 years. Caries Res. 1995;29:272–9.PubMed Roeters FJ, van der Hoeven JS, Burgersdijk RC, Schaeken MJ. Lactobacilli, mutants streptococci and dental caries: a longitudinal study in 2-year-old children up to the age of 5 years. Caries Res. 1995;29:272–9.PubMed
32.
go back to reference Tanaka K, Miyake Y. Low birth weight, preterm birth or small-for-gestational-age are not associated with dental caries in young Japanese children. BMC Oral Health. 2014;14:38.PubMedPubMedCentral Tanaka K, Miyake Y. Low birth weight, preterm birth or small-for-gestational-age are not associated with dental caries in young Japanese children. BMC Oral Health. 2014;14:38.PubMedPubMedCentral
33.
go back to reference Lai PY, Seow WK, Tudehope DI, Rogers Y. Enamel hypoplasia and dental caries in very-low birthweight children: a case-controlled, longitudinal study. Pediatr Dent. 1997;19:42–9.PubMed Lai PY, Seow WK, Tudehope DI, Rogers Y. Enamel hypoplasia and dental caries in very-low birthweight children: a case-controlled, longitudinal study. Pediatr Dent. 1997;19:42–9.PubMed
Metadata
Title
Evaluation of the risk factors of dental caries in children with very low birth weight and normal birth weight
Authors
Romana Koberova
Vladimira Radochova
Jana Zemankova
Lenka Ryskova
Zdeněk Broukal
Vlasta Merglova
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Oral Health / Issue 1/2021
Electronic ISSN: 1472-6831
DOI
https://doi.org/10.1186/s12903-020-01372-4

Other articles of this Issue 1/2021

BMC Oral Health 1/2021 Go to the issue