Skip to main content
Top
Published in: BMC Oral Health 1/2020

Open Access 01-12-2020 | Research article

Learning curve of digital intraoral scanning – an in vivo study

Authors: Ivett Róth, Alexandra Czigola, Gellért Levente Joós-Kovács, Magdolna Dalos, Péter Hermann, Judit Borbély

Published in: BMC Oral Health | Issue 1/2020

Login to get access

Abstract

Background

The spread of digital technology in dentistry poses new challenges and sets new goals for dentists. The aim of the present in vivo study was to determine the learning curve of intraoral scanning described by (1) scanning time and (2) image number (count of images created by intraoral scanner during the scanning process).

Methods

Ten dental students of Semmelweis University took part in the study. Dental students took digital study impressions using a 3Shape Trios 3® (3Shape, Copenhagen, Denmark) intraoral scanning device. Each student took 10 digital impressions on volunteers. Volunteer inclusion criteria included full dentition (except for missing third molars) and no prosthetic/restorative treatment. Digital impression taking was preceded by tuition consisting of both theoretical education and practical training. Digital impressions were taken of the upper and lower arches, and the bite was recorded according to the manufacturer's instructions. Total scanning times and image numbers were recorded.

Results

The difference in scanning time between the first and the tenth digital impressions was significant (p = 0.007). The average scanning time for the first impressions was 23 min 9 s; for the tenth impressions, it was 15 min 28 s. The difference between the scanning times of the first and the tenth procedures was 7 min 41 s. The average image count for the first impressions was 1964.5; for the tenth impressions, it was 1468.6. The image count difference between the first and the tenth procedures was 495.9. The image count versus sequential number of measurement curve shows an initial decreasing tendency followed by a trough around the sixth measurement and a final increasing phase.

Conclusion

Our results indicate an association between the sequential number of measurements and the outcome variables. The drop in scanning time is probably explained by a practice effect of repeated use, i.e. the students learned to move the scanning tip faster. The image count first showed a decreasing tendency, and after the sixth measurement, it increased; there was no consistent decline in mean scan count. Shorter scanning times are associated with poorer coverage quality, with the operator needing to make corrections by adding extra images; this manifests as the time function of image counts taking an increase after the sixth measurement.
Literature
1.
go back to reference Duret F, Blouin JL. Optical impressions in the computer-assisted design and fabrication of dental crowns. Le J dentaire du Quebec. 1986;23:177–80. Duret F, Blouin JL. Optical impressions in the computer-assisted design and fabrication of dental crowns. Le J dentaire du Quebec. 1986;23:177–80.
2.
go back to reference Zimmermann M, Mehl A, Mörmann WH, Reich S. Intraoral scanning systems - a current overview. Int J Comput Dent. 2015;18(2):101–29.PubMed Zimmermann M, Mehl A, Mörmann WH, Reich S. Intraoral scanning systems - a current overview. Int J Comput Dent. 2015;18(2):101–29.PubMed
3.
go back to reference Latham J, Ludlow M, Mennito A, Kelly A, Evans Z, Renne W. Effect of scan pattern on complete-arch scans with 4 digital scanners. J Prosthet Dent. 2020;123(1):85–95.PubMedCrossRef Latham J, Ludlow M, Mennito A, Kelly A, Evans Z, Renne W. Effect of scan pattern on complete-arch scans with 4 digital scanners. J Prosthet Dent. 2020;123(1):85–95.PubMedCrossRef
4.
5.
go back to reference Goracci C, Franchi L, Vichi A, Ferrari M. Accuracy, reliability, and efficiency of intraoral scanners for full-arch impressions: a systematic review of the clinical evidence. Eur J Orthod. 2016;38(4):422–8.PubMedCrossRef Goracci C, Franchi L, Vichi A, Ferrari M. Accuracy, reliability, and efficiency of intraoral scanners for full-arch impressions: a systematic review of the clinical evidence. Eur J Orthod. 2016;38(4):422–8.PubMedCrossRef
6.
go back to reference Di Fiore A, Meneghello R, Graiff L, Savio G, Vigolo P, Monaco C, et al. Full arch digital scanning systems performances for implant-supported fixed dental prostheses: a comparative study of 8 intraoral scanners. J Prosthodont Res. 2019;63(4):396–403.PubMedCrossRef Di Fiore A, Meneghello R, Graiff L, Savio G, Vigolo P, Monaco C, et al. Full arch digital scanning systems performances for implant-supported fixed dental prostheses: a comparative study of 8 intraoral scanners. J Prosthodont Res. 2019;63(4):396–403.PubMedCrossRef
7.
go back to reference Kihara H, Hatakeyama W, Komine F, Takafuji K, Takahashi T, Yokota J, et al. Accuracy and practicality of intraoral scanner in dentistry: A literature review. J Prosthodont Res. 2020;64(2):109–13.PubMedCrossRef Kihara H, Hatakeyama W, Komine F, Takafuji K, Takahashi T, Yokota J, et al. Accuracy and practicality of intraoral scanner in dentistry: A literature review. J Prosthodont Res. 2020;64(2):109–13.PubMedCrossRef
8.
go back to reference Richert R, Goujat A, Venet L, Viguie G, Viennot S, Robinson P, et al. Intraoral scanner technologies: a review to make a successful impression. J Healthc Eng. 2017;2017:8427595.PubMedPubMedCentralCrossRef Richert R, Goujat A, Venet L, Viguie G, Viennot S, Robinson P, et al. Intraoral scanner technologies: a review to make a successful impression. J Healthc Eng. 2017;2017:8427595.PubMedPubMedCentralCrossRef
9.
go back to reference Mistry GS, Borse A, Shetty OK, Tabassum R. Review article digital impression system-virtually becoming a reality. J Adv Med Dent Scie. 2014;2:56–63. Mistry GS, Borse A, Shetty OK, Tabassum R. Review article digital impression system-virtually becoming a reality. J Adv Med Dent Scie. 2014;2:56–63.
11.
go back to reference Patzelt SBM, Lamprinos C, Stampf S, Att W. The time efficiency of intraoral scanners. J Am Dental Assoc. 2014;145:542–51.CrossRef Patzelt SBM, Lamprinos C, Stampf S, Att W. The time efficiency of intraoral scanners. J Am Dental Assoc. 2014;145:542–51.CrossRef
12.
go back to reference Londono J, Abreu A, Baker PS, Furness AR. Fabrication of a definitive obturator from a 3D cast with a chairside digital scanner for a patient with severe gag reflex: a clinical report. J Prosthet Dent. 2015;114:735–8.PubMedCrossRef Londono J, Abreu A, Baker PS, Furness AR. Fabrication of a definitive obturator from a 3D cast with a chairside digital scanner for a patient with severe gag reflex: a clinical report. J Prosthet Dent. 2015;114:735–8.PubMedCrossRef
13.
go back to reference Imburgia M, Logozzo S, Hauschild U, Veronesi G, Mangano C, Mangano FG. Accuracy of four intraoral scanners in oral implantology: a comparative in vitro study. BMC Oral Health. 2017;17(1):92.PubMedPubMedCentralCrossRef Imburgia M, Logozzo S, Hauschild U, Veronesi G, Mangano C, Mangano FG. Accuracy of four intraoral scanners in oral implantology: a comparative in vitro study. BMC Oral Health. 2017;17(1):92.PubMedPubMedCentralCrossRef
14.
go back to reference Mangano FG, Veronesi G, Hauschild U, Mijiritsky E, Mangano C. Trueness and precision of four intraoral scanners in oral implantology: a comparative in vitro study. PLoS ONE. 2016;11(9):e0163107.PubMedPubMedCentralCrossRef Mangano FG, Veronesi G, Hauschild U, Mijiritsky E, Mangano C. Trueness and precision of four intraoral scanners in oral implantology: a comparative in vitro study. PLoS ONE. 2016;11(9):e0163107.PubMedPubMedCentralCrossRef
15.
go back to reference van der Meer WJ, Andriessen FS, Wismeijer D, Ren Y. Application of intra-oral dental scanners in the digital workflow of implantology. PLoS ONE. 2012;7(8):e43312.PubMedPubMedCentralCrossRef van der Meer WJ, Andriessen FS, Wismeijer D, Ren Y. Application of intra-oral dental scanners in the digital workflow of implantology. PLoS ONE. 2012;7(8):e43312.PubMedPubMedCentralCrossRef
16.
go back to reference Al Hamad KQ. Learning curve of intraoral scanning by prosthodontic residents. J Prosthet Dent. 2020;123(2):277–83.PubMedCrossRef Al Hamad KQ. Learning curve of intraoral scanning by prosthodontic residents. J Prosthet Dent. 2020;123(2):277–83.PubMedCrossRef
17.
go back to reference Schunk DH. Learning Theories: an educational perspective. 6th ed. Smith P, editor. Boston: Allyn & Bacon; 2012. Schunk DH. Learning Theories: an educational perspective. 6th ed. Smith P, editor. Boston: Allyn & Bacon; 2012.
18.
go back to reference Julius William Kling LAR. Woodworth & Schlosberg’s experimental psychology. 3rd ed. England: Rinehart & Winston; 1971. Julius William Kling LAR. Woodworth & Schlosberg’s experimental psychology. 3rd ed. England: Rinehart & Winston; 1971.
19.
go back to reference Sammon J, Perry A, Beaule L, Kinkead T, Clark D, Hansen M. Robot-assisted radical prostatectomy: learning rate analysis as an objective measure of the acquisition of surgical skill. BJU Int. 2010;106:855–60.PubMedCrossRef Sammon J, Perry A, Beaule L, Kinkead T, Clark D, Hansen M. Robot-assisted radical prostatectomy: learning rate analysis as an objective measure of the acquisition of surgical skill. BJU Int. 2010;106:855–60.PubMedCrossRef
20.
go back to reference Blavier A, Gaudissart Q, Cadière G-B, Nyssen A-S. Comparison of learning curves and skill transfer between classical and robotic laparoscopy according to the viewing conditions: implications for training. Am J Surg. 2007;194:115–21.PubMedCrossRef Blavier A, Gaudissart Q, Cadière G-B, Nyssen A-S. Comparison of learning curves and skill transfer between classical and robotic laparoscopy according to the viewing conditions: implications for training. Am J Surg. 2007;194:115–21.PubMedCrossRef
21.
go back to reference Prasad SM, Maniar HS, Soper NJ, Damiano RJ, Klingensmith ME. The effect of robotic assistance on learning curves for basic laparoscopic skills. Am J Surg. 2002;183:702–7.PubMedCrossRef Prasad SM, Maniar HS, Soper NJ, Damiano RJ, Klingensmith ME. The effect of robotic assistance on learning curves for basic laparoscopic skills. Am J Surg. 2002;183:702–7.PubMedCrossRef
22.
go back to reference Marti AM, Harris BT, Metz MJ, Morton D, Scarfe WC, Metz CJ, et al. Comparison of digital scanning and polyvinyl siloxane impression techniques by dental students: instructional efficiency and attitudes towards technology. Eur J Dent Educ. 2017;21(3):200–5.PubMedCrossRef Marti AM, Harris BT, Metz MJ, Morton D, Scarfe WC, Metz CJ, et al. Comparison of digital scanning and polyvinyl siloxane impression techniques by dental students: instructional efficiency and attitudes towards technology. Eur J Dent Educ. 2017;21(3):200–5.PubMedCrossRef
23.
go back to reference Rhee Y-K, Huh Y-H, Cho L-R, Park C-J. Comparison of intraoral scanning and conventional impression techniques using 3-dimensional superimposition. J Adv Prosthodont. 2015;7:460–7.PubMedPubMedCentralCrossRef Rhee Y-K, Huh Y-H, Cho L-R, Park C-J. Comparison of intraoral scanning and conventional impression techniques using 3-dimensional superimposition. J Adv Prosthodont. 2015;7:460–7.PubMedPubMedCentralCrossRef
24.
go back to reference Lee SJ, Gallucci GO. Digital vs. conventional implant impressions: efficiency outcomes. Clinical Oral Implants Research. 2013;24:111–5.PubMedCrossRef Lee SJ, Gallucci GO. Digital vs. conventional implant impressions: efficiency outcomes. Clinical Oral Implants Research. 2013;24:111–5.PubMedCrossRef
25.
go back to reference Lee SJ, Macarthur RXT, Gallucci GO. An evaluation of student and clinician perception of digital and conventional implant impressions. J Prosthet Dent. 2013;110(5):420–3.PubMedCrossRef Lee SJ, Macarthur RXT, Gallucci GO. An evaluation of student and clinician perception of digital and conventional implant impressions. J Prosthet Dent. 2013;110(5):420–3.PubMedCrossRef
26.
go back to reference Nedelcu R, Olsson P, Nystrom I, Thor A. Finish line distinctness and accuracy in 7 intraoral scanners versus conventional impression: an in vitro descriptive comparison. BMC Oral Health. 2018;18(1):27.PubMedPubMedCentralCrossRef Nedelcu R, Olsson P, Nystrom I, Thor A. Finish line distinctness and accuracy in 7 intraoral scanners versus conventional impression: an in vitro descriptive comparison. BMC Oral Health. 2018;18(1):27.PubMedPubMedCentralCrossRef
27.
go back to reference Nedelcu R, Olsson P, Nyström I, Rydén J, Thor A. Accuracy and precision of 3 intraoral scanners and accuracy of conventional impressions: a novel in vivo analysis method. J Dent. 2018;69:110–8.PubMedCrossRef Nedelcu R, Olsson P, Nyström I, Rydén J, Thor A. Accuracy and precision of 3 intraoral scanners and accuracy of conventional impressions: a novel in vivo analysis method. J Dent. 2018;69:110–8.PubMedCrossRef
28.
go back to reference Att W, Witkowski S, Strub JR. Digital workflow in reconstructive dentistry. Berlin: Quintessence Publishing Deutschland; 2019. Att W, Witkowski S, Strub JR. Digital workflow in reconstructive dentistry. Berlin: Quintessence Publishing Deutschland; 2019.
29.
go back to reference Ender A, Mehl A. Influence of scanning strategies on the accuracy of digital intraoral scanning systems. Int J Comput Dent. 2013;16:11–21.PubMed Ender A, Mehl A. Influence of scanning strategies on the accuracy of digital intraoral scanning systems. Int J Comput Dent. 2013;16:11–21.PubMed
30.
go back to reference Park H-R, Park J-M, Chun Y-S, Lee K-N, Kim M. Changes in views on digital intraoral scanners among dental hygienists after training in digital impression taking. BMC Oral Health. 2015;15:151.PubMedPubMedCentralCrossRef Park H-R, Park J-M, Chun Y-S, Lee K-N, Kim M. Changes in views on digital intraoral scanners among dental hygienists after training in digital impression taking. BMC Oral Health. 2015;15:151.PubMedPubMedCentralCrossRef
31.
go back to reference Lee K-M. Comparison of two intraoral scanners based on three-dimensional surface analysis. Progr Orthodont. 2018;19:6.CrossRef Lee K-M. Comparison of two intraoral scanners based on three-dimensional surface analysis. Progr Orthodont. 2018;19:6.CrossRef
32.
go back to reference Güth J-F, Keul C, Stimmelmayr M, Beuer F, Edelhoff D. Accuracy of digital models obtained by direct and indirect data capturing. Clin Oral Invest. 2013;17:1201–8.CrossRef Güth J-F, Keul C, Stimmelmayr M, Beuer F, Edelhoff D. Accuracy of digital models obtained by direct and indirect data capturing. Clin Oral Invest. 2013;17:1201–8.CrossRef
33.
go back to reference Su T-S, Sun J. Comparison of repeatability between intraoral digital scanner and extraoral digital scanner: An in-vitro study. J Prosthodont Res. 2015;59:236–42.PubMedCrossRef Su T-S, Sun J. Comparison of repeatability between intraoral digital scanner and extraoral digital scanner: An in-vitro study. J Prosthodont Res. 2015;59:236–42.PubMedCrossRef
34.
go back to reference Güth J-F, Runkel C, Beuer F, Stimmelmayr M, Edelhoff D, Keul C. Accuracy of five intraoral scanners compared to indirect digitalization. Clin Oral Invest. 2017;21:1445–55.CrossRef Güth J-F, Runkel C, Beuer F, Stimmelmayr M, Edelhoff D, Keul C. Accuracy of five intraoral scanners compared to indirect digitalization. Clin Oral Invest. 2017;21:1445–55.CrossRef
35.
go back to reference Joda T, Lenherr P, Dedem P, Kovaltschuk I, Bragger U, Zitzmann NU. Time efficiency, difficulty, and operator’s preference comparing digital and conventional implant impressions: a randomized controlled trial. Clin Oral Implants Res. 2017;28(10):1318–23.PubMedCrossRef Joda T, Lenherr P, Dedem P, Kovaltschuk I, Bragger U, Zitzmann NU. Time efficiency, difficulty, and operator’s preference comparing digital and conventional implant impressions: a randomized controlled trial. Clin Oral Implants Res. 2017;28(10):1318–23.PubMedCrossRef
36.
go back to reference Müller P, Ender A, Joda T, Katsoulis J. Impact of digital intraoral scan strategies on the impression accuracy using the TRIOS Pod scanner. Quintessence International (Berlin, Germany). 2016;47:343–9. Müller P, Ender A, Joda T, Katsoulis J. Impact of digital intraoral scan strategies on the impression accuracy using the TRIOS Pod scanner. Quintessence International (Berlin, Germany). 2016;47:343–9.
37.
go back to reference Hack GD, Patzelt S. Evaluation of the accuracy of six intraoral scanning devices: an in-vitro investigation. ADA Prof Prod Rev. 2015;10(4):1–5. Hack GD, Patzelt S. Evaluation of the accuracy of six intraoral scanning devices: an in-vitro investigation. ADA Prof Prod Rev. 2015;10(4):1–5.
38.
go back to reference Gherlone E, Mandelli F, Capparè P, Pantaleo G, Traini T, Ferrini F. A 3 years retrospective study of survival for zirconia-based single crowns fabricated from intraoral digital impressions. J Dent. 2014;42:1151–5.PubMedCrossRef Gherlone E, Mandelli F, Capparè P, Pantaleo G, Traini T, Ferrini F. A 3 years retrospective study of survival for zirconia-based single crowns fabricated from intraoral digital impressions. J Dent. 2014;42:1151–5.PubMedCrossRef
39.
go back to reference Patzelt SBM, Emmanouilidi A, Stampf S, Strub JR, Att W. Accuracy of full-arch scans using intraoral scanners. Clin Oral Invest. 2014;18:1687–94.CrossRef Patzelt SBM, Emmanouilidi A, Stampf S, Strub JR, Att W. Accuracy of full-arch scans using intraoral scanners. Clin Oral Invest. 2014;18:1687–94.CrossRef
40.
go back to reference Ali AO. Accuracy of digital impressions achieved from five different digital impression systems. Dentistry. 2015;05. Ali AO. Accuracy of digital impressions achieved from five different digital impression systems. Dentistry. 2015;05.
41.
go back to reference Birnbaum NS, Aaronson HB. Dental impressions using 3D digital scanners: virtual becomes reality. Compend Contin Educ Dent. 2008;29(8):494–505.PubMed Birnbaum NS, Aaronson HB. Dental impressions using 3D digital scanners: virtual becomes reality. Compend Contin Educ Dent. 2008;29(8):494–505.PubMed
42.
go back to reference Kim J, Park J-M, Kim M, Heo S-J, Shin IH, Kim M. Comparison of experience curves between two 3-dimensional intraoral scanners. J Prosthet Dent. 2016;116:221–30.PubMedCrossRef Kim J, Park J-M, Kim M, Heo S-J, Shin IH, Kim M. Comparison of experience curves between two 3-dimensional intraoral scanners. J Prosthet Dent. 2016;116:221–30.PubMedCrossRef
43.
go back to reference Wiranto MG, Engelbrecht WP, Tutein Nolthenius HE, van der Meer WJ, Ren Y. Validity, reliability, and reproducibility of linear measurements on digital models obtained from intraoral and cone-beam computed tomography scans of alginate impressions. Am J Orthod Dentofac Orthop. 2013;143:140–7.CrossRef Wiranto MG, Engelbrecht WP, Tutein Nolthenius HE, van der Meer WJ, Ren Y. Validity, reliability, and reproducibility of linear measurements on digital models obtained from intraoral and cone-beam computed tomography scans of alginate impressions. Am J Orthod Dentofac Orthop. 2013;143:140–7.CrossRef
44.
go back to reference Gan N, Xiong Y, Jiao T. Accuracy of intraoral digital impressions for whole upper jaws, including full dentitions and palatal soft tissues. PLoS ONE. 2016;11:e0158800.PubMedPubMedCentralCrossRef Gan N, Xiong Y, Jiao T. Accuracy of intraoral digital impressions for whole upper jaws, including full dentitions and palatal soft tissues. PLoS ONE. 2016;11:e0158800.PubMedPubMedCentralCrossRef
45.
go back to reference Yuzbasioglu E, Kurt H, Turunc R, Bilir H. Comparison of digital and conventional impression techniques: evaluation of patients’ perception, treatment comfort, effectiveness and clinical outcomes. BMC Oral Health. 2014;14:10.PubMedPubMedCentralCrossRef Yuzbasioglu E, Kurt H, Turunc R, Bilir H. Comparison of digital and conventional impression techniques: evaluation of patients’ perception, treatment comfort, effectiveness and clinical outcomes. BMC Oral Health. 2014;14:10.PubMedPubMedCentralCrossRef
46.
go back to reference Sun L, Lee JS, Choo HH, Hwang HS, Lee KM. Reproducibility of an intraoral scanner: a comparison between in-vivo and ex-vivo scans. Am J Orthod Dentofacial Orthop. 2018;154(2):305–10.PubMedCrossRef Sun L, Lee JS, Choo HH, Hwang HS, Lee KM. Reproducibility of an intraoral scanner: a comparison between in-vivo and ex-vivo scans. Am J Orthod Dentofacial Orthop. 2018;154(2):305–10.PubMedCrossRef
47.
go back to reference Flugge TV, Schlager S, Nelson K, Nahles S, Metzger MC. Precision of intraoral digital dental impressions with iTero and extraoral digitization with the iTero and a model scanner. Am J Orthod Dentofacial Orthop. 2013;144(3):471–8.PubMedCrossRef Flugge TV, Schlager S, Nelson K, Nahles S, Metzger MC. Precision of intraoral digital dental impressions with iTero and extraoral digitization with the iTero and a model scanner. Am J Orthod Dentofacial Orthop. 2013;144(3):471–8.PubMedCrossRef
Metadata
Title
Learning curve of digital intraoral scanning – an in vivo study
Authors
Ivett Róth
Alexandra Czigola
Gellért Levente Joós-Kovács
Magdolna Dalos
Péter Hermann
Judit Borbély
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Oral Health / Issue 1/2020
Electronic ISSN: 1472-6831
DOI
https://doi.org/10.1186/s12903-020-01278-1

Other articles of this Issue 1/2020

BMC Oral Health 1/2020 Go to the issue