Skip to main content
Top
Published in: BMC Oral Health 1/2020

Open Access 01-12-2020 | Intraoral Examination | Research article

Prevalence and risk indicators of non-carious cervical lesions in male footballers

Authors: Tamea Lacerda Monteiro Medeiros, Sheila Cristina Almeida Neves Mutran, Daybelis González Espinosa, Kelson do Carmo Freitas Faial, Helder Henrique Costa Pinheiro, Roberta Souza D’Almeida Couto

Published in: BMC Oral Health | Issue 1/2020

Login to get access

Abstract

Background

Non-carious cervical lesions (NCCLs) have shown a significant incidence and prevalence and have been increasingly associated with people’s lifestyles and youths. This cross-sectional study aimed to determine the prevalence of NCCLs in footballers and to address potential risk indicators.

Methods

Fourty-three male semi-professional footballers with an average of 27 years old completed a questionnaire and were subjected to intraoral examination in terms of cervical tooth wear, morphological characteristics of NCCLs, tooth sensitivity, occlusal/incisal wear, and malocclusion classification. Also, laboratory assays were performed to determine salivary parameters: flow rate, pH, buffer capacity, level of Ca (calcium), Na (sodium), and K (potassium) ions, and level of cortisol. The data obtained from the questionnaire and intraoral examinations were subjected to Chi-square and Poisson regression models while the data obtained from the laboratory assays were analyzed by using analysis of variance (p <  0.05).

Results

The prevalence of NCCLs was 39.5%. The participants presented predominantly initial lesions with signs of mechanical stress. The daily training time was found as a significant risk indicator (p = 0.028). The multivariate analysis showed a significant difference in the variables daily training time (p = 0.023), lemon water intake while fasting (p = 0.002), toothpaste type (p = 0.004), tooth sensitivity (p = 0.006); previous orthodontic treatment (p = 0.003), and occlusion type (p = 0.008). All participants presented normal salivary parameters and levels of cortisol.

Conclusion

The prevalence of NCCLs among footballers was remarkable. The premolars were the most affected teeth and presented symptoms/signs of initial lesions. The daily training time was a dominant risk indicator of NCCLs development. Footballers presented adequate salivary parameters and cortisol levels.
Appendix
Available only for authorised users
Literature
1.
go back to reference Teixeira DNR, Zeola LF, Machado AC, Gomes RR, Souza PG, Mendes DC, et al. Relationship between noncarious cervical lesions, cervical dentin hypersensitivity, gingival recession, and associated risk factors: a cross-sectional study. J Dent. 2018;76:93–7. Teixeira DNR, Zeola LF, Machado AC, Gomes RR, Souza PG, Mendes DC, et al. Relationship between noncarious cervical lesions, cervical dentin hypersensitivity, gingival recession, and associated risk factors: a cross-sectional study. J Dent. 2018;76:93–7.
2.
go back to reference Levitch LC, Bader JD, Shugars DA, Heymann HO. Non-carious cervical lesions. J Dent. 1994;22:195–207.PubMed Levitch LC, Bader JD, Shugars DA, Heymann HO. Non-carious cervical lesions. J Dent. 1994;22:195–207.PubMed
3.
go back to reference Bader JD, McClure F, Scurria MS, Shugars DA, Heymann HO. Case-control study of non-carious cervical lesions. Community Dent Oral Epidemiol. 1996;24:286–91.PubMed Bader JD, McClure F, Scurria MS, Shugars DA, Heymann HO. Case-control study of non-carious cervical lesions. Community Dent Oral Epidemiol. 1996;24:286–91.PubMed
4.
go back to reference Hur B, Kim HC, Park JK, Versluis A. Characteristics of non-carious cervical lesions – an ex vivo study using micro computed tomography. J Oral Rehabil. 2011;38:469–74.PubMed Hur B, Kim HC, Park JK, Versluis A. Characteristics of non-carious cervical lesions – an ex vivo study using micro computed tomography. J Oral Rehabil. 2011;38:469–74.PubMed
5.
go back to reference Wada I, Shimada Y, Ikeda M, Sadr A, Nakashima S, Tagami J, et al. Clinical assessment of non carious cervical lesion using swept-source optical coherence tomography. J Biophotonics. 2015;8:846–54.PubMed Wada I, Shimada Y, Ikeda M, Sadr A, Nakashima S, Tagami J, et al. Clinical assessment of non carious cervical lesion using swept-source optical coherence tomography. J Biophotonics. 2015;8:846–54.PubMed
6.
go back to reference Walter C, Kress E, Götz H, Taylor K, Willershausen I, Zampelis A. The anatomy of non-carious cervical lesions. Clin Oral Investig. 2014;18:139–46.PubMed Walter C, Kress E, Götz H, Taylor K, Willershausen I, Zampelis A. The anatomy of non-carious cervical lesions. Clin Oral Investig. 2014;18:139–46.PubMed
7.
go back to reference Grippo JO, Simring M, Coleman TA. Abfraction, abrasion, biocorrosion, and the enigma of noncarious cervical lesions: a 20-year perspective. J Esthet Restor Dent. 2012;24:10–23.PubMed Grippo JO, Simring M, Coleman TA. Abfraction, abrasion, biocorrosion, and the enigma of noncarious cervical lesions: a 20-year perspective. J Esthet Restor Dent. 2012;24:10–23.PubMed
8.
go back to reference Frese C, Frese F, Kuhlmann S, Saure D, Reljic D, Staehle HJ, et al. Effect of endurance training on dental erosion, caries, and saliva. Scand J Med Sci Sport. 2015;25:e319–26. Frese C, Frese F, Kuhlmann S, Saure D, Reljic D, Staehle HJ, et al. Effect of endurance training on dental erosion, caries, and saliva. Scand J Med Sci Sport. 2015;25:e319–26.
9.
go back to reference Broad EM, Rye LA. Do current sports nutrition guidelines conflict with good oral health? Gen Dent. 2015;63:18–23.PubMed Broad EM, Rye LA. Do current sports nutrition guidelines conflict with good oral health? Gen Dent. 2015;63:18–23.PubMed
10.
go back to reference Frese C, Wohlrab T, Sheng L, Kieser M, Krisam J, Frese F, et al. Clinical management and prevention of dental caries in athletes: a four-year randomized controlled clinical trial. Sci Rep. 2018;8:16991.PubMedPubMedCentral Frese C, Wohlrab T, Sheng L, Kieser M, Krisam J, Frese F, et al. Clinical management and prevention of dental caries in athletes: a four-year randomized controlled clinical trial. Sci Rep. 2018;8:16991.PubMedPubMedCentral
11.
go back to reference Soares PV, Grippo JO. Noncarious cervical lesions and cervical dentin hypersensitivity: etiology, diagnosis and treatment. 1st ed. Chicago: Quintessence Publishing Co; 2017. Soares PV, Grippo JO. Noncarious cervical lesions and cervical dentin hypersensitivity: etiology, diagnosis and treatment. 1st ed. Chicago: Quintessence Publishing Co; 2017.
12.
go back to reference Vieira EP, Barbosa MS, Quintão CC, Normando D. Relationship of tooth wear to chronological age among indigenous Amazon populations. PLoS One. 2015;10:e0116138.PubMedPubMedCentral Vieira EP, Barbosa MS, Quintão CC, Normando D. Relationship of tooth wear to chronological age among indigenous Amazon populations. PLoS One. 2015;10:e0116138.PubMedPubMedCentral
13.
go back to reference Angle EH. Classification of malocclusion. Dent Cosm. 1899;41:248–64. Angle EH. Classification of malocclusion. Dent Cosm. 1899;41:248–64.
14.
go back to reference Thylstrup A, Fejerskov O. Clinical and pathological features of dental caries. In: Weyne S, Oppermann R, editors. Textbook of clinical cariology. 2nd ed. São Paulo: Santos; 1995. p. 111–57. Thylstrup A, Fejerskov O. Clinical and pathological features of dental caries. In: Weyne S, Oppermann R, editors. Textbook of clinical cariology. 2nd ed. São Paulo: Santos; 1995. p. 111–57.
15.
go back to reference Krasse B. Risco de Cárie. 2nd ed. São Paulo: Quintessence; 1998. Krasse B. Risco de Cárie. 2nd ed. São Paulo: Quintessence; 1998.
16.
go back to reference Favaro-Zeola L, Soares PV, Cunha-Cruz J. Prevalence of dentin hypersensitivity: systematic review and meta-analysis. J Dent. 2019;81:1–6.PubMed Favaro-Zeola L, Soares PV, Cunha-Cruz J. Prevalence of dentin hypersensitivity: systematic review and meta-analysis. J Dent. 2019;81:1–6.PubMed
17.
go back to reference Smith WA, Marchan S, Rafeek RN. The prevalence and severity of non-carious cervical lesions in a group of patients attending a university hospital in Trinidad. J Oral Rehabil. 2008;35:128–34.PubMed Smith WA, Marchan S, Rafeek RN. The prevalence and severity of non-carious cervical lesions in a group of patients attending a university hospital in Trinidad. J Oral Rehabil. 2008;35:128–34.PubMed
18.
go back to reference Lai ZY, Zhi QH, Zhou Y, Lin HC. Prevalence of non-carious cervical lesions and associated risk indicators in middle-aged and elderly populations in southern China. Chin J Dent Res. 2015;18:41–50.PubMed Lai ZY, Zhi QH, Zhou Y, Lin HC. Prevalence of non-carious cervical lesions and associated risk indicators in middle-aged and elderly populations in southern China. Chin J Dent Res. 2015;18:41–50.PubMed
19.
go back to reference Brandini DA, Trevisan CL, Panzarini SR, Pedrini D. Clinical evaluation of the association between noncarious cervical lesions and occlusal forces. J Prosthet Dent. 2012;108:298–303.PubMed Brandini DA, Trevisan CL, Panzarini SR, Pedrini D. Clinical evaluation of the association between noncarious cervical lesions and occlusal forces. J Prosthet Dent. 2012;108:298–303.PubMed
20.
go back to reference Kolak V, Pešić D, Melih I, Lalović M, Nikitović A, Jakovljević A. Epidemiological investigation of non-carious cervical lesions and possible etiological factors. J Clin Exp Dent. 2018;10:e648–56.PubMedPubMedCentral Kolak V, Pešić D, Melih I, Lalović M, Nikitović A, Jakovljević A. Epidemiological investigation of non-carious cervical lesions and possible etiological factors. J Clin Exp Dent. 2018;10:e648–56.PubMedPubMedCentral
21.
go back to reference Buczkowska-Radlińska J, Łagocka R, Kaczmarek K, Górski M, Nowicka A. Prevalence of dental erosion in adolescent competitive swimmers exposed to gas-chlorinated swimming pool water. Clin Oral Invest. 2012;17:579–83. Buczkowska-Radlińska J, Łagocka R, Kaczmarek K, Górski M, Nowicka A. Prevalence of dental erosion in adolescent competitive swimmers exposed to gas-chlorinated swimming pool water. Clin Oral Invest. 2012;17:579–83.
22.
go back to reference Antunes LS, Veiga L, Nery VS, Nery CC, Antunes LA. Sports drink consumption and dental erosion among amateur runners. J Oral Sci. 2017;59:639–43.PubMed Antunes LS, Veiga L, Nery VS, Nery CC, Antunes LA. Sports drink consumption and dental erosion among amateur runners. J Oral Sci. 2017;59:639–43.PubMed
23.
go back to reference Zuza A, Racic M, Ivkovic N, Krunic J, Stojanovic N, Bozovic D, et al. Prevalence of non-carious cervical lesions among the general population of the republic of Srpska, Bosnia and Herzegovina. Int Dent J. 2019;69:281–8. Zuza A, Racic M, Ivkovic N, Krunic J, Stojanovic N, Bozovic D, et al. Prevalence of non-carious cervical lesions among the general population of the republic of Srpska, Bosnia and Herzegovina. Int Dent J. 2019;69:281–8.
24.
go back to reference Dawes C. Physiological factors affecting salivary flow rate, oral sugar clearance, and the sensation of dry mouth in man. J Dent Res. 1987;66:648–53.PubMed Dawes C. Physiological factors affecting salivary flow rate, oral sugar clearance, and the sensation of dry mouth in man. J Dent Res. 1987;66:648–53.PubMed
25.
go back to reference Barron RP, Carmichael RP, Marcon MA, Sàndor GK. Dental erosion in gastroesophageal reflux disease. J Can Dent Assoc. 2003;69:84–9.PubMed Barron RP, Carmichael RP, Marcon MA, Sàndor GK. Dental erosion in gastroesophageal reflux disease. J Can Dent Assoc. 2003;69:84–9.PubMed
26.
go back to reference Hara ES, Matsuka Y, Minakuchi H, Clark GT, Kuboki T. Occlusal dysesthesia: a qualitative systematic review of the epidemiology, a etiology and management. J Oral Rehabil. 2012;39:630–8.PubMed Hara ES, Matsuka Y, Minakuchi H, Clark GT, Kuboki T. Occlusal dysesthesia: a qualitative systematic review of the epidemiology, a etiology and management. J Oral Rehabil. 2012;39:630–8.PubMed
27.
go back to reference Buzalaf MAR, Magalhães AC, Rios D. Prevention of erosive tooth wear: targeting nutritional and patient-related risks factors. Br Dent J. 2018;224:371–8.PubMed Buzalaf MAR, Magalhães AC, Rios D. Prevention of erosive tooth wear: targeting nutritional and patient-related risks factors. Br Dent J. 2018;224:371–8.PubMed
28.
go back to reference Schlueter N, Luka B. Erosive tooth wear – a review on global prevalence and on its prevalence in risk groups. Br Dent J. 2018;224:364–70.PubMed Schlueter N, Luka B. Erosive tooth wear – a review on global prevalence and on its prevalence in risk groups. Br Dent J. 2018;224:364–70.PubMed
29.
go back to reference Alcântara PM, Barroso NFF, Botelho AM, Douglas-de-Oliveira DW, Gonçalves PF, Flecha OD. Associated factors to cervical dentin hypersensitivity in adults: a transversal study. BMC Oral Health. 2018;18:155.PubMedPubMedCentral Alcântara PM, Barroso NFF, Botelho AM, Douglas-de-Oliveira DW, Gonçalves PF, Flecha OD. Associated factors to cervical dentin hypersensitivity in adults: a transversal study. BMC Oral Health. 2018;18:155.PubMedPubMedCentral
30.
go back to reference Que K, Guo B, Jia Z, Chen Z, Yang J, Gao P. A cross-sectional study: non-carious cervical lesions, cervical dentine hypersensitivity and related risk factors. J Oral Rehabil. 2013;40:24–32.PubMed Que K, Guo B, Jia Z, Chen Z, Yang J, Gao P. A cross-sectional study: non-carious cervical lesions, cervical dentine hypersensitivity and related risk factors. J Oral Rehabil. 2013;40:24–32.PubMed
31.
go back to reference Rees JS. The effect of variation in occlusal loading on the development of abfraction lesions: a finite element study. J Oral Rehabil. 2002;29:188–93.PubMed Rees JS. The effect of variation in occlusal loading on the development of abfraction lesions: a finite element study. J Oral Rehabil. 2002;29:188–93.PubMed
32.
go back to reference Jakupovič S, Anič I, Ajanovič M, Korać S, Konjhodžić A, Džanković A, et al. Biomechanics of cervical tooth region and noncarious cervical lesions of different morphology; three-dimensional finite element analysis. Eur J Dent. 2016;10:413–8.PubMedPubMedCentral Jakupovič S, Anič I, Ajanovič M, Korać S, Konjhodžić A, Džanković A, et al. Biomechanics of cervical tooth region and noncarious cervical lesions of different morphology; three-dimensional finite element analysis. Eur J Dent. 2016;10:413–8.PubMedPubMedCentral
34.
go back to reference Pegoraro LF, Scolaro JM, Conti PC, Telles D, Pegoraro TA. Noncarious cervical lesions in adults: prevalence and occlusal aspects. J Am Dent Assoc. 2005;136:1694–700.PubMed Pegoraro LF, Scolaro JM, Conti PC, Telles D, Pegoraro TA. Noncarious cervical lesions in adults: prevalence and occlusal aspects. J Am Dent Assoc. 2005;136:1694–700.PubMed
35.
go back to reference Palomino-Gómez SP, Jeremias F, Finoti LS, Paredes-Coz G, Raveli DB. Influence of lateral excursion on vestibular cervical dental abfraction. Acta Odontol Latinoam. 2011;24:283–8.PubMed Palomino-Gómez SP, Jeremias F, Finoti LS, Paredes-Coz G, Raveli DB. Influence of lateral excursion on vestibular cervical dental abfraction. Acta Odontol Latinoam. 2011;24:283–8.PubMed
36.
go back to reference Soares PV, Souza LV, Veríssimo C, Zeola LF, Pereira AG, Santos-Filho PCF, et al. Effect of root morphology on biomechanical behaviour of premolars associated with abfraction lesions and different loading types. J Oral Rehabil. 2014;41:108–14.PubMed Soares PV, Souza LV, Veríssimo C, Zeola LF, Pereira AG, Santos-Filho PCF, et al. Effect of root morphology on biomechanical behaviour of premolars associated with abfraction lesions and different loading types. J Oral Rehabil. 2014;41:108–14.PubMed
37.
go back to reference Igarashi Y, Yoshida S, Kanazawa E. The prevalence and morphological types of non-carious cervical lesions (NCCL) in a contemporary sample of people. Odontology. 2017;105:443–52.PubMed Igarashi Y, Yoshida S, Kanazawa E. The prevalence and morphological types of non-carious cervical lesions (NCCL) in a contemporary sample of people. Odontology. 2017;105:443–52.PubMed
38.
go back to reference Michael JA, Kaidonis JA, Townsend GC. Non-carious cervical lesions on permanent anterior teeth: a new morphological classification. Aust Dent J. 2010;55:134–7.PubMed Michael JA, Kaidonis JA, Townsend GC. Non-carious cervical lesions on permanent anterior teeth: a new morphological classification. Aust Dent J. 2010;55:134–7.PubMed
39.
go back to reference Grippo JO. Abfractions: a new classification of hard tissue lesions of teeth. J Esthet Dent. 1991;3:14–9.PubMed Grippo JO. Abfractions: a new classification of hard tissue lesions of teeth. J Esthet Dent. 1991;3:14–9.PubMed
40.
go back to reference Lee WC, Eakle WS. Stress-induced cervical lesions: review of advances in the past 10 years. J Prosthet Dent. 1996;75:487–94.PubMed Lee WC, Eakle WS. Stress-induced cervical lesions: review of advances in the past 10 years. J Prosthet Dent. 1996;75:487–94.PubMed
41.
go back to reference Senna P, Del Bel CA, Rösing C. Non-carious cervical lesions and occlusion: a systematic review of clinical studies. J Oral Rehabil. 2012;39:450–62.PubMed Senna P, Del Bel CA, Rösing C. Non-carious cervical lesions and occlusion: a systematic review of clinical studies. J Oral Rehabil. 2012;39:450–62.PubMed
42.
go back to reference Fullagar HHK, McCunn R, Murray A. Updated review of the applied physiology of American college football: physical demands, strength and conditioning, nutrition, and injury characteristics of america’s favorite game. Int J Sports Physiol Perform. 2017;12:1396–403.PubMed Fullagar HHK, McCunn R, Murray A. Updated review of the applied physiology of American college football: physical demands, strength and conditioning, nutrition, and injury characteristics of america’s favorite game. Int J Sports Physiol Perform. 2017;12:1396–403.PubMed
43.
go back to reference Brenner I, Shek PN, Zamecnik J, Shephard RJ. Stress hormones and the immunological responses to heat and exercise. Int J Sports Med. 1998;19:130–43.PubMed Brenner I, Shek PN, Zamecnik J, Shephard RJ. Stress hormones and the immunological responses to heat and exercise. Int J Sports Med. 1998;19:130–43.PubMed
44.
go back to reference Hanton S, Thomas O, Maynard I. Competitive anxiety responses in the week leading up to competition: the role of intensity, direction and frequency dimensions. Psychol Sport Exerc. 2004;5:169–81. Hanton S, Thomas O, Maynard I. Competitive anxiety responses in the week leading up to competition: the role of intensity, direction and frequency dimensions. Psychol Sport Exerc. 2004;5:169–81.
45.
go back to reference Filaire E, Alix D, Ferrand C, Verger M. Psychophysiological stress in tennis players during the first single match of a tournament. Psychoneuroendocrinology. 2009;34:150–7.PubMed Filaire E, Alix D, Ferrand C, Verger M. Psychophysiological stress in tennis players during the first single match of a tournament. Psychoneuroendocrinology. 2009;34:150–7.PubMed
46.
go back to reference Rimmele U, Zellweger BC, Marti B, Seiler R, Mohiyeddini C, Ehlert U, et al. Trained men show lower cortisol, heart rate and psychological responses to psychosocial stress compared with untrained men. Psychoneuroendocrinology. 2007;32:627–35.PubMed Rimmele U, Zellweger BC, Marti B, Seiler R, Mohiyeddini C, Ehlert U, et al. Trained men show lower cortisol, heart rate and psychological responses to psychosocial stress compared with untrained men. Psychoneuroendocrinology. 2007;32:627–35.PubMed
Metadata
Title
Prevalence and risk indicators of non-carious cervical lesions in male footballers
Authors
Tamea Lacerda Monteiro Medeiros
Sheila Cristina Almeida Neves Mutran
Daybelis González Espinosa
Kelson do Carmo Freitas Faial
Helder Henrique Costa Pinheiro
Roberta Souza D’Almeida Couto
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Oral Health / Issue 1/2020
Electronic ISSN: 1472-6831
DOI
https://doi.org/10.1186/s12903-020-01200-9

Other articles of this Issue 1/2020

BMC Oral Health 1/2020 Go to the issue